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Abstract

Increases in delayed childbearing worldwide have elicited the need for a better understanding of the biological underpinnings and implications 
of age-related infertility. In women 35 years and older the incidences of infertility, aneuploidy, and birth defects dramatically increase. These 
outcomes are a result of age-related declines in both ovarian reserve and oocyte quality. In addition to waning reproductive function, the 
decline in estrogen secretion at menopause contributes to multisystem aging and the initiation of frailty. Both reproductive and hormonal 
ovarian function are limited by the primordial follicle pool, which is established in utero and declines irreversibly until menopause. Because 
ovarian function is dependent on the primordial follicle pool, an understanding of the mechanisms that regulate follicular growth and 
maintenance of the primordial follicle pool is critical for the development of interventions to prolong the reproductive life span. Multiple 
pathways related to aging and nutrient-sensing converge in the mammalian ovary to regulate quiescence or activation of primordial follicles. 
The PI3K/PTEN/AKT/FOXO3 and associated TSC/mTOR pathways are central to the regulation of the primordial follicle pool; however, 
aging-associated systems such as the insulin-like growth factor-1/growth hormone pathway, and transsulfuration/hydrogen sulfide pathways 
may also play a role. Additionally, sirtuins aid in maintaining developmental metabolic competence and chromosomal integrity of the oocyte. 
Here we review the pathways that regulate ovarian reserve and oocyte quality, and discuss geroscience interventions that leverage our 
understanding of these pathways to promote reproductive longevity.
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Worldwide trends toward delayed childbearing have brought to the 
forefront the impact of age-related infertility. The average age of first 
birth has increased from 21 in 1970 to 26.9 in 2018, and the propor-
tion of women having their first child after age 35 increased nearly 
10-fold since 1970 (1). After age 35, rates of infertility, aneuploidy, 
and birth defects increase dramatically. Although in vitro fertiliza-
tion (IVF) can successfully address infertility in younger women, it 
cannot reverse the effects of age, particularly in women over 40 (2). 
Age is the driving factor affecting IVF outcomes (3). Live birth rates 
after IVF decrease from 46.8% in women under 35 to 3.1% after 
the age of 42, a trend that parallels spontaneous conception rates 
(4). Thus, research into mechanisms that regulate and preserve re-
productive health is of great importance.

In addition to diminished reproductive function, the with-
drawal of estrogen during menopause due to ovarian failure has 

systemic consequences, including cardiovascular disease, skeletal 
fragility, and genitourinary and vasomotor symptoms (5,6). The 
average age of menopause in the United States is 51; therefore, 
the majority of women are likely to spend at least 30 years of life 
in the postmenopausal period. Women may also undergo meno-
pause prematurely due to gonadotoxic chemotherapy (7) or gen-
etic disorders such as Turner’s syndrome (8) and Fragile X (9). 
Premature ovarian insufficiency (POI) increases the risk for both 
increased total mortality as well as mortality related to ischemic 
heart disease (10–12).

Both reproductive and hormonal ovarian function are limited 
by the primordial follicle pool (PFP). The PFP, which constitutes the 
ovarian reserve, is established in utero and irreversibly declines until 
menopause. Because ovarian function is dependent on the PFP, an 
understanding of the mechanisms that regulate follicular growth and 
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maintenance of the PFP is critical for the development of interventions 
that prolong reproductive life span and endocrine homeostasis. The 
following review addresses mechanisms regulating the PFP and oocyte 
quality (Mechanisms of Ovarian Aging section and Supplementary 
Table 1), while providing insight into geroscience interventions de-
signed to leverage these mechanisms (Leveraging Geroscience 
Approaches to Maintain Long-Term Ovarian Fitness and Promote 
Reproductive Longevity section and Supplementary Table 2).

Mechanisms of Ovarian Aging

Follicular Maturation
Exit of follicles from the PFP is the critical event that depletes ovarian 
reserve. A primordial follicle can (a) remain in a dormant state, (b) 
be activated to undergo follicular maturation, or (c) undergo atresia 
from its quiescent state. Although the fate of most follicles is atresia, 
during each cycle, a cohort of follicles is “recruited” to undergo fol-
licular maturation. Once a cohort of follicles is selected for mat-
uration, it becomes responsive to follicle-stimulating hormone, 
estrogen, and luteinizing hormone. A dominant follicle emerges and 
undergoes ovulation, while the remaining cohort undergoes atresia. 
This process repeats throughout female human reproductive life 
span, during which approximately 400 follicles will ovulate.

