
Diploid genome architecture revealed by multi-omic
data of hybrid mice

Zhijun Han,1,2 Kairong Cui,3 Katarzyna Placek,3 Ni Hong,1 Chengqi Lin,2 Wei Chen,1

Keji Zhao,3 and Wenfei Jin1
1Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; 2Institute of Life
Sciences, Southeast University, Nanjing, Jiangsu 210096, China; 3Systems Biology Center, National Heart, Lung and Blood Institute,
National Institutes of Health, Bethesda, Maryland 20892, USA

Although mammalian genomes are diploid, previous studies extensively investigated the average chromatin architectures

without considering the differences between homologous chromosomes. We generated Hi-C, ChIP-seq, and RNA-seq

data sets from CD4 T cells of B6, Cast, and hybrid mice, to investigate the diploid chromatin organization and epigenetic

regulation. Our data indicate that inter-chromosomal interaction patterns between homologous chromosomes are similar,

and the similarity is highly correlated with their allelic coexpression levels. Reconstruction of the 3D nucleus revealed that

distances of the homologous chromosomes to the center of nucleus are almost the same. The inter-chromosomal interac-

tions at centromere ends are significantly weaker than those at telomere ends, suggesting that they are located in different

regions within the chromosome territories. Themajority of A|B compartments or topologically associated domains (TADs)

are consistent between B6 and Cast. We found 58%of the haploids in hybrids maintain their parental compartment status at

B6/Cast divergent compartments owing to cis effect. About 95% of the trans-effected B6/Cast divergent compartments con-

verge to the same compartment status potentially because of a shared cellular environment. We showed the differentially

expressed genes between the two haploids in hybrid were associated with either genetic or epigenetic effects. In summary,

our multi-omics data from the hybrid mice provided haploid-specific information on the 3D nuclear architecture and a rich

resource for further understanding the epigenetic regulation of haploid-specific gene expression.

[Supplemental material is available for this article.]

Chromatin is well organizedwithin the 3Dnucleus, which renders
efficient packaging of DNA while simultaneously allowing precise
gene regulation and genome replication. Studies based on high-
throughput chromosome conformation capture assay (Hi-C)
showed that the chromatin is segregated into A and B compart-
ments, which correspond to euchromatin and heterochromatin,
respectively (Lieberman-Aiden et al. 2009). Furthermore, the
mammalian genome is organized into a large number of topolog-
ically associated domains (TADs) (Dixon et al. 2012), and active
TADs appear to be segregated from inactive TADs (Simonis et al.
2006; de Wit et al. 2013; Gibcus and Dekker 2013; Meuleman
et al. 2013). The TAD structure is relatively stable across different
cell types, which requires the function of CTCF and cohesin
(Dixon et al. 2012; Zuin et al. 2014; Nora et al. 2017; Ren et al.
2017; Wang et al. 2019).

Most mammalian genomes are diploid, with one paternal
haploid and onematernal haploid. Previous studies have provided
rich information about the dynamics of chromatin status and his-
tone modification during the early gamete and embryo develop-
ment (Liu et al. 2016; Lu et al. 2016; Jung et al. 2017; Nagano
et al. 2017; Stevens et al. 2017). However, almost all the studies
only inferred the average chromatin interactions and average epi-
genetic status across the diploid genomes, partially because genetic
variations in general individuals couldnot provide sufficient segre-
gating sites for investigating allele-specific interactome. Although
Tan et al. (2018) recently investigated the diploid genome at single

cell resolution, characterizing the 3D genome structures of diploid
mammalian cells remains challenging, and the principle of 3D nu-
cleus organization is a mystery to some extent (Carstens et al.
2016).

Here, we introduce a hybrid mouse model that contains a
large number of segregating sites for distinguishing paternal and
maternal haploids, which serves as an idealmodel for investigating
the allele-specific 3D nucleus organization and epigenetic regula-
tion. Using the multi-omics data from this model system, we sys-
tematically investigated the inter-chromosomal interaction
pattern for each of the haploid genomes, constructed the diploid
3D nucleus, and identified allele-specific A|B compartments and
TADs.

