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Stem cells experience many selective pressures which shape their cellular populations,
potentially pushing them to skew towards dominance of a few break-through clones. An
evolutionarily conserved answer to curb these aberrant selective pressures is cell
competition, the elimination of a subset of cells by their neighbours in a seemingly
homogenous population. Cell competition in mammalian systems is a relatively recent
discovery that has now been observed across many tissue systems, such as embryonic,
haematopoietic, intestinal, and epithelial compartments. With this rapidly growing field,
there is a need to revisit and standardize the terminology used, much of which has been
co-opted from evolutionary biology. Further, the implications of cell competition across
biological scales in organisms have been difficult to capture. In this review, we make three
key points. One, we propose new nomenclature to standardize concepts across
dispersed studies of different types of competition, each of which currently use the
same terminology to describe different phenomena. Second, we highlight the
challenges in capturing information flow across biological scales. Third, we challenge
the field to incorporate next generation technologies into the cell competition toolkit to
bridge these gaps. As the field of cell competition matures, synergy between cutting edge
tools will help elucidate the molecular events which shape cellular growth and death
dynamics, allowing a deeper examination of this evolutionarily conserved mechanism at
the core of multicellularity.
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CLONALITY AND COMPETITION

The life of a stem cell is that of growth or death, persistence or differentiation. Across generations and
within our tissues, these cells find themselves racing towards their limits—space, molecular signals,
and the abundance of their progeny relative to peers. These selective pressures inherently define
cellular populations, shaping them over the organism’s lifetime depending on the demands of the
environment. Heterogeneity is lost over time in several stem cell populations, as a few cells give rise to
offspring that outlast and overtake neighbouring clones. Intestinal stem cells, caught in a perpetual
rush to out-divide each other, come to grow in abundance and their progeny dominate an
environment either by chance or by mutations that provide an edge over their neighbours
(Lopez-Garcia et al., 2010; Snippert et al., 2010; Baker et al., 2014; Snippert et al., 2014). As a
result, intestinal tissue and the constituent crypts eventually becomemore homogenous as individual
clones out-persist the multicellular population. Interestingly, the reverse phenomenon is seen in
epithelial tissues, where clonal diversity increases as cells acquire mutations, giving rise to a birth of
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clones with divergent family trees (Alcolea et al., 2014; Colom
et al., 2021). This ultimately culminates with a single clone
“breaking through”, gaining mutations that allow it to
overtake its environment. One key difference between these
two patterns of cellular competition is the nature of the tissue
it occurs within—where one clone may come to outcompete its
neighbours in an epithelial layer, spatially separated crypts isolate
clones, limiting their spread. While perhaps seeming
straightforward, the dynamics of clonal competition and
neoplastic growth are increasingly complex, and have been
recently well reviewed elsewhere (Marongiu et al., 2021).

Competition between cellular neighbours has been reported
in several stem cell populations. Haematopoietic stem cell
populations tend towards clonality in an age-dependent
manner (Genovese et al., 2014; Jaiswal and Ebert, 2019;
Silver et al., 2021). Similarly, a small set of embryonic stem
cells establish clonal contributions to reproductive tissue
(Kanatsu-Shinohara et al., 2006; Kanatsu-Shinohara et al.,
2016; Nguyen and Laird, 2021; Yang et al., 2021) and exhibit
skewed contributions to germ layer specification during
embryonic development (Park et al., 2021). Despite the clear
importance of clonal dynamics in many of our tissues, we lack
an understanding of the implications of these differences and
how they arise. Often, these changes in clonality are associated
with oncogenesis or tissue function detereriation (Suda et al.,
2018; Yokoyama et al., 2019), but the impact of tissue-specific
clonality or aclonality at the organism level remains relatively
unexplored. This dynamic, where stochasticity or chance
mutations heavily skew a valuable stem cell population,
creates a pressure for “cheater” clones to emerge and
overtake a bodily niche—often at the expense of organism
survival.