The concept that the PFP is fixed from birth is generally accepted 
(13). However, Tilly et al identified cells in the bone marrow of adult 
female mice that, when transplanted, produced oocytes within im-
mature follicles (14–16). Additionally, oogonial “precursor cells” 
expressing stem cell markers have been obtained from the ovarian 
cortex in postmenopausal women, suggesting the possibility of neo-
oogenesis during adulthood (17,18). Regardless of whether postnatal 
ovaries are capable of oocyte production, it is clear that the ovaries 
senesce long before other organ systems, and that a thorough under-
standing of folliculogenesis and the mechanisms that maintain the 
PFP is critical for developing interventions to prolong reproductive 
life span and ovarian health.

Regulation of the Ovarian Reserve by Mammalian 
Target of Rapamycin and Transsulfuration/
Hydrogen Sulfide
Once a follicle has been activated out of the primordial pool and 
follicular maturation has been initiated, the process is irrevers-
ible, resulting either in ovulation or atresia (19). Increased ac-
tivation of primordial follicles is partially driven by augmented 
phosphatidylinositol 3 kinase (PI3K) and mammalian target of 
rapamycin (mTOR) activity (20). In the oocyte, follicular activa-
tion occurs when PI3K converts PIP2 into PIP3 (21). PIP3 stimulates 
protein kinase B (AKT) activation and nuclear translocation, which 
reduces the transcriptional activity of forkhead box O3 (FOXO3) 
by phosphorylation (21). While suppressors of follicular activation, 
such as FOXO3a, tuberous sclerosis complex 1 (TSC1), and tuberin 
(TSC2), are deactivated by phosphorylation, the phosphorylation of 
Akt, mTOR, and ribosomal protein S6 (rpS6), a downstream actor of 
mTOR signaling, results in follicular activation and growth. Ovaries 
obtained from mice after chemotherapeutic stress demonstrated 
phosphorylation of Akt, mTOR, and rpS6, as well FOXO3a (19).

Interestingly, primordial follicles begin transcribing genes for 
follicular growth as early as postnatal day 1 (22); in essence they 
are “preloaded” for maturation (22). This suggests that prevention 
of follicular maturation requires translational suppression of these 
transcripts (21), leading to the hypothesis that mTOR, as a master 

regulator of protein translational and cellular growth (23), plays a 
strong role in this process. Supporting this theory is that oocyte-
specific deletion of the mTOR inhibitory factor TSC1 in mice stimu-
lated mTOR complex 1 (C1) and activated the entire PFP at sexual 
maturity, leading to POI (20). Additionally, the Fragile X mental 
retardation protein (FMRP), encoded by the FMR1 gene, is highly 
expressed in oocytes (24) and the FMR1 premutation is a common 
genetic etiology of POI (24). Fmr1 KO mice expressed higher levels 
of mTOR (25), and utilization of the mTOR inhibitor rapamycin al-
leviated POI, increased the PFP, and extended age of last litter (24). 
Likewise, utilization of rapamycin enhanced reproductive longevity 
in wild-type mice (26). These studies suggest that activation of the 
mTOR pathway is associated with irreversible activation of primor-
dial follicles, while mTOR inhibitors serve as pharmacological leads 
to reduce depletion of the ovarian reserve in women at risk of pre-
mature menopause due to genetic or genotoxic factors.

