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Diabetes mellitus (DM) has been one of the largest health concerns of the 21st century due
to the serious complications associated with the disease. Therefore, it is essential to
investigate the pathogenesis of DM and develop novel strategies to reduce the burden of
diabetic complications. Sirtuin 1 (SIRT1), a nicotinamide adenosine dinucleotide (NAD+)-
dependent deacetylase, has been reported to not only deacetylate histones to modulate
chromatin function but also deacetylate numerous transcription factors to regulate the
expression of target genes, both positively and negatively. SIRT1 also plays a crucial role
in regulating histone and DNA methylation through the recruitment of other nuclear
enzymes to the chromatin. Furthermore, SIRT1 has been verified as a direct target of
many microRNAs (miRNAs). Recently, numerous studies have explored the key roles of
SIRT1 and other related epigenetic mechanisms in diabetic complications. Thus, this
review aims to present a summary of the rapidly growing field of epigenetic regulatory
mechanisms, as well as the epigenetic influence of SIRT1 on the development and
progression of diabetic complications, including cardiomyopathy, nephropathy,
and retinopathy.
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INTRODUCTION

Diabetes mellitus (DM) refers to abnormalities in the metabolic processing of carbohydrates, fats
and proteins that is characterized by persistent hyperglycemia as a result of insufficient insulin
secretion, impaired insulin action or both (1). DM has gradually become one of the largest health
concerns of the twenty-first century, and affects approximately 451 million adults worldwide, with
projections that the disease will reach 693 million adults by 2045 (2). The majority of DM-related
rates of morbidity and mortality are due to serious complications resulting from chronic
hyperglycemia, including cardiovascular disorders, nephropathy, retinopathy with potential loss
of vision, peripheral neuropathy and autonomic neuropathy (3). These long-term complications
make DM a considerable burden to public health since they require lifelong care and treatment.
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Therefore, it is essential to investigate the disease pathogenesis
and develop novel therapeutic strategies to reduce the burden of
DM and its associated complications.

DM is a hereditary disease with a strong genetic
predisposition (4). Interestingly, in addition to genetics,
environmental factors including less exposure to sunlight and
lack of physical activity also increase the risk of DM (5).
However, numerous people exposed to these risks do not go
on to develop DM. Indeed, strong evidence has shown that
epigenetics plays a significant role in the complex interaction
between genes and the environment (6). Epigenetics is described
as stable and heritable alterations in gene expression or cellular
phenotypes without changes in nucleotide sequences, and
includes DNA methylation, histone modifications and non-
coding RNA (ncRNA)-mediated pathways (7). Recently, a
growing number of studies have focused on the role of
epigenetics in DM and its related complications.

Sirtuin 1 (SIRT1), a nicotinamide adenosine dinucleotide
(NAD+)-dependent deacetylase, has been reported to
deacetylate histones to modulate chromatin function, such as
histone 3 lysine 9 (H3K9) and H4K16 (8). SIRT1 can also
deacetylate numerous transcription factors to regulate the
expression of target genes either positively or negatively,
including tumor protein 53 (p53) (9), forkhead box O (FOXO)
(10), nuclear factor kappa B (NF-kB) (11), and peroxisome
proliferator-activated receptor gamma coactivator-1 alpha
(PGC-1a) (12). Moreover, SIRT1 plays a crucial role in
regulating histone and DNA methylation through the
recruitment of other nuclear enzymes to the chromatin (8, 13).
All above mentioned findings suggest that SIRT1 is a crucial
regulator of epigenetics. Furthermore, SIRT1 acts as a cellular
energy sensor and plays a pivotal role in regulating energy
metabolism, insulin sensitivity, and cardiovascular functions in
mammals (14–16). Recently, numerous studies have
concentrated on the key roles of SIRT1 and related epigenetic
mechanisms in diabetic complications. Therefore, the primary
purpose of this review is to summarize the recent advances
regarding the effects and related epigenetic mechanisms of SIRT1
in diabetic complications, including diabetic cardiomyopathy
(DCM), diabetic nephropathy (DN), and diabetic retinopathy
(DR). Finally, we will list the SIRT1 agonists that have been
reported to exert protective functions during the development of
DM-associated complications.
EPIGENETIC MECHANISMS THAT
INFLUENCE DIABETIC
CARDIOMYOPATHY

DCM is one of the major diabetic complications characterized by
structural abnormalities and ventricular systolic and/or diastolic
dysfunction in the absence of hypertension, coronary artery
disease or significant congenital cardiac diseases (17).
Accumulating evidence has revealed an association between
“hyperglycemic memory” and epigenetic mechanisms (18),
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which may exert significant roles in the development of DCM.
Hyperglycemic memory, also known as metabolic memory, is a
phenomenon where the negative effects of hyperglycemia persist
even after glycemic control has been achieved. Yu et al. explored
the effect of H3K9 trimethylation (H3K9me3), a key epigenetic
chromatin marker, on high glucose (HG)-induced inflammation
and metabolic memory in rat cardiomyocyte cell line H9c2. They
found that HG conditions increased the levels of the
inflammatory cytokine interleukin-6 (IL-6) and decreased the
levels of H3K9me3 at the IL-6 promoter, which could not be
reversed following the removal of HG stimulation. These results
indicated that decreased levels of H3K9me3 at the IL-6 promoter
following HG exposure was a main mechanism that affected
hyperglycemic memory in cardiomyocytes (19).