One evolutionarily conserved answer to control this selective
pressure is a set of cellular interactions dubbed cell competition
(CC). CC has traditionally been defined as the elimination of a
subset of cells by their neighbours within a seemingly
homogenous cell population. This dynamic has been proposed
as a conserved quality control mechanism, functioning to select
against deleterious mutations (Sancho et al., 2013; Ji et al., 2021).
To date, CC has been demonstrated in embryonic (Clavería et al.,
2013; Sancho et al., 2013; Ellis et al., 2019), intestinal (Snippert
et al., 2014; Suijkerbuijk et al., 2016; Ellis et al., 2019; Flanagan
et al., 2021; Scheuer et al., 2021), haematopoietic (Bondar and
Medzhitov, 2010), gonadal (Jin et al., 2008; Rhiner et al., 2009;
Nguyen and Laird, 2021), and epithelial tissues (Snippert et al.,
2014; Suijkerbuijk et al., 2016; Kon et al., 2017; Ellis et al., 2019;
Flanagan et al., 2021; Scheuer et al., 2021) scattered throughout
several model species. The “why” of cell competition is mostly
unknown, however insights from embryonic competition suggest
cell function is a determinant of competitive ability (Clavería
et al., 2013; Hashimoto and Sasaki, 2019). Indeed, literature on
competition has outlined its role in monitoring for epithelial cell
polarity (Brumby and Richardson, 2003; Igaki et al., 2009),
embryonic tissue size and morphology (Orietti et al., 2021),
and in maintaining an organism’s lifespan (Merino et al., 2015).

To date, the field of CC has mostly been concerned with the
novelty of “loser” cell removal by neighbouring “winners.”

However, how these dynamics impact the residing tissue and
its function, or the implications for the host organism are broadly
unknown. The field, as it progresses, is then faced with a
challenge: designing experiments and formulating hypotheses
that encompass the full complexity of multicellular systems at
the cellular, tissue, and organism scale. Ultimately, in capturing
and understanding the information flow between these scales, we
can learn the processes by which these levels shape each other.
This is key to connecting the evolutionary basis and molecular
mechanisms that orchestrate the competition that shapes
multicellular populations (Maheden et al., 2021).

CLARIFYING COMPETITION
As the field of cell competition has grown quickly, so too has the
number of terms used to describe these cellular interactions. With
reports of CC becoming commonplace across tissues and
organisms, it is timely to revisit and standardize vocabulary
across the field. Since the earliest examples of CC were
reported, the field has borrowed terminology from
evolutionary biology, which has an established and rich
history of capturing inter-species competition. However, the
broad use of the same terms in evolutionary and
developmental biology may be a source of confusion for those
new to the field.

The use of the term “fitness” is a clear example of this. In the
context of CC, “fitness” is widely used to describe the inherent
qualities of winner cells that confer their ability to eliminate losers
(Clavería et al., 2013; Sancho et al., 2013; Bowling et al., 2019;
Madan et al., 2019; Lima et al., 2021). However, the ability to
eliminate losers is often defined by the cell’s “fitness”; an
argument that begins where it ends. Indeed, there is no
agreed-upon definition for “fitness”, even in the ecological
realm (Peacock, 2011); so too, there is a discrepancy in how
different experts may interpret the mechanistic underpinnings of
cellular “fitness”. An example of this disconnect is seen in the
comparison between “fitness” in Drosophila epithelial cells as
compared to the mammalian haematopoietic system. Cell
competition studies using the haematopoietic system describe
“fitter” cells as those that exhibit a growth advantage, often
conferred by genetic mutations that allow these clones to
overtake the niche (Watson et al., 2020). In contrast, cell
competition studies involving Drosophila describe “fitter” cells
as those that are able to eliminate neighbouring cells that are less
fit by inducing their apoptosis (Casas-Tinto et al., 2010; De La
Cova et al., 2014; Nagata and Igaki, 2018). This demonstrates the
disconnect in the use of the term “fitness” across different
subfields of competition: the same term is used to describe
different phenomena in a context-dependent manner. Indeed,
the historical use of the term “fitness” makes it particularly
challenging to adapt for the CC field and may warrant careful
use as a result.