The transsulfuration pathway and its related hydrogen sulfide 
(H2S) production/metabolism are antiaging targets that have re-
cently been studied for promoting longevity, health span, and fitness 
in multiple organ systems and organisms (27–30). Emerging data 
suggest that these pathways interface with mTOR and play a role 
in ovarian function. Enhanced enzymatically produced endogenous 
H2S plays multiple beneficial signaling, antioxidant, and metabolic 
roles across evolutionary boundaries for life span and/or health-
span extension (27). Hydrogen sulfide is largely produced via the 
transsulfuration pathway enzymes cystathionine β-synthase (CBS) 
and cystathionine γ-lyase (CGL), along with the non-transsulfuration 
pathway enzyme 3-mercaptopyruvate transferase (3MST) (31,32). 
Hydrogen sulfide production and signaling decline with age (33,34). 
Constitutive activation of mTOR in mouse liver reduces CGL ex-
pression and H2S production (28). Additionally, long-lived mice 
lacking ribosomal protein S6 kinase (S6K1), a crucial downstream 
factor in mTOR signaling, have increased hepatic CGL expres-
sion (35). However, little is known about the role of H2S and/or 
mTOR-regulated transsulfuration pathway regulation in the ovary. 
Expression of CBS and CGL mRNA is detected in granulosa, cu-
mulus, and oocyte cells (36). Female CGL knockout mice are fertile, 
possibly in a strain-specific manner; however, reproductive outcomes 
have not been evaluated at advanced ages (37,38). Cystathionine 
β-synthase knockout is typically lethal in mice before the age of 5 
weeks; however, surviving females are infertile (39). Endogenous 
H2S production participates in the preovulatory cascade and fol-
licular rupture during ovulation in mice (36). Outside of the ovary, 
CBS and CGL are abundantly distributed in the fallopian tube epi-
thelium and inhibition of their H2S production causes embryo re-
tention and delays oviductal embryo transport (40). Interestingly, 
increased cardioprotective CGL-derived H2S production may be a 
downstream target of estrogen signaling (41), suggesting a potential 
mechanism of action for postmenopausal increases in cardiovascular 
disease in women. Further research is needed to elucidate how aging-
related losses in H2S production and signaling play in ovarian and 
reproductive decline and vice versa.

Growth Hormone and the Insulin-Like Growth 
Factor-1 Pathway
Although growth hormone (GH)- and GH receptor (GHR)-deficient 
mice have extended life span, health span, and increased ovarian 
reserve, data about the impact of GH on ovarian function are in-
consistent (42). Growth hormone receptor knockout (GHRKO) 
mice have a larger PFP and smaller number of growing follicles than 
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wild-type mice, suggesting a role for GH in follicular recruitment; 
however, GHRKO mice also show an increased proportion of atretic 
follicles (43). Consistent with these findings, treatment of GHRKO 
mice with insulin-like growth factor-1 (IGF-1) decreases the PFP, in-
creases the proportion of healthy antral follicles, and decreases fol-
licular atresia (43). Similarly, transgenic mice that overexpress GH 
demonstrate decreased ovarian reserve (44). The effects of GH and 
IGF-1 appear to be mediated by FOXO3a, as GH-deficient mice 
have lower circulating levels of phosphorylated FOXO3a (44). 
Phosphorylation of FOXO3a releases the brake on primordial fol-
licle activation. Despite these observations, there are circumstances 
in which GH and IGF-1 appear to be protective for the ovarian 
reserve. For instance, GH, which induces IGF-1 transcription and 
translation in the ovaries, has been shown to be protective in a rat 
model of radiation-induced ovarian injury (45). Cotreatment with 
GH during radiation resulted in increased anti-Müllerian hormone 
(AMH) levels and primordial follicle counts compared to controls 
(45). Additionally, the selective estrogen receptor modulator tam-
oxifen increases AMH and IGF-1 expression in the ovaries and pro-
tects against radiation-induced ovarian injury (46). Further data are 
needed to clarify these paradoxical findings with regard to natural 
aging and genotoxic stress-induced premature aging.

The Role of AMH in Maintaining the Ovarian Reserve
Anti-Müllerian hormone serves as another gatekeeper of the PFP. 
Also known as Müllerian-inhibiting substance, AMH is a member 
of the transforming growth factor-beta family. In adult women, 
AMH is produced by granulosa cells of small growing follicles, and 
regulates recruitment and maturation of follicles from the PFP (47). 
Anti-Müllerian hormone prevents PFP depletion by reducing phos-
phorylation and maintaining activation of FOXO3a, a downstream 
component of the PI3K/PTEN/AKT pathway that helps to maintain 
the dormancy of primordial follicles (21,48) and prevents follicular 
recruitment (49–51). Consistent with this hypothesis is the obser-
vation that Amh knockout mice are initially fertile, but undergo 
premature depletion of the follicular pool, demonstrating a loss of 
the PFP by 13 months of age (52). Likewise, AMH serves as a clin-
ical marker of ovarian reserve and response to ovarian stimulation 
for IVF (47).

Due to the role of AMH in preventing activation of primordial 
follicles, providing exogenous AMH as an intervention to reduce 
chemotherapy-induced gonadal injury and premature aging has 
been proposed. In mice, exogenous AMH reduced primordial fol-
licle loss in the setting of exposure to carboplatin and doxorubicin 
(53). Moreover, AMH treatment induced a complete, but reversible, 
shutdown of folliculogenesis, supporting the hypothesis that the 
hormone serves as a gatekeeper of follicular activation out of the 
PFP (53).