Results

Constructing the hybrid mouse system and generating

multi-omics data sets

To study diploid genome architecture, we generated hybrid mice
by crossbreeding male C57BL/6J (B6) and female CAST/EiJ (Cast)
(Fig. 1A). Naive CD4 T cells were isolated from the hybrid mice
and their parents. We applied the 3e Hi-C protocol (Ren et al.
2017) to capture the global chromatin interaction information,
ChIP-seq to profile genome-wide histone modification (or
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transcription factor binding), and RNA-seq to profile gene expres-
sion in these cells (Supplemental Table S1). We assigned a read to
B6 or Cast if there was a strain-specific allele on that read
(Methods). For convenience, haploid genomes in hybrid mice in-
herited from B6 and Cast were called Fb6 and Fcast, respectively.
The length distribution of paired-end tags (PETs) in Fb6 and Fcast
are similar to that in B6 or Cast Hi-C libraries (Supplemental Fig.
S1; Supplemental Table S2).

Homologous chromosomes show similar interaction patterns

We built an inter-chromosomal interaction heatmap among all
chromosomes using the Hi-C PETs with both ends having strain-
specific alleles (Supplemental Fig S2A). Then we classified the in-
ter-chromosomal interactions into three groups: maternal–mater-
nal (MM), maternal–paternal (MP), and paternal–paternal (PP).
There are no significant differences among the normalized inter-

chromosomal interaction for MM, MP,
and PP (Student’s t-test) (Fig. 1B), indicat-
ing that the data are not parentally biased
or the chromosomes’ paternal or mater-
nal origins do not bias inter-chromosom-
al interactions.

We conducted principal compo-
nent analysis (PCA) on the interaction
matrix to capture the major inter-chro-
mosomal interaction patterns. The ho-
mologous chromosomes are in close
proximity on the PCA projection com-
pared to nonhomologous chromosomes
(Fig. 1C), indicating that the homolo-
gous chromosomes have similar interac-
tion patterns. The distances between
two chromosomes on PCA projection
were called PCA distance to indicate the
similarity of interaction patterns. The
PCAdistance between homologous chro-
mosomes is comparable to that between
two nearest nonhomologous chromo-
somes, significantly shorter than the
mean distance between a chromosome
to the other chromosomes, as well as sig-
nificantly shorter than the distance be-
tween two random chromosomes (Fig.
1D). The conclusions were not affected
after wemasked the interactions between
homologous chromosomes (Supple-
mental Fig. S2B), suggesting that the sim-
ilarity of interaction patterns between
homologous chromosomes are not
caused by PETs directly linking them.

It is well known that females have
two copies of the X Chromosomes,
with one being randomly inactivated
owing to the dosage compensation ef-
fects (Schulz and Heard 2013; Crane
et al. 2015). Both paternal and maternal
X Chromosomes are far from the auto-
somes in the PCA plot (Fig. 1C), indicat-
ing that the interaction patterns of X
Chromosomes are quite different from
that of autosomes. The result is consis-

tent with a recent report showing that the imprinted X Chromo-
some was highly compacted and had few interactions with other
chromosomes (Wang et al. 2016). Recent studies showed that
the inactivated X Chromosome consisted of a distinct active re-
gion (X-a) and inactive region (X-i) (Deng et al. 2015; Marks
et al. 2015). We also found the similarity of interaction pattern be-
tweenhomologousX-awas higher than that betweenhomologous
X-i (Supplemental Fig. S2C), consistent with our expectation.