Moreover, histone deacetylase (HDAC)-mediated epigenetic
processes also have important functions in the modulation
of DCM. Chen et al. investigated the role of HDAC in
DCM and found HDAC inhibition could attenuate cardiac
hypertrophy, interstitial fibrosis and apoptosis accompanied
by increased acetylation of glucose transporter 1 (GLUT1)
and phosphorylation of p38 in diabetic mice (20). p38
phosphorylation has been verified to be involved in
cardioprotection induced by glucagon-like peptide-1 in
myocardial ischemia and reperfusion injury (21). However,
whether GLUT1 acetylation mediates its physiological
functions needs to be further explored. Peroxisome
proliferator-activated receptors (PPARs) have emerged as
critical regulators of cardiac glucose and lipid homeostasis.
HDAC inhibition in a rat model of DM increased the
expression of cardiac PPAR-a and PPAR-d but decreased
cardiac PPAR-g expression compared with untreated DM rats,
suggesting that HDAC inhibition could regulate fatty acid
metabolism to improve DCM (22). Previous studies have only
focused on the total inhibition of HDAC activity using a non-
specific HDAC inhibitor. Recently, Xu et al. explored the effect of
specific HDAC inhibitor on DCM and found that HDAC3
inhibition by RGFP966 could protect against DM-induced
cardiac remodeling and dysfunction in diabetic mice.
Furthermore, RGFP966 could repress extracellular signal-
regulated kinases 1/2 (ERK1/2), a well-known initiator of
cardiac hypertrophy. This effect was mediated by increased
dual specificity phosphatase 5 (DUSP5) expression through the
acetylation of histone H3 on the primer region of the DUSP5
gene, a nuclear phosphatase of ERK1/2 (23). Contrary to the
above, silent information regulator 2 (Sir2), an NAD+-dependent
HDAC, has been reported to have a beneficial effect on DCM. A
study by Dong et al. demonstrated that fidarestat, an aldose
reductase inhibitor, could ameliorate cardiomyocyte dysfunction
in diabetic obese mouse cardiomyocytes through regulation of
Sir2 expression (24).

Emerging evidence has shown that microRNAs (miRNAs) are
implicated in the maintenance of tissue homeostasis in the heart.
A study on the alteration of miRNAs expression in a mouse
model of DM revealed that 316 out of 1,008 total miRNAs were
disordered in the diabetic heart (25). Of note, microRNA-212
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(miR-212) and miR-221 were massively overexpressed in the
diabetic heart, which could play pivotal roles in cardiac
hypertrophy and autophagy, and glycemic control was unable
to restore the levels of these two miRNAs to normal (25–27).
Similarly, the expression of miR-199a has been reported to be
upregulated in association with myocardial hypertrophy,
whereas miR-30a and miR-1 (potent inhibitors of
mitochondrial fission, hypertrophy and apoptosis), as well as
miR-29b (anti-fibrosis) were downregulated in diabetic mouse
heart (25). Moreover, the expression of miR-451, miR-144, and
miR-133a was also shown to be altered in diabetic murine hearts,
and involved in the development of DCM (28–30). Exploring the
epigenetic mechanisms of miR-133a found that it could regulate
DNA methylation in diabetic mouse cardiomyocytes (30).

Long ncRNAs (lncRNAs), another type of ncRNA, have also
been considered as a novel therapeutic strategy for the treatment
of DCM. Silencing lncRNA Kcnq1ot1 decreased caspase-1
expression and repressed transforming growth factor-beta 1
(TGF-b1) signaling to improve pyroptosis and fibrosis in a
mouse model of DCM (31). Moreover, downregulation of
lncRNA metastasis-associated lung adenocarcinoma transcript
1 (MALAT1) and myocardial infarction associated transcript
(MIAT) improved DCM by reducing apoptosis and ameliorating
cardiac function (32, 33). In contrast, downregulation of lncRNA
H19 by small interfering RNA (siRNA) decreased miR-675
expression and in turn upregulated the expression of voltage-
dependent anion channel 1, which consequently promoted
cellular apoptosis in neonatal rat cardiomyocytes exposed to
HG conditions (34). The altered expression levels of the ncRNAs
discussed above might explain why DM-related myocardial
injury still progressively worsens even in the presence of
glycemic control.

In addition to histone post-translational modifications and
ncRNA-mediated pathways, the effects of DNA methylation on
the development of DCM have also been reported. Mönkemann
et al. investigated the epigenetic alteration of p21WAF1/CIP1 and
cyclin D1 gene expression involved in cell cycle control in
cardiomyocytes of streptozocin (STZ)-induced diabetic rats.
They found that the p53-inducible p21WAF1/CIP1 gene was
completely demethylated and activated, while the cyclin D1

gene was completely methylated and inactivated. These
different methylation patterns might be the result of p53-
dependent cell cycle arrest associated with DNA damage.
Activated p21WAF1/CIP1 suppresses DNA replication by binding
proliferating cell nuclear antigen, which is necessary to both
replicative DNA synthesis and DNA repair (35). As discussed
above, epigenetic changes are closely related to the development
of DCM, and a complete understanding of the roles of epigenetic
processes in DCM would provide novel insights into this
complex disease.
SIRT1 IN DIABETIC CARDIOMYOPATHY