The Role of Mitochondria and Reactive Oxygen 
Species in Ovarian Aging
The mature mammalian oocyte is highly enriched in mitochondria 
and contains a larger mitochondrial DNA (mtDNA) copy number 
than any other cell type (54). Interestingly, mtDNA copy number 
is increased dramatically during oocyte maturation, from approxi-
mately 100 in primordial germ cells to over 100  000 in mature 
oocytes (55,56). This observation has led to the “bottleneck hypoth-
esis,” in which a small number of mtDNA copies contribute to the 
mitochondria population in a new organism. This mechanism is hy-
pothesized to promote mitochondrial integrity across generations 

and minimize the population of organisms with abnormal mtDNA 
(56). Thus, maintaining mtDNA integrity and function is of utmost 
importance for ovarian and reproductive health.

However, mtDNA point mutations and rearrangements amassed 
during aging, either through reactive oxygen species (ROS)-induced 
damage or improper mtDNA replication and repair, ultimately lead 
to compromised cellular energy production and further ROS pro-
duction (57,58). Reactive oxygen species generation is associated 
with germ cell apoptosis and poor oocyte quality (59,60). Increased 
levels of ROS in human follicular fluid are predictive of impaired em-
bryo development and embryo arrest in IVF cycles (61). In a mouse 
model of insulin resistance, germinal vesicles and metaphase II oo-
cytes were found to have increased ROS, impaired mitochondrial 
function, and demonstrated a high rate of apoptosis, with surviving 
oocytes of poor quality with abnormal meiotic spindles and mis-
aligned chromosomes (60).

In both mice and humans, a proof-reading deficiency of PolgA, a 
nuclear-encoded catalytic subunit of mtDNA polymerase, results in 
accumulation of mtDNA mutations (62–65). Homozygous knockin 
mice expressing a proof-reading-deficient version of PolgA accu-
mulate 3–5 times more mtDNA mutations than wild-type mice and 
demonstrate reduced fertility (63). The effect of deficient PolgA on 
ovarian function is profound, as female knockin mice are not able 
to become pregnant after 20 weeks of age (63). Similarly, a human 
study of 7 families with PolgA mutations demonstrated that most 
women with PolgA deficiencies undergo menopause before the age of 
35 (64). It is likely the accumulation of mtDNA mutations through 
ROS-induced mtDNA damage or impaired mtDNA repair is part of 
a complex series of mechanisms that contribute to ovarian aging.

Dysfunctional mitochondrial fission and fusion mechanisms rep-
resent additional drivers in ovarian aging. In mammals, mitochon-
drial fusion requires 3 GTPases: mitofusin (MFN1), mitofusin 2 
(MFN2), and optic atrophy gene 1 (OPA1) (66). Fission requires 
recruitment of dynamin-related protein 1 to the outer mitochondrial 
membrane. After it is recruited, dynamin-related protein 1 constricts 
mitochondrial tubules to allow for membrane fission (66). Oocyte-
specific deletions of these proteins impaired oocyte function and fol-
licular development. Deletion of both Mfn1 and Mfn2 from mouse 
oocytes results in poor oocyte maturation, infertility, increased 
oocyte apoptosis, and accelerated follicular depletion (67,68). 
Additionally, knockout of Drp1 in the oocyte demonstrates that fis-
sion is also necessary for follicular maturation and ovulation (69). 
Together, these data demonstrate the critical role of mitochondrial 
function in maintaining ovarian reserve, oocyte quality, and normal 
follicular development.