Similarity of interaction patterns between homologous

chromosomes is correlated with the allelic coexpression level

The overall expression level of a gene depends on the coordinated
regulation between the two alleles. We measured the allelic coex-
pression level of homologous chromosomes by calculating the
correlation coefficient of allele-specific expressions between homol-
ogous chromosomes. We found that the similarity of interaction
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Figure 1. Homologous chromosomes show similar interaction patterns and the similarity correlates
with allelic coexpression level. (A) Schematic representation of the hybrid mouse model, in which
male B6 and female Cast were crossbred to generate hybrid progeny. Haploid genome in the hybrid orig-
inating from B6 and Cast were called Fb6 and Fcast, respectively. (B) Box plot of chromosomal interac-
tions between maternal–maternal (MM), maternal–paternal (MP), and paternal–paternal (PP) based on
allelic specific PETs. (C) PCA analysis of chromosomal interactions. The chromosomes are projected on a
2D plot, in which short distance indicated high similarity of interaction patterns: (p) paternal chromo-
somes; (m) maternal chromosomes. (D) Distances between homologous chromosomes on PCA projec-
tion comparedwith other situations: (Homo) distance between homologous chromosome pair; (nearest)
distance between a chromosome and its nearest nonhomologous chromosome; (mean) mean distance
between a chromosome and the other chromosomes; (random) distance between two randomly picked
chromosomes. P-values were calculated using t-test. (E) Biallelic coexpression level is correlated with the
similarity of chromosomal interaction pattern between homologous chromosomes. (R =0.7, P-value =
0.0006.)
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patterns between homologous chromosomes is highly correlated
with the allelic coexpression level (Fig. 1E) (R =0.7, P=0.0006).
The X-a shows an autosome-like pattern, whereas the X-i showed
low interaction similarity and low allelic coexpressions and thus
was far separated from autosomes (Supplemental Fig. S2D).

Spatial organization of chromosomes in the nucleus

Chromosome painting showed that each chromosome occupies a
roughly elliptical domain termed as chromosome territory in inter-
phase (Cremer et al. 2003; Bolzer et al. 2005; Hua and Mikawa
2018). To resolve the relative positioning of chromosome territo-
ries in thenucleus,webuilt an iterativelyweighted adjustingmodel

to fit each chromosome into the 3D nuclear space based on the in-
ter-chromosomal allele-specific interaction matrix (Supplemental
Fig. S3A;Methods). In our constructed 3Dnucleus, there areno sig-
nificant differences among the 3Ddistances betweenMM,MP, and
PP (Supplemental Fig. S3B). The large chromosomes tended to lo-
cate in one polar region and the small chromosomes locate in the
other polar region (Fig. 2A). The paternal andmaternal X Chromo-
somes are far away from each other, consistent with a recent study
(Giorgetti et al. 2016). We found that Chromosomes 14 and X are
located toward the periphery of the nucleus (Fig 2A), which is sup-
ported by FISH analyses of lymphocytes (Mayer et al. 2005).

We further found the inter-chromosomal distance in the
3D nucleus correlated with PCA distance that represents
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Figure 2. Spatial organization of chromosomes in the 3D nucleus and principles of nucleus organization. (A) Constructed 3D nucleus at chromosomal
resolution. Each chromosome and its five closest chromosomes are connected by lines: (p) paternal chromosomes; (m) maternal chromosomes.
(B) Chromosomal interaction pattern is positively correlated with chromosomal distance in the 3D nucleus (R=0.67, P-value < 2.2 × 10−16).
(C) Distances to the center of the 3D nucleus of paternal chromosomes are highly correlated with that of their maternal homologous counterparts.
Center of the 3D nucleus is calculated as the mean coordinate of all chromosomes (R =0.98, P-value = 1.2 × 10−14). (D) The lengths of chromosomes
are negatively correlated with the percentages of inter-chromosomal interactions (R=0.9, P-value = 1.5 × 10−14). (E) Inter-chromosomal interactions are
increasing from centromere to telomere along the chromosomes. Each chromosome is evenly divided into 10 bins. The red line plots the mean value
for each bin. (F) Telomere ends have much stronger inter-chromosomal interactions than that of centromere ends. Each chromosome is evenly binned
into three parts, namely centromere end (C), middle (ignored), and telomere end (T). P-values were calculated using unpaired t-test.
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interaction patterns (Fig. 2B) (R=0.67, P-
value <2.2 ×10−16), which is consistent
with the notion that the positioning of
a chromosome in the 3D nucleus con-
tributes critically to chromatin interac-
tion patterns. We inferred the center of
the 3D nucleus according to the coordi-
nates of all chromosomes. We found
the distance of a chromosome to the cen-
ter of the 3D nucleus is highly correlated
with that of its homologous counterpart
(Fig. 2C) (R=0.98, P-value=1.2 ×10−14).
We also discovered that the distance of
a chromosome to each of the two homol-
ogous chromosomes is highly correlated
(Supplemental Fig. S3C) (R=0.87, P-val-
ue < 2.2 ×10−16).