Several studies have shown the possibility that SIRT1, as a class-
III HDAC, exerts a protective effect on DCM by deacetylating
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histones. NF-kB, a pleiotropic transcription factor, can be
translocated to nucleus to induce transcription of several
proinflammatory genes under oxidative stress. In diabetic rats,
SIRT1 activation by resveratrol could reduce the acetylation of
the p65 subunit of NF-kB (NF-kB-p65) at K310. NF-kB-
dependent transcription is associated with acetylation status of
histone. Indeed, increased acetylation of H3K9 was observed in
the hearts of diabetic rats, which was reduced after resveratrol
administration (11). Based on the above findings, we propose
that increased SIRT1 expression may be responsible for the
deacetylation of NF-kB-p65 and H3K9, as well as the reduced
NF-kB-p65-mediated actions in the diabetic heart. In addition,
p66Shc expression was upregulated in the diabetic heart, which
was related to oxidative stress, myocardial inflammation, and
cardiac dysfunction. Importantly, three-week intensive glycemic
control was unable to revert the above-mentioned phenomenon.
This study focused on the epigenetic regulation of the prooxidant
adaptor p66Shc in the hearts of diabetic mice and found that
dysregulation of DNA methyltransferase 3b (Dnmt3b) and
deacetylase SIRT1 resulted in CpG demethylation and histone
H3 acetylation at the p66Shc promoter, which could lead to
sustained transcription of the p66Shc (36).

Other than histone deacetylation, it has been widely reported
that SIRT1 is able to deacetylate a wide range of non-histone
substrates to result in activation or repression of their catalytic
activity in DCM. PGC-1a, as a master regulator of mitochondrial
biogenesis, can be acetylated by HG treatment. However, resveratrol
decreased the acetylation of PGC-1a in HG-treated H9c2 cells.
Additional studies investigating the underlying mechanisms found
that the resveratrol-induced PGC-1a deacetylation depended on
SIRT1. Meanwhile, resveratrol improved mitochondrial function to
alleviate DCM by increasing SIRT1 expression and PGC-1a
deacetylation (12). Another study by Ding et al. revealed that
PGC-1a can directly bind to the dynamin-related protein 1
(Drp1) promoter to modulate protein expression. Melatonin
reduces Drp1-mediated mitochondrial fission to exert its
cardioprotective role in DCM through the SIRT1/PGC-1a
signaling pathway (37).

Activation of poly (ADP-ribose) polymerase 1 (PARP1) is
dependent on NAD+ and plays an important role in DNA repair
and chromatin remodeling. In addition, PARP1 is also involved
in transcriptional regulation, telomere cohesion, and mitotic
spindle formation during cell division, intracellular transport
and energy metabolism (38). In a mouse model of type 2 diabetes
(T2D), the mice exhibited increased oxidative stress,
inflammation, cardiac hypertrophy, and fibrosis that was
associated with enhanced PARP1 activity and decreased SIRT1
expression, while PARP1 inhibition could increase the levels of
SIRT1 and PGC-1a to improve the above-mentioned adverse
effects (39). 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) has been
reported to be a potential PARP1 inhibitor. Treatment with 1,25
(OH)2D3 can inhibit PARP1 expression to increase the
expression of SIRT1 and repress the phosphorylation of
mammalian target of rapamycin (mTOR), which improves
cardiac dysfunction, hypertrophy and fibrosis in rats of type 1
diabetes (T1D) (40).
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Autophagic dysfunction is a common occurrence in DM.
Wang et al. investigated the mechanisms underlying the
protective effect of resveratrol against heart failure and
explored the role of SIRT1 in the modulation of autophagic
flux in diabetic mice. They found that SIRT1 activation by
resveratrol could deacetylate FOXO1 and enhance FOXO1
DNA binding at the Ras-related protein Rab-7 (Rab7, a
crucial factor in the maturation of autophagosomes and their
fusion with lysosomes) promoter region to ameliorate
dysfunctional autophagic flux in the hearts of diabetic mice,
suggesting that the effect of the SIRT1/FOXO1/Rab7 axis on
autophagic flux may be a therapeutic strategy for the treatment
of DCM (10).

It is commonly believed that histone deacetylation is tightly
linked to DNA methylation. For example, the methyl-CpG-
binding protein MeCP2 interacts specifically with methylated
DNA and mediates transcriptional repression. Additionally, it
was discovered that this repression by MeCP2 required a HDAC
complex (41). Peng et al. reported that SIRT1 could deacetylate
Dnmt1 to change its activity in vitro and in vivo. Specifically,
deacetylation of Lys1349 and Lys1415 in the catalytic domain of
Dnmt1 increases its methyltransferase activity. However,
deacetylation of lysine residues in repeating glycine-lysine
dipeptides (the GK linker) decreases Dnmt1’s methyltransferase-
independent transcriptional repression (42). Recently, a study
regarding the gestational DM-induced fetal programming of a
heart ischemia-sensitive phenotype later in life found that cardiac
oxidative stress and DNA hypermethylation in the offspring
induced by gestational DM leaded to decreased expression of
SIRT1 and aberrant development of the heart ischemia-sensitive
phenotype (43). Therefore, it is easy to speculate that the crosstalk
between the deacetylation of SIRT1 and DNA methylation may
have an important role in DCM, and the mechanisms need to be
further investigated.