The Role of Nicotinamide Adenine Dinucleotide-
Dependent Deactylases/Sirtuins in Ovarian Aging
Sirtuins (SIRT) are a family of nicotinamide adenine dinucleotide-
dependent deactylases that control cellular metabolism, prolifer-
ation, and genome stability (70). They are central in regulating aging 
across evolutionary boundaries (71). Several studies have demon-
strated a role for sirtuins in ovarian aging (70,72–74). Mainly, cal-
oric restriction (CR) that confers reproductive longevity results in 
elevated SIRT1 and SIRT6 levels in ovaries (72–74), while transgenic 
mice overexpressing ovarian SIRT1 demonstrate suppressed levels 
of mTOR and longer ovarian life span (72). Conversely, SIRT1 and 
SIRT3 deficiencies accelerate loss of the PFP and increased mTOR 
signaling (75). Together, these data suggest that decreased sirtuin ex-
pression is associated with ovarian aging, in part through the loss of 
mTOR inhibition.
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There also appears a role for sirtuins to regulate quality and de-
velopmental competence of oocytes. Chromatin compaction, which 
increases from early to medium antral follicle stage, is an indicator 
of widespread transcriptional silencing, oocyte differentiation, and 
a marker of developmental competence in multiple species that is 
partially driven by increased SIRT1 and SIRT6 activity (75–77). 
During chromatin compaction H3K9 deacetylation is required; 
however, aging-related decreases in ovarian SIRT1 expression nega-
tively influence chromatin compaction and lead to impaired oocyte 
development (75). The administration of NAM, a “noncompetitive 
pan-sirtuin inhibitor,” prevents entry of mouse oocytes into meiosis 
I and results in meiosis II arrest (75,78). Similarly, the administration 
of the SIRT1 inhibitor EX527 to mice increases ROS and abnormal 
metaphase II plates in the oocyte (75). Whereas SIRT2 knockdown 
impairs spindle organization and chromosome alignment, SIRT3 
overexpression reduces spindle defects and chromosome misalign-
ment in mouse oocytes (75,79). These data demonstrate a consistent 
role for sirtuins in the regulation of meiotic spindle assembly, through 
control of oxidative stress, oocyte development, and chromosome 
segregation during meiosis.

Leveraging Geroscience Approaches to 
Maintain Long-Term Ovarian Fitness and 
Promote Reproductive Longevity

Manipulating the rate of aging and delaying the onset of aging-
related diseases have been the makeup of medical, scientific, and 
pseudoscientific pursuits throughout history. However, it is not until 
relatively recently, in the later part of the 20th and early 21st cen-
turies, that the molecular targets and geroscience approaches needed 
to make this a reality have been elucidated. While these interventions 
have primarily focused on 3 primary aims; life span, metabolic fit-
ness, and stress resistance, they have often neglected female repro-
ductive health. Below and in Supplementary Table 2, we address the 
current state and application of common geroscience approaches as 
they relate to reproduction and ovarian health.

Dietary Restriction
Dietary restriction (DR) increases life span across multiple model 
organisms and confers protection against cancer, diabetes, athero-
sclerosis, autoimmune conditions, and neurodegenerative disease 
(80). Dietary restriction encompasses a number of dietary inter-
ventions, including CR, sulfur amino acid restriction, fasting, and 
protein restriction (27). Principally, CR increases ovarian reserve, 
improves oocyte quality, and prolongs the reproductive life span 
in mammals (81,82). However, during the period of CR, estrous 
cycles are disrupted, fertility is poor, and survival outcomes for off-
spring are compromised in mice (82). Similarly, humans with insuf-
ficient caloric intake experience infertility due to anovulation (83). 
Nevertheless, diminished fertility during periods of stress, such as 
that induced by CR, engages defense mechanisms that preserve re-
productive potential once the stressor is removed and/or refeeding 
begins (83).

Although most rodents do not have menses or undergo a true 
menopause, they do experience declines in ovarian reserve and oocyte 
quality with age. In mice, declining fertility begins after 10 months 
of age, and female mice are typically infertile by 15 months of age 
(82). Moderate (40%) CR increases their reproductive life span 
and improves oocyte quality (82,84). In a mouse model, 10% CR 
was initiated at 14 weeks of age, gradually increased to 40% at 16 

weeks, and maintained until 15.5 months of age, when mice resumed 
an ad libitum diet. Whereas ad libitum-fed controls became infer-
tile at 15.5 months, mice who underwent CR remained fertile until 
23  months. Additionally, offspring survival rates were improved 
in the CR cohort. Only 22% of offspring born between 10 and 
23 months of age in the ad libitum-fed group survived, whereas over 
73% of pups born to the CR cohort survived (82,85). The improve-
ments in long-term reproductive outcomes with CR can partially be 
explained by improvements in oocyte quality, as dietary-restricted 
mice do not demonstrate age-related increases in oocyte aneuploidy, 
meiotic spindle abnormalities, chromosomal misalignment at the 
metaphase plate, or impaired mitochondrial function (84). These 
data suggest CR improved both ovarian reserve and oocyte quality.