Chromatin organization in chromosome

territories

The length of a chromosome is negative-
ly correlated with the percentage of in-
ter-chromosomal PETs detected on the
chromosome (Fig. 2D) (R= 0.9, P-value =
1.5 ×10−14), potentially implying that
the longer the chromosome is, the bigger
the chromosome territory it occupies,
thus the smaller the surface-area-to-vol-
ume ratio and lower fraction of inter-
chromosomal interactions it has. We
separated each chromosome from cen-
tromere to telomere into 10 equal bins
and found that the inter-chromosomal
interactions are increasing from centro-
mere to telomere along the chromosome
(Fig. 2E). Further, inter-chromosomal
interactions between telomere ends are
significantly higher than that between centromere ends (Fig. 2F)
(P=1.3 ×10−51). The features of centromeres or telomeres are un-
likely significant impacts on the results because they only account
for a tiny fraction of chromosome (Supplemental Materials; Sup-
plemental Table S3). These results suggest that the telomere ends
are located in an environment that has a higher chance to contact
other chromosomes than do the centromere ends (Discussion).

Parental divergent compartments transit into the same status

in hybrid mice

Global analysis showed the A|B compartment scores of haploids in
hybrid mice are highly correlated with its parent of origin (Fig.
3A).We further found that the correlation coefficient between
Fb6 and Fcast is higher than that between B6 and Cast (Fig. 3A).
We identified A|B compartments in each genome and found that
∼88% of the compartment bins showed exactly the same status
among all the four genomes (Supplemental Fig. S4A). In total,
870 A|B compartment bins (12% of the genome) showed a differ-
ent status between B6 and Cast. Gene Ontology (GO) terms
including olfactory transduction, neuroactive ligand-receptor in-
teraction, and G-protein coupled receptor signaling pathway
were significantly enriched in B6/Cast compartment divergent
bins (Fig. 3B). The significant GO terms did not changewhen com-
partments with low score (−0.004< score < 0.004) were removed.

We found that the majority of olfactory clusters were in the
same TADs that displayed divergent A|B compartments between
B6 and Cast. The compartment status in Fb6 and Fcast was the
same as that of their parents, respectively (Supplemental Fig. S4B).

For all 870 A|B compartment divergent bins between B6 and
Cast, 58% of the haploid compartments in the hybrid mice re-
tained the same status as did the parent of origin. For example,
Plxdc2 was in an A compartment and expressed in Cast/Fcast,
and it was in a B compartment and not expressed in B6/Fb6 (Fig.
3D). However, we also found that Fb6 and Fcast display different
compartment status compared to their parents of origin in 42%
of A|B compartment divergent bins. Among the compartments
with status changes, 95% converged into same compartment sta-
tus in the hybrid mice (Fig. 3C). For instance, Dlg5 was in an A
compartment and highly expressed in Cast, and it did not main-
tain the A compartment status and became silent in Fcast (Fig. 3E).

TAD boundary shift is associated with gene expression changes

Althoughmanymethods were developed to identify TADs (Dixon
et al. 2012; Filippova et al. 2014; Crane et al. 2015; Durand et al.
2016; Shin et al. 2016; Wolff et al. 2018), it is still troublesome
to quantitatively compare the TADs between samples. Here, we in-
troduce the local boundary score (LBS; available in Supplemental
Code), a quantitative value along the genome with peaks
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Figure 3. Both cis and trans effects of hybrid genomes influence the status of chromatin compartment
and gene expression. The compartment analyses were conducted at 100-kb resolution. (A) Correlation of
genome-wide A|B compartment scores among parents and the haploids from hybrid. Heatmap (left) and
bar plot (right) of correlation coefficient between different genomes. (B) GO analysis of genes in B6 and
Cast divergent A|B compartments. (C ) A|B compartment status of Fb6, Fcast, B6, and Cast at B6/Cast
divergent A|B compartments: (Cis) compartment status is consistent between haploid and parent of or-
igin; (Trans) compartment status is different between haploid and parent of origin. (D) A|B compart-
ments and gene expression in B6, Cast, Fb6, and Fcast around cis-regulated Plxdc2. (E) A|B
compartments and gene expression in B6, Cast, Fb6, and Fcast around trans-regulated Dlg5.