More specific and nuanced terminology may help the budding
CC field avoid inadvertently grouping together distinct biological
phenomena and allow for the growing library of CC mechanisms
to be catalogued. At the moment, “fitness” is used as a non-
specific umbrella term to describe different facets of a cell’s ability
to dominate in a given niche. As the field matures, and a more
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nuanced understanding of the various mechanistic drivers of this
phenotype develops, the catch-all term “fitness” can be replaced
by more specific terminology.

Similarly, “competition” is used to describe distinct
phenomena across fields. We propose to redefine
“competition” along two dimensions, each serving to capture
distinct biological mechanisms that lead to cellular elimination in
multicellular settings: costly versus inexpensive competition, and
cellular contest versus scramble (Figure 1) (Hibbing et al., 2010).
Costly competition invovles situations in which a cell or
population of cells expend energy to eliminate other
competitors, while experiencing no immediate benefit in terms
of proliferation or abundance. On the other hand, inexpensive
competition describes situations where competition is driven by
processes that directly increase the abundance of the cells or

populations involved. This is seen in situations where one cell
population has a cell-autonomous propensity to outgrow or
outpersist other populations in a given niche—a property that
remains unchanged in the presence of a competitor cell
population. Scramble refers to competition that affects an
extracellular intermediate that drives a change to the cellular
microenvironment. By contrast, contest refers to a direct action
between cells, without involvement of an intermediate resource,
such as when cells induce apoptosis in or extrude their
neighbours (Sun et al., 2014; Bowling et al., 2018a).

Published reports of CC in various organisms and tissue types
can be categorized along these two axes, which together define
four quadrants (Figure 1). As an example of a costly contest, loser
mouse embryonic stem cells undergo apoptosis when mixed with
neighbouring winner cells (Figure 1A) (Díaz-Díaz et al., 2017).

FIGURE 1 | Systematic characterization of the various modes of cell competition. We propose contextualizing competitive interactions via two axes: Costly versus
inexpensive; scramble versus contest. “Costly competition” includes behaviours or molecular interactions that do not yield immediate benefit for the cell or population
outside of the elimination of loser cells from that population. “Inexpensive competition” involves less risk as these behaviours or interactions would be expected to always
benefit the cell, regardless of environment. “Scramble” involves a rush to accumulate a limited number of resources, whereas “contests” involve direct interactions,
comparisons, or sensing between competing cell populations. (A) Examples of “costly contests” include direct apoptotic induction of loser cells by winners as seen in
mouse embryonic stem cell models (Díaz-Díaz et al., 2017; Bowling et al., 2018b; Lima et al., 2021), or via extrusion of losers from the underlying substrate by neighbours
as seen in tissue culturemodels (Hogan et al., 2009; Kajita et al., 2010). (B) “Costly scrambles” have been seen in intestinal stem cell models, where apc-mutant cells with
constitutiveWNT signaling secrete aWNT antagonist, NOTUM, cripplingWNT signaling in their wildtype neighbours and limiting their ability to persist in the stem cell state
(Flanagan et al., 2021; Scheuer et al., 2021). (C) “Inexpensive scramble” encompasses a wide range of mechanisms which ultimately result in differences in abundances
between two populations by affecting the independent growth or survival of the competitors. This can be driven by different cell cycle rates, death rates, or different
required thresholds and affinities for environmental factors, all ultimately resulting in inequality of effective growth rates independent of intercellular interactions. A
straightforward example can be seen again within the intestinal stem cell niche, where faster-dividing mutant intestinal stem cells overtake their wildtype neighbours over
time (Snippert et al., 2014), or with hematopoietic stem cells having different abilities to persist long term based on growth factor receptor expression (Cosgun et al.,
2014; Shin et al., 2014). To date, no clear examples of “inexpensive contest” have been observed.
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From the standpoint of these winners, elimination of loser clones
requires energy and time and does not yield immediate benefit
(i.e., an increase in winner cell numbers) if the loser were not
present. An example of a costly scramble is shown by Flanagan
et al. in which secretion of NOTUM by apc-mutant winner cells
suppresses wildtype losers’ ability to persist in the niche by
targeting their WNT signaling (Figure 1B) (Flanagan et al.,
2021). In such a situation, NOTUM production and secretion
presents as the cost of eliminating wildtype neighbours, with the
ultimate benefit of increased availability of the stem cell niche for
these apc mutants due to their lack of dependence on WNT
signaling. Other examples may involve cells competing by racing
for access to a limited nutrient or physical space within a niche.
On the other hand, inexpensive scramble has been seen in
hematopoietic stem cell competition, where clones of stem
cells with specific receptor expression levels or mutations
predispose them to surviving in that stem cell state over the
long term (Figure 1C) (Cosgun et al., 2014; Shin et al., 2014;
Bowman et al., 2018; Jaiswal and Ebert, 2019). While an example
of an inexpensive contest has not been reported to our knowledge,