Ratios of macronutrients independent of caloric intake also 
have marked effects on rodent reproductive outcomes (86). 
A high-fat diet results in a large number of follicles, but few cor-
pora lutea, suggesting anovulation and infertility. Conversely, the 
highest number of ovulatory cycles occurred under a low protein to 
carbohydrate ratio of 1:8, with maximum longevity obtained with 
a protein to carbohydrate ratio of 1:11 (86). In the fly, CR with me-
thionine supplementation increases life span without compromising 
fertility, suggesting that the mechanisms that control life span and 
fecundity are distinct and reallocating nutrients may allow for sur-
vival benefits while retaining fertility (87). Interestingly, flies fed a 
diet designed to match the amino acid proportion in the Drosophila 
melanogaster exome enhanced growth and reproduction (88).

Several mechanisms are proposed to account for the benefits 
of DR, including modulation of mTOR, GH/IGF-1, and/or sirtuin 
activity and related signaling. A 10-week period of CR in mice in-
creased the number of primordial follicles and decreased ovarian 
p70S6k signaling, suggesting that CR may prolong the reproductive 
life span by inhibiting mTOR signaling in the ovary (81). The ef-
fects of CR on mTOR may be mediated in part by SIRT1. SIRT1, 
which is induced by CR, negatively regulates mTOR signaling in 
both human and mouse cells in vitro, highlighting the interface of 
these pathways (89). Additionally, CR reduces circulating levels of 
IGF-1, and exposure of cells to insulin or IGF-1 decreases the ex-
pression of SIRT1 (90). GH/GHR deficient mice have extended life 
span, health span, and reproductive potential (42,91). Although 
the effects of DR on the transsulfuration/H2S pathway in the ovary 
have not been established, mTOR (28) and GH/IGF-1 (29) serve as 
negative regulators of H2S production in other tissues, allowing for 
the possibility of similar mechanisms in the ovary.

Whether the reproductive longevity benefits of DR extend to hu-
mans remains to be seen. However, 2 randomized trials demonstrate 
the safety and feasibility of CR in small cohorts, and show that it is 
effective at decreasing metabolic, hormonal, and inflammatory risk 
factors for cardiovascular disease, diabetes, and cancer in humans 
(92–95). At a minimum, the studies of DR in model organisms facili-
tate a molecular understanding of pathways conferring reproductive 
longevity and long-term ovarian health so as to be further leveraged 
for targeted dietary and nondietary clinical interventions, including 
those described below.

Rapamycin
In humans, the mTORC1 inhibitor rapamycin is FDA-approved as 
an immunosuppressant in transplant recipients and for treatment 
of lymphangioleiomyomatosis; additionally, mTOR inhibitors are 
increasingly being used for cancer treatment (96). Concerns about 
rapamycin’s side effects, which include immunosuppression and 
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glucose intolerance, have limited its human trials for promoting lon-
gevity (97). In mice, rapamycin extends life span and health span, 
and induces improvements in cognitive function, activity levels, and 
cardiac function even when initiated late in life (98–101). Rodent 
studies demonstrate the antiaging effects of rapamycin observed in 
other organ systems also extend to the ovary. Improvements in re-
productive function after rapamycin treatment are evident in studies 
of physiologic murine aging, as well as in models of chemotherapy-
induced POI. A  2-week course of rapamycin in healthy mice 
improved primordial follicle count, oocyte morphology, and mito-
chondrial activity (26). In mating studies, after 12 months of age, 
when the control mice began to experience age-related infertility, 
the rapamycin-treated mice retained fertility and continued to have 
pups. Improved reproductive longevity appeared when rapamycin 
was either initiated at 8 weeks or 8 months (26). As in studies of CR, 
estrous cycles are irregular and fertility is poor during the period 
of rapamycin treatment, but recover within 2 months of rapamycin 
discontinuation (26). Rapamycin-treated animals demonstrated 
increased ovarian expression of SIRT1 and SIRT6, as well as de-
creased abundance of phosphorylated mTOR and p70S6k (102). 
Additionally, rapamycin and its analogue everolimus reduced loss 
of primordial follicles and maintained fertility in mating studies in 
mice that underwent treatment with cyclophosphamide, suggesting 
the potential for fertility preservation in humans undergoing chemo-
therapy (103–105).