Furthermore, SIRT1 is a direct target of many miRNAs.
Suppression of miR-34a has been shown to restore the expression
of SIRT1 to reverse the adverse epigenetic characteristics at p66Shc
promoter in human cardiomyocytes exposed to HG conditions
(36). Zheng et al. showed that the expression of miR-195 was
upregulated while SIRT1 was downregulated in STZ-induced
diabetic mouse heart. However, silencing of miR-195 expression
inhibited oxidative stress, alleviated myocardial hypertrophy and
improved cardiac function in diabetic mice, while at the same time
the cardiac levels of B-cell lymphoma 2 (Bcl-2) and SIRT1 were
upregulated (44). Therefore, it is possible that the beneficial effect of
reduced miR-195 expression on DCM may be due to the
upregulated expression of SIRT1. However, various miRNAs will
have different effects on SIRT1, and overexpression of miR-22
upregulates SIRT1 to attenuate oxidative stress injury in a mouse
model of DCM (45). LncRNA HOX transcript antisense RNA
(HOTAIR), as a competing endogenous RNA, upregulates SIRT1
by sponging miR‐34a to improve DCM (46). Altogether, SIRT1 as a
deacetylase plays a necessary role in the regulation of the epigenetics
in DCM (Figure 1), and in-depth research will provide more
information regarding potential therapeutic strategies to improve
DCM in the future.
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EPIGENETIC MECHANISMS THAT
INFLUENCE MICROVASCULAR
COMPLICATIONS

Epigenetic Mechanisms in Diabetic
Nephropathy
DN is a common microvascular complication of DM
characterized by tubular interstitial fibrosis, glomerular
mesangia l hypertrophy and expansion, glomerular
hyperfiltration with microalbuminuria and podocyte foot
process effacement. The pathogenesis of DN is still not fully
understood, but it has become increasingly clear that epigenetic
mechanisms are involved in its development. Podocyte cells have
been reported to play a crucial role in maintaining the structure
and function of the glomerular filtration barrier, which is related
to the pathogenesis of DN. Zhang et al. explored the effect of
DNA methylation in murine diabetic podocytes and indicated
that the expression of Dnmt1, nuclear factor Sp1 and NF-kB-p65
was markedly upregulated in podocytes under diabetic
conditions, while inhibition of DNA methylation attenuated
albuminuria, glomerular hypertrophy, mesangial matrix
expansion and podocyte injury. Further mechanistic research
found that increased Sp1 could bind to the Dnmt1 promoter
region and interact with NF-kB-p65 in the nucleus of HG-
treated podocytes to participate in the regulation of Dnmt1.
Thus, the Sp1/NF-kB-p65-Dnmt1 pathway may be a potential
therapeutic target to protect against podocyte injury in DN (47).
Recently, Hishikawa et al. found that lysine acetyltransferase 5
(KAT5)-mediated DNA damage repair associated with the DNA
methylation status is essential for the maintenance of kidney
podocytes. Podocyte-specific Kat5-knockout mice presented
with severe albuminuria concomitant with increased DNA
double-strand breaks and augmented DNA methylation in the
nephrin promoter region (48). Aberrant DNA methylation, such
as hypermethylation of kinesin family member 20B (Kif20b),
claudin-18 (Cldn18), and solute carrier organic anion transporter
family member 1a1 (Slco1a1), as well as hypomethylation of
angiotensinogen (Agt), ATP-binding cassette sub-family C
member 4 (Abcc4), cytochrome P450 4A10 (Cyp4a10), and
Glut5 were also observed in the proximal tubules of diabetic
mice, which could lead to continuous mRNA expression of
select genes to alter the phenotype of the proximal tubules in
DN (49).

Histone modifications should also be kept in mind when
considering to therapeutically target epigenetics to improve DN.
DM is an inflammatory disease that releases inflammatory
cytokines to promote the aggregation of leukocytes by innate
cells in the diabetic kidney, which facilitates progressive fibrosis
in advanced stages of DN. One study concentrated on the effect
of glucose on the expression and histone modifications of a
proinflammatory gene, thioredoxin-interacting protein (TXNIP)
and found that glucose could induce the expression of TXNIP to
enhance the development of DN through histone acetylation
(50). Importantly, DM is also an endothelial disease. Endothelial
activation refers to the endothelial expression of cell surface
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adhesion molecules that promote leukocyte recruitment.
Alghamdi et al. have shown that the phosphorylation of
histone H3 on serine residue 10 plays an important role in
mediating endothelial activation in DN (51). TGF-b can alter
pivotal chromatin histone modifications at target gene promoters
to modulate gene expression in mesangial cells. TGF-b has been
shown to inhibit H3K27me3 to promote pathological gene-
mediated glomerular mesangial dysfunction and DN through
the dysregulation of associated histone modifying enzymes and
miRNAs (52). The 12/15-lipoxygenase (12/15-LO) is implicated
in TGF-b-associated signaling, histone modifications and lysine
methyltransferase Set7 regulation in the progression of DN.
Knockout of the 12/15-LO (Alox15) gene inhibited TGF-b-
induced expression of Set7 (Setd7) gene and pro-fibrotic genes,
in kidneys of STZ-induced diabetic mice (53).

Recently, accumulating evidence has highlighted key roles of
lncRNAs in the pathophysiology of DN. For example, lncRNA
nuclear-enriched abundant transcript 1 (NEAT1) increases
proliferation and fibrosis in glucose-induced mouse mesangial
cell model by activating the protein kinase B/mTOR signaling
pathway (54). With an opposite effect, overexpression of lncRNA
CYP4B1-PS1-001 suppressed proliferation and fibrosis of
mesangial cells under HG conditions (55). Moreover, lncRNAs
are also confirmed to be involved in the regulation of podocyte
Frontiers in Endocrinology | www.frontiersin.org 5
injury. LncRNA LINC01619, as a competing endogenous RNA,
modulated endoplasmic reticulum (ER) stress and podocyte
injury in DN via the miR-27a/FOXO1 pathway (56). Another
lncRNA, MALAT1, an important oncogene in numerous
cancers, was increased in the kidney of STZ-induced diabetic
mice and was dysregulated in HG-treated podocytes. However,
knocking it down under HG conditions reversed podocyte
damage via the downregulation of serine/arginine-rich splicing
factor 1 overexpression, a MALAT1-binding protein, and partial
inhibition of b-catenin nuclear accumulation (57).