Han et al.

1100 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.257568.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.257568.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.257568.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.257568.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.257568.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.257568.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.257568.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.257568.119/-/DC1


E

F

BA

C

D

G H

Figure 4. Strain-specific TAD boundaries and relationships between TAD and A|B compartment. Resolution: LBS (5 kb); ID (5 kb); Heatmap (20 kb); com-
partment (100 kb). (A) Definition and calculation of LBS. (B) LBSs could accurately detect the TAD boundaries. The green box outlines a region with several
strain-specific TAD boundaries (black arrows) and divergent A|B compartments. (C) Significantly different TAD boundaries between B6 and Cast inferred by
LBS. (D) Genes near strain-specific TAD boundaries showed stronger strain-specific expression than these near strain-shared TAD boundaries: (Specific)
strain-specific TAD boundaries; (Shared) strain-shared TAD boundaries. (E) Strain-specific boundaries are associated with strain-specific gene expressions
near Gzma and Ly6e, respectively. The red box highlights strain-specific boundary. (F) LBSs in B compartments are flat and smooth, whereas LBSs in A
compartment fluctuate. (G) Comparison of mean and SD of LBSs in A and B compartments, showing a high variability of LBS on A compartments. (H)
Box plot of number of TADs in A compartments and B compartments (P-value < 2.2 × 10−16).
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representing TAD boundaries (Fig. 4A). Further analyses showed
that LBSs were statistically robust and not sensitive to sequencing
depth (Supplemental Fig. S5A,B). TAD boundaries and the size of a
TAD inferred by LBS were essentially consistent with that inferred
byHiCExplorer (Supplemental Fig. S5C–E;Wolff et al. 2018). Thus,
differential LBS peaks could reveal the TAD boundary shifts be-
tween different samples (Fig. 4B). Using this approach, we only
identified 648 TAD boundaries that have showed a shift between
B6 and Cast owing to the conservation of TAD (Fig. 4C), among
which we identified 2460 CTCF binding sites with CTCF motif.
There are only 97 of these 2460 CTCF motifs that contain strain-
specific SNPs, with only eight motifs potentially impacting the
binding of CTCF. Therefore, genetic changes of CTCF sites may
play a limited role in the TAD boundary shift between B6 and
Cast. Therefore, the boundary shift should associate with chroma-
tin state and gene expression change. Indeed, genes near the
strain-specific boundaries showedmuch higher expression chang-
es than those near the conserved boundaries (Fig. 4D).

A low LBS means high density of local interactions, hence
nearby genes tend to have high gene expression. For instance,
Gzma and Ly6 family genes are located at shifted TAD boundaries.
Gzma shows a high LBS and is not expressed in B6/Fb6, and it
shows a low LBS and is expressed in Cast/Fcast (Fig. 4E). In
contrast, Ly6e shows a low LBS and is expressed in B6/Fb6, and it
shows a high LBS and is not expressed in Cast/Fcast (Fig. 4E).
Interestingly, we found that LBS values within A compartments
showed substantial fluctuations, whereas LBS valueswithin B com-
partments were flat and showed low variation (Fig. 4F). Global
analysis showed that LBS values of A compartments show much
higher inter-compartment variations than that of B compartments
(Fig. 4G), indicating heterogeneities of A compartments are much
higher than that of B compartments. Further analysis showed that
one A compartment contains multiple TADs, and one B compart-
ment usually contains only one TAD, further indicating the com-
plexity of A compartments (Fig. 4H). The multiple TADs within a
single A compartment may explain the high variation of LBS val-
ues within the A compartment.