Metformin
Metformin is an antidiabetic biguanide that improves insulin sensi-
tivity. It acts on complex I of the mitochondrial respiratory chain and 
inhibits mTORC1 indirectly by activating TSC2 (106). Metformin 
has been shown to increase life span and health span in both lower 
organisms and rodents (107–109); however, some data suggest that 
these outcomes are strain and sex-specific (110,111).

Use of metformin in reproductive medicine is limited to women 
with polycystic ovarian syndrome. It safely and effectively improves 
ovulation rates in the polycystic ovarian syndrome population, and 
increasing evidence demonstrates safety during the first trimester of 
pregnancy (112). In mice, 6-month courses of metformin increase 
ovarian reserve, potentially by inducing SIRT1 expression and re-
ducing oxidative stress (113); however, other studies have failed to 
demonstrate a benefit of metformin on reproductive longevity (114). 
Further research is needed to evaluate the impact of metformin on 
ovarian aging.

Resveratrol
Resveratrol is a polyphenolic compound initially identified as a 
SIRT1 activator in yeast (115,116). In aging mice, resveratrol dimin-
ishes age-related deterioration by reducing inflammatory markers 
and cataract formation while improving aortic elasticity, motor co-
ordination, and bone density; however, it does not increase overall 
longevity (117,118). In humans, randomized trials evaluating the 
impact of resveratrol have been mixed. A small randomized trial of 
20 adults showed that a 6-week course of resveratrol supplemen-
tation reduced plasma concentrations of the inflammatory markers 
C-reactive protein and tumor necrosis factor (119); however, an-
other phase 2 trial of oral resveratrol in multiple myeloma patients 
was discontinued due to a high rate of renal failure and adverse ef-
fects (120). More recently, randomized trials have demonstrated a 
benefit of resveratrol on lipid profiles in patients with risk factors for 
cardiac disease (121,122).

With regard to reproductive outcomes, a 12-month course of 
resveratrol in mice increased primordial follicle counts, litter size, 
and oocyte quality at advanced ages (116,123). Additionally, a spe-
cific SIRT1 activator SRT1720 administered to mice suppressed the 
activation of primordial follicles and increased the ovarian reserve 
by activating SIRT1 and inhibiting mTOR signaling (124). A  re-
cent human trial randomized 61 women with polycystic ovarian 
syndrome undergoing IVF to a 40-day course of resveratrol versus 
placebo. Resveratrol treatment resulted in improved oocyte and em-
bryo morphology; however, this did not result in a change in oo-
cyte fertilization rate or pregnancy rate (125). Given the favorable 
safety profile of resveratrol, it is reasonable to pursue further ran-
domized trials in human fertility patients to further evaluate whether 
resveratrol has the capacity to improve reproductive function and 
mitigate ovarian aging.

Melatonin
Melatonin is an indoleamine neurotransmitter secreted primarily 
by the pineal gland in a pulsatile fashion. Its primary role is in the 
regulation of sleep–wake cycles. Melatonin is also synthesized by 
the oocyte, granulosa cells, cumulus cells, and the placenta, where it 
is thought to facilitate oocyte maturation, mitigate oxidative stress, 
and optimize placental function by preventing apoptosis (126). 
Consistent with its role in regulating circadian rhythms, melatonin 
also contributes to seasonal reproduction in mammals. The dur-
ation of elevated melatonin and the direction of change in mela-
tonin levels both contribute to ovarian function in hamsters and 
sheep (127,128). The pulsatile secretion of melatonin is believed to 
be important for maintaining a functioning pituitary–ovarian axis in 
humans, and high doses of exogenous melatonin have a suppressive 
effect on ovulation in women (129).

Peak melatonin levels decrease with age, and melatonin supple-
mentation may have a number of benefits, including increased life 
span, improved immune function, and reproductive longevity (130). 
In mice, transplanting the pineal gland from a young mouse into 
an aging animal improved immune function and increased life span 
(131). Additionally, multiple melatonin supplementation studies in 
rodents demonstrated improvements in markers of ovarian health, 
including increased litter size, increased number of primordial fol-
licles, and improved oocyte competence (132–135). Mice with mela-
tonin supplementation additionally showed improved mitochondrial 
antioxidant function, reduced ovarian mitochondrial ROS gener-
ation, and increased SIRT1 and SIRT3 activity in granulosa cells 
(132,135). Additionally, mice exposed to genotoxic cisplatin that 
received pretreatment with melatonin had significantly less primor-
dial follicle loss and decreased granulosa cell apoptosis; these effects 
were mediated by a decrease in phosphorylated FOXO3 (136).