Epigenetic Mechanisms in
Diabetic Retinopathy
DR is another severe microvascular complication in patients with
DM, and is the leading cause of blindness. Numerous studies
have focused on the roles of epigenetic modifications in DR and
it has been reported that epigenetic modifications could serve as
possible biomarkers for DR (58). An increase in oxidative stress
has been considered a significant factor contributing to the
development of DR. Ras-related C3 botulinum toxin substrate
1 (Rac1)-mediated cytosolic ROS production and the subsequent
oxidative stress play key roles in mitochondrial injury and
capillary cell apoptosis, which are associated with the DNA
methylation status of the Rac1 promoter (59). Moreover, a
FIGURE 1 | The mechanisms of action and signaling pathways of SIRT1 in diabetic cardiomyopathy. Diabetes mellitus (DM) can inhibit SIRT1 expression by
increased expression of PARP1, miR-34a, and miR-195, or by decreased expression of miR-22. SIRT1 can deacetylate NF-kB and H3K9 to inhibit the expression of
NF-kB-dependent inflammatory genes, which improves DCM. Dysregulation of Dnmt3b and SIRT1 by DM leads to CpG demethylation and histone H3 acetylation at
the p66Shc promoter, which can result in sustained transcription of p66Shc to cause cardiac oxidative stress and inflammation. SIRT1 can reduce Drp1-mediated
mitochondrial fission to exert its cardioprotective role in DCM through increasing PGC-1a expression. 1,25(OH)2D3 treatment can inhibit PARP1 expression to
increase the expression of SIRT1 and repress the phosphorylation of mTOR, thus improving DM-induced cardiac hypertrophy and fibrosis. And SIRT1 can
deacetylate FOXO1 and enhance FOXO1 DNA binding at the Rab7 promoter region to ameliorate dysfunctional autophagic flux in the hearts of diabetic mice. Finally,
lncRNA HOTAIR can upregulate SIRT1 expression by sponging miR-34a to improve DCM. SIRT1, Sirtuin 1; DM, diabetes mellitus; PARP1, poly (ADP-ribose)
polymerase 1; miR, microRNA; NF-kB, nuclear factor kappa B; Dnmt3b, DNA methyltransferase 3b; DCM, diabetic cardiomyopathy; Drp1, dynamin-related protein
1; PGC-1a, peroxisome proliferator-activated receptor gamma coactivator-1 alpha 1,25(OH)2D3, 1,25-Dihydroxyvitamin D3; mTOR, mammalian target of rapamycin;
FOXO1, forkhead box O 1; lncRNA HOTAIR, long non-coding RNA HOX transcript antisense RNA.
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decrease in manganese superoxide dismutase (MnSOD), an
antioxidant enzyme, has been observed in DR. Further
investigation regarding the underlying epigenetic mechanisms
discovered that hyperglycemia increased acetyl-H3K9,
H4K20me3, and NF-kB-p65 at the promoter and enhancer
regions of retinal Sod2, and upregulated protein and gene
expression of SUV420h2, one of the primary enzymes for the
trimethylation of H4K20. However, silencing SUV420h2 by its
siRNA in retinal endothelial cells blocked HG-induced increase
in H4K20me3 at the Sod2 enhancer and decrease in Sod2
transcripts (60). Another study showed that hyperglycemia
increased the binding of the histone demethylase lysine-specific
demethylase-1 (LSD1) and Sp1 at Sod2, and decreased
monomethyl H3K4 and dimethyl H3K4. Knocking down LSD1
with siRNA improved the HG-induced H3K4 demethylation at
Sod2 to upregulate Sod2 gene expression (61). These findings
indicate that epigenetic modifications play key roles in the
regulation of retinal Sod2 in the development of DR.

The activity and transcription of matrix metalloproteinase 9
(MMP-9) has also been observed to be increased in DR, which
could damage retinal mitochondria and enhance oxidative stress.
Additional epigenetic studies have demonstrated that glucose
increased the binding of Dnmt1 and hydroxymethylase ten-
eleven translocation 2 (Tet2) to the MMP-9 promoter region
in retinal endothelial cells. While Dnmt1 adds a methyl group to
the cytosine forming methyl cytosine, Tet2 hydroxymethylates
that cytosine to form 5-hydroxymethyl cytosine, in turn,
activates MMP-9 transcription. These changes were reversed
with the MnSOD mimesis, MnTBAP, which regulated MMP-9
transcription and improved mitochondrial damage (62, 63). The
MMP-9 promoter has also been reported to undergo histone
modifications in DR. Hyperglycemia increased the levels of
H3K27me3 and recruitment of enhancer of zeste homolog 2
(EZH2) at the MMP-9 promoter. EZH2 suppression could
reduce recruitment of Dnmt1 and Tet2 at the same promoter
region of MMP-9 to reduce its transcription and mitochondrial
damage (64). Additionally, mitochondrial DNA (mtDNA) is
injured with elevated base mismatches and hypermethylated
cytosines (65). HG conditions reduced MutL homolog 1
(Mlh1) mitochondrial localization, an enzyme responsible for
repairing the mismatched bases, and hypermethylated its
promoter with increased Dnmt1 binding and decreased Sp1
binding. Inhibition of Dnmt1 could reduce hypermethylation
of the Mlh1 promoter, elevate its gene transcripts and decrease
mtDNA mismatches, suggesting that the regulation of DNA
methylation has a potential role to prevent mtDNA damage and
slow or inhibit the development of DR (66).