a possible example could involve a contact-mediated elimination
of loser cells based on differential expression of surface proteins
involved in cell adhesion. In this way, the removal of loser cells
from an adherent substrate or cellular niche would be driven by a
passive differential adhesion mechanism rather than an active
process of extrusion by winners. Ultimately, we hope that this
standardization of the vocabulary used by researchers will aid in
the discovery and communication of nuanced insights in this
burgeoning field.

CELL COMPETITION ACROSS SCALES
Cell competition is a phenomenon that bridges across scales,
where molecular changes at the single cell level drive phenotypic
changes within multicellular tissues (Figure 2A). These
underlying dynamics ultimately shape the highest biological
scale—that of organism viability, which is the level at which
evolutionary selection pressures are dealt. Current assays used to
investigate CC typically do not span multiple biological scales:
molecular, single cell, cell population, tissue, and organism. This
leaves a mechanistic disconnect in our understanding of how

FIGURE 2 | Utilizing recent technological advancements to gain insights into various layers of complexity during cell competition. (A) The different biological levels
influencing and influenced by competitive interactions between cells. (B) Following the biological levels shown in Figure 2A, recent technologies provide unprecedented
access to information flow across scales. Molecular level: event recording allows for the tracking of molecular events with single-cell resolution—in this case, the
elimination of a loser cell from amosaic tissue. Cellular level: the surrounding cells can record this elimination, allowing researchers to observe this molecular event in
the cellular history through end-point single-cell analysis. Cell population level: complex, multi-organoid systems allow for interplay between tissue types, and for
emergent behaviours between cells that typically interact in vivo but are traditionally isolated in simple 2-dimentional cultures in vitro. Tissue and organism level: intravital
imaging enables the investigation of interactions in their in vivo context, allowing access to competitive interactions in complex tissue architecture and cellular milieu.
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changes involving CC at one biological level drive outcomes at
another. Here, we will review how current assays characterize CC
at various scales, outlining gaps in our collective understanding of
the biology while highlighting opportunities to push the
boundaries of the field through cutting-edge advances in
genetic and cellular technologies.

At the molecular level, studies have explored the impact of
genetic perturbations on the ability of winner cells to contribute
to cellular populations, both in vitro and in vivo. Claveria et al.
and Sancho et al. both show that early embryonic cells measure
Myc content relative to their neighbours, and cells with lower
Myc levels are eliminated by neighbours with higher Myc
(Clavería et al., 2013; Sancho et al., 2013). While these studies
reveal the impact of key genetic perturbations in driving the
ability of individual cells to overtake populations, they do not
capture their impact on higher-level tissue function or structure,
and organism outcomes. Of note is that changes to gene
expression shown to drive CC need not involve genetic
engineering or mutations to the DNA itself. Cells may receive
signals from their microenvironment, including cell-cell
interactions, that converge on the cellular processor and drive
CC behavour by affecting gene expression (Maheden et al., 2021;
Shakiba et al., 2021). Similarly, epigenetic changes can also drive
CC-relevant gene expression changes. Exciting open questions
remain to be answered, including exploring the contributions of
inputs to the cellular processor on CC outcomes.