Both genetic and epigenetic factors influence gene expression

in the hybrid mice

We identified 721 B6-specific and 1157 Cast-specific genes in na-
ive CD4 T cells by analyzing RNA-seq data of the B6 and Cast sam-
ples. GO analyses showed that genes associated with immune
function are significantly enriched in these strain-specific genes
(Fig. 5A). We further identified 158 Fb6-specific and 178
Fcast-specific genes in the hybrid mice, with 72% and 66% of
them overlapped with B6- and Cast-specific genes, respectively
(Supplemental Fig. S6A). The number of differentially expressed
genes identified between Fb6 and Fcast is much less compared
with that identified between B6 and Cast, largely owing to limited
allelic reads coverage in Fb6 and Fcast.

We showed the relative expression of differentially expressed
genes between Fb6 and Fcast in the two haploids and two parental
mice in one plot. The genes distributed along the diagonal were
differentially expressed in both parents and two haploids (Fig.
5B), which can be mainly attributed to cis effects. The genes dis-
tributed near the vertical line were differentially expressed in two
haploids but not differentially expressed in two parents (Fig. 5B),
which may be attributed to trans effects. The allele-specific
H3K4me3 signals (Fig. 5C, R = 0.85, P-value = 1.2 × 10−13)
and H3K4me2 signals (Supplemental Fig. S6B, R = 0.82, P-value

< 2.2 ×10−16) are positively correlated with allele-specific gene ex-
pression, respectively. Gzma and Ly6e loci showed accordant al-
lele-specific epigenetic status and gene expression in the
haploids (Fig. 5D,E), potentially owing to cis effects. Paternally ex-
pressed 13 (Peg13), a maternal imprinted gene (Smith et al. 2003),
was identified as a trans-effect gene in the hybrid mice. Although
Peg13 was expressed in both parents, it is silent in Fcast/maternal
and has Fb6/paternal-specific active histone modifications, CTCF
binding, and expression (Fig. 5F).

Discussion

Most Hi-C studies lacked sufficient allele-specific information to
distinguish between the paternal haploid and maternal haploid
in the diploid genomes and thus only investigated the average
chromatin architectures. A recent study identified interesting dif-
ferences between the maternal haloid and paternal haloid using
Dip-C (Tan et al. 2018). In this study, we used nearly 20 million
single-nucleotide polymorphism (SNPs) existing between B6 and
Cast (Keane et al. 2011; Yalcin et al. 2012), making it possible to
assign the Hi-C, ChIP-seq, and RNA-seq reads to strain-specific
haploids at high-resolution. To some extent, this study was the
first endeavor that focused on investigation of the 3D nucleus or-
ganization of haploid chromosomes. Our analyses revealed that
homologous chromosomes have a similar interaction pattern
and similar distances to the center of the 3D nucleus, which has
many implications for understanding gene regulation and nuclear
architecture. For instance, although many studies inferred the
TADs, A|B compartments, and chromatin loops using averaged in-
teraction matrix from different cells and from different homolo-
gous chromosomes without considering the differences between
the two haploids, the conclusions from these studies hold true to
some extent because the homologous chromosomes have similar
interaction patterns, as we have shown here.

Mouse autosomes and the X Chromosome are telocentric
chromosomes that are rodlike with one centromere end and one
telomere end.Our inter-chromosomal interaction analysis showed
that the telomere ends have stronger inter-chromosomal interac-
tion than the centromere ends. This observation could be ex-
plained by two nonexclusive models: (1) The centromere ends
are more likely located near the center of a 3D chromosomal terri-
tories, and the telomere ends are more likely toward the surface of
the 3D chromatin territories; and (2) the centromere ends are po-
sitioned toward the nuclear periphery, and the telomere ends are
toward the center of the nucleus. In the second model, the posi-
tioning of a centromere end at the nuclear peripherymay effective-
ly reduce its chance of interaction with other chromosomes and
thus lead to decreased inter-chromosomal interaction at the cen-
tromere end. The second model is also supported by the previous
observation that the pericentromeric heterochromatin is posi-
tioned at the nuclear periphery (Holla et al. 2020).