Recent research has revealed regulatory roles of lncRNAs on
inflammation in DR. The lncRNA MALAT1 was upregulated in
the vitreous humors from diabetic patients and could impact the
expression of inflammatory cytokines via its correlation with
components of the polycomb repressive complex 2. Moreover,
increased MALAT1 and related inflammatory transcripts in
human retinal endothelial cells (HRECs) were detected
following inhibition of Dnmts. However, HG treatment could
not induce significant methylation changes in CpG sites across
Frontiers in Endocrinology | www.frontiersin.org 6
the MALAT1 gene (67). Therefore, the mechanism of HG-
induced overexpression of MALAT1 still remains to be
investigated. In addition, HG conditions facilitated cell
apoptosis and attenuated the cell activity concomitant with
enhanced binding activity between NF-kB and the lncRNA
MIAT. Further investigation revealed that MIAT could
regulate miR-29b and subsequently regulate cell apoptosis in
HG-treated rat retinal Müller cells (68). Due to the key role of
epigenetics in diabetic microvascular complications, such as DN
and DR, it is essential to explore how changes to the epigenome
influence the etiology and pathogenesis of diabetic microvascular
complications for the development of novel biomarkers and
drug targets.
THE ROLE OF SIRT1 IN MICROVASCULAR
COMPLICATIONS

SIRT1 in Diabetic Nephropathy
Hasegawa et al. found that SIRT1 levels in proximal tubules were
decreased prior to the development of albuminuria in STZ-
induced diabetic mice. Moreover, knockout of Sirt1 specifically
in the proximal tubules worsened the DM-induced glomerular
changes. Importantly, nondiabetic proximal tubule-specific Sirt1
knockout mice developed albuminuria, suggesting that Sirt1
expression in the proximal tubules plays a necessary role for
glomerular function. The expression of the tight junction protein
CLDN1 has been shown to activate b-catenin-Snail pathway to
induce podocyte effacement and cause albuminuria. However,
overexpression of SIRT1 was able to blunt HG-induced
upregulation of CLDN1 via the deacetylation of histones H3
and H4 with subsequent CpG methylation of Cldn1 by recruiting
Dnmt1 in human-derived renal epithelial cells (69). p66Shc, a
biomarker for renal oxidative injury, is upregulated in DN.
SIRT1 activation can inhibit p66Shc expression to improve
DN-induced oxidative injury by facilitating the binding of
SIRT1 to the p66Shc promoter and deacetylation of acetyl-H3
in human proximal tubular epithelial cell line (HK-2) under HG
conditions (70). A recent study revealed that the repression of
SIRT1 transcription by HG conditions in renal tubular epithelial
cells was dependent on the epigenetic regulation of
hypermethylated in cancer 1 (HIC1), which could increase the
levels of ROS and contribute to the development of DN.
Mechanistically, HIC1 repressed SIRT1 transcription in
response to HG stimulation through an interaction with EZH2,
an H3K27 trimethyltransferase, as well as Dnmt1 (71).

Moreover, interactions between SIRT1 and miRNAs have
been reported to play an important role during DN therapy. One
study that focused on the role of SIRT1 in HG-induced renal
tubular epithelial injury showed that overexpression of SIRT1
decreased activity of NF-kB to upregulate miR-29 expression.
NF-kB was demonstrated to downregulate miR-29 expression by
directly binding to its promotor. Overexpression of miR-29
directly targeted Kelch-like ECH-associated protein 1 (Keap1)
mRNA to decrease Keap1 expression and subsequently increase
the expression of nuclear factor erythroid 2-related factor 2
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(Nrf2) and downstream antioxidases, including glutathione S-
transferase (GST) and nicotinamide adenine dinucleotide
phosphate (NADPH) quinone dehydrogenase 1 (NQO1),
which improved HG-induced renal tubular epithelial injury
(72). In addition, HG conditions can elevate the levels of miR-
34a-5p to exacerbate fibrosis by targeting SIRT1 in HK-2 cells
(73). Overexpression of long intergenic ncRNA (lincRNA)
1700020I14Rik has been verified to interact with miR-34a-5p
through direct targeting as well as an argonaute-2 dependent
manner to inhibit cell proliferation and fibrosis through the
SIRT1/hypoxia-inducible factor-1a (HIF-1a) signaling pathway
during the progression of DN (74). Recently, Ge et al. found that
lncRNA growth arrest special 5 (GAS5) could also upregulate
SIRT1 expression to inhibit cell proliferation and fibrosis in DN
by acting as an miR-221 sponge (75). Furthermore, inhibition of
miR-133b and miR-199b upregulated SIRT1, which in turn
attenuated TGF-b1-induced endothelial to mesenchymal
transition and renal fibrosis in DN (76). Another lncRNA,
SOX2-overlapping transcript (SOX2OT), was significantly
downregulated in HG-treated human podocyte cells (HPCs).
The overexpression of SOX2OT markedly improved the HG-
induced HPC injury and increased the expression of Beclin-1
and the microtubule-associated proteins 1A/1B light chain 3-II
(LC3-II) to LC3-I ratio, whereas decreased the levels of p62 by
sponging miR-9 to facilitate SIRT1 expression (77). miR-155-5p
also has been reported to regulate autophagy, which might be
upregulated in patients with DN. Under HG conditions,
inhibition of miR-155-5p could stimulate SIRT1 expression to
promote autophagy by reducing binding to the SIRT1 3’
untranslated region in HK-2 cells (78).