Others have investigated competition at the tissue level.
Bondar and Medzhitov demonstrated cell competition in
haematopoietic stem and progenitor cells using an in vivo
bone marrow repopulation assay (Bondar and Medzhitov,
2010). Here, the connection is made between molecular
perturbations and population level outcomes, as increased
relative p53 expression was shown to confer loser status by
marking cells for senescence and extrusion from the niche
(Bondar and Medzhitov, 2010). Follow-up studies on the long-
term health and blood compartment function of the recipient
mice may provide more insight into how winner-loser status at
the tissue level shapes survival and viability at the organism level.
Indeed, these findings would help to bridge our understanding of
the evolutionary role of CC.

Our understanding of the role of CC at the organismal level is
relatively underdeveloped. The clearest example comes from
work in Drosophila, studying the gene azot, a gene required
for loser cell elimination (Merino et al., 2015). This work outlined
several roles for azot, showing it is critical for survival post-UV
irradiation and maintanence of a normal lifespan through
elimination of loser clones arising during both. The
connection between competition and lifespan or survivial post-
insult has not been made in mammalian systems, and the percise
implications of carrying tissues rife with uneliminated losers is an
open question.

The phenomenon of CC has captured the attention of
scientists with core expertise that span different model
systems, technical skills, and cell types. With the exciting
interdisciplinary nature of the field comes the challenge of
interpreting results that span different biological scales and
systems. Mixing assays, involving in vitro co-culturing of

winner and loser cells on a 2-dimensional surface, have
traditionally dominated the field. These assays connect
molecular-level genetic perturbations to cell-level events such
as apoptosis, killng, and proliferation. Tissue-level studies
connect genetic perturbations to the succesful function of the
organ, and so on with organismal studies. The disconnect lies in
the fact that cell mixing assays provide little insight into the
impact of genetic perturbations on any level above that of the
cellular. On the other hand, organism-level assays often do not
preserve information about underlying genetic perturbations and
how they affect cellular and tissue function.

While an understanding of how genetic perturbations drive
CC outcomes at the cellular level is powerful for some contexts,
such as engineering cells that survive and thrive in cell
manufacturing bioprocesses, expanding the scope of our
studies to incorporate how these perturbations shape the
emergent structure and function of tissues may open the door
to the robust derivation of lab-grown tissues for regenerative
medicine. Undoubtedly, these insights would also be powerful for
our fundamental biological understanding of tissue development
and homeostasis as well, with implications for treating disease.
Increased cross-disciplinary collaboration would benefit the field
by connecting scientists investigating CC from different angles
and encouraging broader perspectives.

In mammalian systems, much has recently been learned from
pushing beyond in vitro mixing studies. During development, it
was shown that the same mosaic epidermis consisting of a pair of
genotypes would show differing mechanisms of elimination,
depending on the timing and maturity of the tissue (Ellis
et al., 2019). The same work showed that when competition
and elimination of one of the genotypes was blocked, tight-
junction organization and barrier function was compromised.
A recent example leveraging intravital imaging further outlined
the critical role of tissue architecture in defining competitive
interactions. In skin epithelium, consisting of mosaic hair follicle
stem cells (wildtype or with hyperactive WNT/β-catenin
signaling), it was shown that mutant cells form growths and
protrusions that are encapsulated and stifled by surrounding
wildtype cells. This dynamic eventually resulted in a return to
homeostatic tissue organization and elimination of mutant cells, a
phenomenon only observable when studying the original cellular
architecture.

EXPANDING THE COMPETITION ASSAY
TOOLKIT
As the field of CC progresses and the complexity of our questions
increase, there are opportunities to engage cutting-edge
techniques from the fields of systems and synthetic biology
(Figure 2B). Looking to previous work, mathematical
modeling has played a critical role in understanding the
evolutionary pressures that drive clonal competition in cancer
(Gatenby and Vincent, 2003; Vermeulen et al., 2013). Indeed,
computational approaches using live-cell imaging data have been
successful at disentangling cellular factors involved in 2-
dimensional mechanical competition (Gradeci et al., 2019).
Additionally, modeling of intestinal stem cell clonality over
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time initially predicted that the progressive clonal takeover of
intestinal crypts fit well with a stochastic model, indicating that
neutral drift was the driver of clonality in non-oncogenic
situations (Snippert et al., 2010).