B6 and Cast hybrid mice had been used to investigate cis and
trans effects of gene regulation (Goncalves et al. 2012). The allele-
specific epigenetic regulation is rarely studied, and the dynamics of
epigenetic status in hybrid mice is unknown. We found parental
divergent compartments converged into the same compartment
status in hybrid mice owing to shared cellular environment. We
found gene expression changes in hybrid owing to trans effects,
with transition of histone modifications and transcription factor
binding. These results confirm thatmicroenvironment plays a crit-
ical role in the epigenetic regulation on gene expression. In
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summary, this study provides a landscape of diploid genome archi-
tecture and allele-specific epigenetic profiles that are important for
understanding the regulation of differential gene expression be-
tween homologous chromosomes.

Methods

Mice and CD4 T cell isolation

BothC57BL/6J (B6)mice andCAST/EiJ (Cast)micewere purchased
from Jackson Laboratories. The study was reviewed and approved
by the Animal Care and Use Committee of the National Heart
Lung and Blood Institute. All mice received humane treatment ac-
cording to “Guiding Principles for Research Involving Animals
and Human Beings.”Male B6 and female Cast mice were crossbred
to generate the F1 hybrid mice. Naive CD4 T cells were purified

from spleen and lymph nodes of B6, Cast, and hybrid mice by
magnetic selection using CD4 microbeads (Miltenyi Biotech,
CD4+CD62L+ T cell isolation kit II, mouse).

3e Hi-C, ChIP-seq, and RNA-seq

The multiple-enzyme Hi-C (3e Hi-C) was performed according to
our previously described protocol (Ren et al. 2017; Hu et al.
2018). Different from conventional Hi-C, the fixed cells were di-
gested with CviQI, CviAII, and BfaI. ChIP-seq experiments were
performed as describedpreviously (Barski et al. 2007).We conduct-
ed ChIP-seq using antibodies against CTCF (Millipore 07-729),
RNA Polymerase II (Abcam ab5408), H3K4me3 (Abcam ab8580),
and H3K4me2 (Abcam ab32356). RNA-seq was prepared as de-
scribed previously (Hu et al. 2018).

E

F

BA C

D

Figure 5. Both genetic and epigenetic regulations shape the gene expression in hybrid mouse. (A) GO enrichment for differentially expressed genes
between B6 and Cast. (B) Relative expressions in parents and haploids of differentially expressed genes between Fb6 and Fcast. Dot size represents average
expression level of Fb6 + Fcast. Blue to red represents average expression level of B6+Cast. (C) Allele-specific H3K4me3 is positively correlated with allele-
specific gene expression in the hybrid. Each point represents a biased ChIP-seq peak and its regulated gene (R =0.85, P-value = 1.2 × 10−13). (D) Cast/Fcast-
specific epigenetic modifications and expression near Gzma. (E) B6/Fb6-specific epigenetic modification and expression near Ly6e. (F ) Maternal imprinted
gene Peg13 only showed paternal-specific active epigenetic modifications in the hybrid.
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SNP calling and cross validation

We obtained the mouse SNPs from the Mouse Genomes Project
(Keane et al. 2011) and extracted the SNPs between C57BL/6J
and CAST/EiJ using SNPsplit (Krueger and Andrews 2016).
Meanwhile, we built the mm10 index with SNP positions being
masked by “N.” We mapped reads from B6 and Cast Hi-C to the
N-masked reference using Bowtie 2 (Langmead and Salzberg
2012). We called SNPs using mpileup (MAPQ≥30) (Li et al.
2009). The called SNPs showing identical states with that down-
loaded frommouse genome project were kept for further analyses.
In total, we obtained 13 million highly confident SNPs for distin-
guishing Fcast and Fb6 genome in the hybrid mice.

Hi-C, ChIP-seq, and RNA-seq data processing

For the reads mapped to N-masked mm10, redundant PETs and
reads with MAPQ<30 were filtered out. Intra-chromosomal PETs
within 10 kb were filtered out because of potential self-ligations.
The interaction matrices were normalized using iterative correc-
tion algorithm ICE (Imakaev et al. 2012) and further optimized
inHiC-Pro (Servant et al. 2015). A|B compartments were calculated
as described in Lieberman-Aiden et al. (2009). PETs from hybrid
mice were split into haploid using SNPsplit with highly confident
SNPs.