In addition, SIRT1 can regulate oxidative stress, inflammation,
apoptosis and fibrosis to improve DN bymediating the expression
of several downstream targets. Excessive mitochondrial ROS
production is considered an initiating event in the development
of DN. Zhang et al. demonstrated that SIRT1 activation by
resveratrol could inhibit mitochondrial ROS production,
improve respiratory chain complex I and III activity and elevate
the mitochondrial membrane potential in podocytes exposed to
HG conditions, which was related to upregulation of PGC-1a
expression (79). Consistent with this study, salidroside (broad
spectrum bioactive effects) improved DN-induced renal structure
damage probably by stimulating SIRT1/PGC-1a-mediated
mitochondrial biogenesis (80). NADPH oxidase 4 (NOX4), a
main enzyme contributing to increased oxidative stress, is
upregulated in HG conditions. Treatment with puerarin
(naturally occurring isoflavonoid) suppressed NOX4 expression
to exert its anti-oxidative effect in HG-treated podocytes, which
was dependent on SIRT1 expression (81).

Furthermore, inhibition of inflammation is one of the
important mechanisms for SIRT1 to protect the kidney
from injury. Du et al. found that Tangshen formula
(traditional Chinese herbal medicine for treatment of
kidney disease) activated SIRT1 to reduce the expression of the
proinflammatory factors NF-kB and monocyte chemoattractant
protein-1, which improved the severity of DN (82). NF-kB also
has been shown to regulate autophagy, which plays a crucial role
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in several kidney diseases including DN. Hyperglycemia
downregulates the levels of Beclin 1 and LC3-II to induce renal
dysfunction, which can be reversed by SIRT1-mediated
deacetylation of NF-kB-p65 (83). The SIRT1-FOXO1
autophagy signal axis also plays a key role in the regulation of
autophagy in DN. Xu et al. reported that metformin (used to
treat T2D) upregulated the levels of autophagy to alleviate
oxidative stress in renal tissue, and reduced pathological
and structural changes of glomeruli through the deacetylation
and activation of FOXO1 by SIRT1 (84). Furthermore,
SIRT1 plays an important anti-apoptotic role in the treatment
of DN. Wang et al. reported that SIRT1 activation by resveratrol
could deacetylate p53 to improve the renal tubular injury
induced by hyperglycemia through the inhibition of apoptosis
(9). The summarizing schematic diagram about the diverse
mechanisms and pathways of SIRT1 in DN is presented in
Figure 2.

SIRT1 in Diabetic Retinopathy
Diabetic wild-type mice present with increased cell apoptosis,
degenerative capillaries, and decreased vascular density
accompanied with hypermethylation at the promoter of Sirt1
in retinal microvessels, but overexpression of SIRT1 ameliorated
these pathological changes in DR. Overexpression of SIRT1 also
protected mitochondria from DM-induced mtDNA damage and
prevented the activation of mitochondria-damaging MMP-9.
Mechanistically, DM suppresses Sirt1 transcription by
regulating the DNA methylation of its promoter via increasing
Dnmt1 expression. Importantly, Dnmt1 expression was
downregulated in diabetic Sirt1 mice through decreased H3K9
acetylation of the Dnmt1 promoter, suggesting an important role
for epigenetics in the transcription of Sirt1 (85). Furthermore,
upregulation of Sirt1 by resveratrol led to increased deacetylation
of NF-kB-p65 that reduced binding of NF-kB-p65 at theMMP-9
promoter to prevent mitochondrial damage and the
development of DR (86).

ncRNAs can serve as biomarkers for various pathological
conditions and participate in the initiation and progression of
DR by targeting SIRT1. Zhao et al. investigated the important
effect of miR-23b-3p on metabolic memory in DR. They found
that the expression of miR-23b-3p was promoted by HG
treatment and remained elevated even after the return to
normal levels of glucose, whereas the expression of SIRT1 was
decreased in HRECs. Further investigation indicated that NF-
kB-p65 could mediate HG-induced transactivation of miR-23b-
3p by binding to the promoter element of pri-miR-23b-27b-24-1.
However, suppression of miR-23b-3p expression could inhibit
acetyl-NF-kB expression, which was abolished by SIRT1
knockdown in HG-treated HRECs. These findings suggest that
the miR-23b-3p/SIRT1/NF-kB feedback loop may exert a crucial
role in the establishment and maintenance of metabolic memory
in DR (87). In addition, inhibition of miR-211, miR-29b-3p,
miR-221, miR-34a, miR-217, miR-195, miR-377, miR-543, and
miR-204 was also reported to upregulate the expression of SIRT1
and improve DR by alleviating apoptosis, inflammation,
oxidative stress, angiogenesis, and ER stress (88–97).
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LncRNAs can also regulate the expression of miRNAs to
participate in the progression of DR. For instance, lncRNA
maternally expressed gene 3 (MEG3) alleviated HG-induced
inflammation and apoptosis in retina epithelial cells via the
inhibition of NF-kB signaling and the increase in Bcl-2/Bcl-
2-associated X protein ratio by regulating the miR-34a/
SIRT1 axis (91). Recently, Ke et al. reported that lncRNA
small nucleolar RNA host gene 7 (SNHG7) could inhibit
miR-543 to upregulate SIRT1 expression, thereby inhibiting
HG-induced angiogenesis in HRECs (95). The role of
ncRNAs-mediated SIRT1 changes in DR are summarized
in Table 1.