A study of women undergoing IVF demonstrated that mela-
tonin supplementation protected oocytes from oxidative damage in 
vitro and improved fertilization rates (137). Similarly, a recent pro-
spective study of 40 women with unexplained infertility evaluated 
the impact of melatonin supplementation (3 mg or 6 mg daily) for 
40 days on IVF outcomes and found an increase in intrafollicular 
antioxidants, as well as improved fertilization rates from 47% to 
67% (138). There was no change in live birth rate; however, the 
study was not powered to evaluate live birth rate as an outcome 
(138). Some data also suggest that melatonin improves hormonal 
function in peri- and postmenopausal women. A  randomized trial 
of 79 women aged 42–62 evaluated the impact of a 6-month course 
of melatonin (3 mg nightly) on follicle-stimulating hormone levels, 
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which is a biomarker of menopause that increase with age. The au-
thors reported a significant reduction in follicle-stimulating hormone 
levels after melatonin treatment and a resumption of menstrual 
cycles in several postmenopausal women (139). Together, these data 
suggest that melatonin may have a role in mitigating ovarian aging 
and improving oocyte quality. The favorable safety profile of mela-
tonin make it an appealing target for future research.

Conclusions

Multiple pathways, many of them nutrient-sensing, converge in 
the mammalian ovary to regulate the quiescence and activation of 
primordial follicles. The PI3K/PTEN/AKT/FOXO3 and TSC/mTOR 
pathways appear to be central to the regulation of the PFP; however, 
GH/IGF-1 and H2S may also play a role (Figure 1). A delicate balance 
of primordial follicle activators and suppressors must be maintained 
in order to allow for continued ovulation while preventing rapid 
depletion of the ovarian reserve. The behavioral and pharmacologic 
interventions that prevent primordial follicle activation, including 
DR and rapamycin, cause infertility for the duration of the inter-
vention. In order for these interventions to be useful clinically, the 
resulting period of infertility must be reversible, and the treatments 
must confer long-term benefits after a relatively short duration of 
use. Perhaps the best candidates for pharmacologic inhibitors of 
primordial follicle activation are women undergoing gonadotoxic 
chemotherapy, or those known to be at high risk for POI, such as 
women carrying the FMR1 premutation. Initial data from human 
trials suggest that short courses of pharmacologic SIRT1 inducers 
such as resveratrol and melatonin may improve oocyte morphology 
and fertilization rates in women undergoing IVF; however, more 

data are needed to confirm these findings. Ultimately, as women 
age, the risks of infertility, aneuploidy, and miscarriage increase due 
to a decline in both ovarian reserve and oocyte quality. Enhanced 
understanding of the pathways that maintain the ovarian reserve 
presented in this review and the geroscience interventions that com-
mand them will promote reproductive longevity and extend ovarian-
related endocrine homeostasis into later life.
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Figure 1. Aging-related pathways and their role in ovarian aging and regulation of the primordial follicle pool. Multiple pathways, including PI3K/PTEN/AKT/
FOXO3, TSC/mTOR, growth hormone (GH)/IGF-1, H2S, and sirtuins, converge in the mammalian ovary to regulate the quiescence and activation of primordial 
follicles. Behavioral and pharmacologic interventions (orange italic font) to prevent depletion of the ovarian reserve target distinct points along these pathways. 
Dotted lines represent areas of emerging research, whereas as solid lines represent established pathways within the mammalian ovary. Abbreviations used are 
as follows: insulin-like growth factor-1 (IGF-1); phosphatidylinositol bisphosphate (PIP2); phosphatidylinositol triphosphate (PIP3); phosphoinositide-dependent 
kinase-1 (PDK1); protein kinase B (AKT); forkhead box O3 (FOXO3); phosphatidylinositol 3 kinase (PI3K); anti-Müllerian hormone (AMH); sirtuin 1 (SIRT1); 
tuberous sclerosis complex 1 (TSC1); tuberin (TSC2); mammalian target of rapamycin (mTOR) complex 1 (mTORC1); dietary restriction (DR); 2-deoxyglucose 
(2-DG); cystathionine γ-lyase (CGL); ribosomal protein S6 (S6); eukaryotic initiation factor 4E-binding protein 1 (4E-BP1); H2S (hydrogen sulfide); primordial 
follicle pool (PFP).
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