Another powerful tool in understanding competition and
clonal dynamics is that of lineage tracing (Wagner and Klein,
2020). Somatic mutations have been used to map clonal
contributions in the early embryo, creating a family tree of
cells within our earliest stages of development (Park et al.,
2021). The combination of mathematical modeling and a
static, lentiviral barcode has also provided insight into clonal
dynamics over the process of reprogramming, revealing
competitive interactions (Shakiba et al., 2019). Additionally, as
assays grow in complexity and adopt additional layers, cell types,
and tissue architectures, single cell sequencing and lineage tracing
will further enable us to understand the interplay between
clonality and tissue identity, revealing hidden layers of
homogeneity or heterogeneity that would otherwise be missed
(Mckenna et al., 2016; He et al., 2021). One recent example
looking at the haematopoietic compartment performed single cell
RNA-seq with a modified pipeline, capturing both mtRNA and
mRNA at single cell resolution from human samples (Miller et al.,
2022). Using mtRNA to identify mutations, the authors were able
to map the haematopoietic stem cell lineage. Using
accompanying transcriptomic data, they correlated divergent
differentiation trajectories with specific haematopoietic clones,
connecting tissue-level function with clonal contributions to that
function.

Finally, when looking to how the field of CC might aim to
understand the flow of information from the cellular, to the
tissue, and finally to the organism scale, key advances in
molecular event recording technologies, which leverage the
DNA as a data storage device, may bridge the gap. Early event
recording technologies demonstrated the possibility for both
recording and recovering cellular events in the history of
individual cells from a single molecular input (Perli et al.,
2016), with later works demonstrating recording systems that
require two distinct signals to activate (Tang and Liu, 2018). As
our knowledge of the molecular events and markers of
competition grow, building synthetic genetic systems to record
their presence and encode that information for recovery with
single-cell resolution allows us to correlate molecular and cellular
events with tissue-level outcomes through time (Sheth andWang,
2018; Ishiguro et al., 2019). Critically, this removes the need to
take snapshots of molecular events, instead allowing us to look
back through the life-history of our model, identifying potentially
complex events that have taken place days or weeks past.

To go beyond simple in vitro mixing assays, designing culture
conditions that mimic the in vivo reality of multicellular systems
would help bridge the gap. Advances in organoid tissue models
have allowed for accurate representations of in vivo architecture
while also incorporating cross-talk between multiple tissue types,

striking a balance between biological reality and feasibility
(Wimmer et al., 2019; Koike et al., 2021). With multi-organoid
systems engineered from the ground up, we gain the ability to
probe and control interactions between tissue types, capturing
complexity that would otherwise be missed.

Synergy between the above tools provides a strategy to
approach capturing information at the molecular, cellular,
tissue, and organismal level. When conceptualizing an
idealized competition experiment, the combination of
competitive event recording and clonal lineage tracing in a full
animal model would allow researchers to discover where these
cellular battlefields lie, and which clones have shaped and
overtaken their environment via these interactions. Coupling
this molecular information with tissue function and
organismal readouts would allow direct connection between
molecular interactions and outcomes of the animal.
Additionally, it would become possible to work backwards,
performing insults or creating conditions that have been
shown to affect organismal or tissue health and characterizing
clonal or competitive interactions at the molecular level.

Ultimately, the field of cell competition is poised to mature
from a novelty of mixing cells to a holistic process at the core of
multicellularity, one that is a driving force in tissue homeostasis
and function. Facilitating this transition are numerous
advancements in adjacent fields, giving researchers the
capability to ask deeper questions on the nature and
evolutionary basis of the intriguing cellular behaviour that
is CC.
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