ChIP-seq data processing such as mapping reads, filtering
reads, and constructing haploid was similar to the process for
Hi-C. Peaks were called using MACS2 (Zhang et al. 2008). We
counted the allele-specific reads located in the peaks using intersect
in BEDTools (Quinlan 2014). The significantly different loci be-
tween Fb6 and Fcast were identified by DESeq (Love et al. 2014).
ChIP-seq reads were extended to 150 bp and normalized by library
size, then converted to bedGraph for visualization.

RNA-seq reads were mapped to N-masked mm10 by TopHat2
(Kim et al. 2013), and reads with MAPQ≥30 were kept. The reads
were split into haploid using SNPsplit. The batch effect of repli-
cates was adjusted by ComBat from R package sva (Leek et al.
2012), and differentially expressed genes were identified by
DESeq2 (Love et al. 2014) with FDR<0.05 and fold change>1.8.

PCA analysis of inter-chromosomal interaction matrix

We obtained all inter-chromosomal PETs with both ends contain-
ing confident SNPs in hybrid to construct an inter-chromosomal
interaction matrix. To eliminate the bias induced by chromosome
size, the PETs number was normalized by the following (Imakaev
et al. 2012):

Mi,j =
Ci,j ×

∑
Ci, +

∑
C,j

( )

∑
Ci, ×

∑
C,j

; Ni,j =
Mi,j∑

i

∑

j
Mi,j ×

∑

i

∑

j
Ci,j

(1)

where Ci,j is the raw interaction count for each chromosome pair i
and j;Mi,j is the intermediate count after normalization; and Ni,j is
the final normalized count, which is scaled to the original library
size.

Construction of 3D nucleus

We developed an iteratively weighted adjusting algorithm to infer
the relative positioning of each chromosome in 3D space, inwhich
the iterative process will continuously minimize the sum of errors
between coordinate-based distance and the “real” distance which
was converted from the allele-specific interaction matrix
(Supplemental Fig. S3A). In brief, we first initialized random xyz
values for each chromosome, then iteratively adjusted the xyz val-
ues based on the distance errors between these chromosomes by

the following formula:

X = X0; Xi =
∑

j

Dij

||Xi −Xj|| × (Xi −Xj)+Xj

( )

×Wij;

S =
∑

|(Dij − ||Xi −Xj||)×Wij|,
(2)

where X0 is randomly initialized 3D coordinates (xyz values) for
each chromosome;Dij is the “real” distance converted from the al-
lele-specific interaction matrix based on the fitted PETs count to
distance function (Supplemental Fig. S1A); and Wij represents
the weight matrix for each chromosome pair converted from the
allele-specific interaction matrix. The aim of the iteration is to
achieve the smallest S.

Because the interaction between homologous chromosomes
may introduce bias to the 3D model, we reset the interactions be-
tween homologous chromosome pairs to the average interaction
density of the corresponding chromosome to all nonhomologous
chromosomes. We also constructed the 3D model with separated
XChromosome (X-a andX-i) (Supplemental Fig. S3C) andwithout
X Chromosome (Supplemental Fig. S3D).

Local boundary score (LBS)

LBS is defined as logarithm of the ratio of local interactions to
cross-local interactions in a given window (Fig. 4A). In short, inter-
actions within left side (A1) and right side (A2) of the window were
defined as local interaction, whereas interactions between the left
side and right side was defined as cross-local interaction (B) (Fig
4A); thus LBS of a bin was calculated by LBS= log2(A1 +A2)/B.
The peak of LBS indicated the presence of the TAD boundary
and Peakdet (http://billauer.co.il/peakdet.html) was used to call
peaks. ROSE, initially for identifying super enhancers (Whyte
et al. 2013), was used to calculate LBS biases for identifying TAD
boundary shifts between samples.

Software availability

All data were analyzed using Perl (https://www.perl.org) and R ver-
sion 3.5.3 (2019-03-11) (R Core Team 2019). The scripts for pro-
cessing Hi-C data including LBS are maintained in the GitHub
code repository (https://github.com/hangeneral/hybridMiceHiC)
and are also available as Supplemental Code.

Data access

All raw and processed sequencing data generated in this studyhave
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE132898.
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