These above-mentioned findings highlight the importance for
us to continue to study the roles of SIRT1 in diabetic microvascular
complications. The related epigenetic mechanisms of SIRT1
may further provide new insights into potential therapeutic
strategies for the treatment of diabetic microvascular complications.
Frontiers in Endocrinology | www.frontiersin.org 8
SIRT1 AS A POTENTIAL DRUG TARGET
FOR THE TREATMENT OF DIABETIC
COMPLICATIONS

Given that SIRT1 is a key mediator to prevent the progression of
diabetic complications, it is necessary to develop specific
therapeutic strategies to restore SIRT1 activity. The most
obvious approach would be to simply stimulate SIRT1 activity
using SIRT1 agonists. Resveratrol is a well-known polyphenolic
SIRT1 agonist that has been reported to ameliorate diabetic
complications through the regulation of autophagy, oxidative
stress and mitochondrial function in DCM, DN and DR animal
models (9–12, 79, 86). Milne et al. have shown small molecule
activators of SIRT1, including SRT1460, SRT1720, and SRT2183,
are structurally unrelated to resveratrol but can be 1,000-fold
more potent as activators compared to resveratrol. These
compounds can bind to the SIRT1 enzyme-peptide substrate
FIGURE 2 | The mechanisms of action and signaling pathways of SIRT1 in diabetic nephropathy. Diabetes mellitus (DM) can inhibit SIRT1 expression by
increased expression of miR-34a-5p, miR-221, miR-9, miR-133b, miR-155-5p, and miR-199b. HIC1 can repress SIRT1 transcription in response to HG
stimulation via an interaction with EZH2 and Dnmt1. Overexpression of SIRT1 can blunt CLDN1/b-catenin-Snail-mediated albuminuria in DN via the
deacetylation of histones H3 and H4 with subsequent CpG methylation of Cldn1 by recruiting Dnmt1. SIRT1 activation can inhibit p66Shc expression to
improve oxidative stress in DN by deacetylation of acetyl-H3. SIRT1 activation can upregulate miR-29 expression by reduction of NF-kB binding to its
promotor. Overexpression of miR-29 directly targets Keap1 mRNA to decrease Keap1 expression and subsequently increase Nrf2 expression. Free Nrf2
translocates to the nucleus, where it dimerizes with members of the sMaf family and binds to ARE within regulatory regions of a wide variety of cell
defense genes, including GST and NQO1. LincRNA 1700020I14Rik can interact with miR-34a-5p to inhibit cell proliferation and fibrosis in DN though the
SIRT1/HIF-1a signaling pathway. LncRNA GAS5 and SOX2OT can upregulate SIRT1 expression by sponging miR-221 and miR-9, respectively. SIRT1
can inhibit TGF-b1-induced renal fibrosis and NOX4-induced oxidative stress, and stimulate PGC-1a-mediated mitochondrial biogenesis to improve DN.
Finally, SIRT1 can deacetylate and activate FOXO1 to upregulate the level of autophagy, and deacetylate and inhibit p53 to inhibit apoptosis, thus
improving DN. SIRT1, Sirtuin 1; DM, diabetes mellitus; miR, microRNA; HIC1, hypermethylated in cancer 1; HG, high glucose; EZH2, enhancer of zeste
homolog 2; Dnmt1, DNA methyltransferase 1; CLDN1, claudin-1; DN, diabetic nephropathy; NF-kB, nuclear factor kappa B; Keap1, Kelch-like ECH-
associated protein 1; Nrf2, nuclear factor erythroid 2-related factor 2; sMaf, small Maf; ARE, antioxidant response element; GST, glutathione S-
transferase; NQO1, nicotinamide adenine dinucleotide phosphate (NADPH) quinone dehydrogenase 1; LincRNA, long intergenic non-coding RNA; HIF-
1a, hypoxia-inducible factor-1a; LncRNA GAS5, long non-coding RNA growth arrest special 5; SOX2OT, SOX2-overlapping transcript; TGF-b1,
transforming growth factor-beta 1; NOX4, NADPH oxidase 4; PGC-1a, peroxisome proliferator-activated receptor gamma coactivator-1 alpha FOXO1,
forkhead box O 1; p53, tumor protein 53.
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complex at an allosteric site in the amino-terminal region to the
catalytic domain and lower the Michaelis constant for acetylated
substrates. Additional investigation found that these compounds
ablated insulin resistance in mice with diet-induced obesity and
genetically obese mice (Lepob/ob), and improved insulin
sensitivity and glucose homeostasis in key metabolic tissues
including liver, muscle, and fat of male fatty Zucker rats (98).
However, recent studies have indicated that resveratrol,
SRT1460, SRT1720, and SRT2183 may not be direct activators
of SIRT1 (99, 100).

Another SIRT1 agonist, N-acetyl-5-methoxytryptamine,
commonly known as melatonin, has been revealed to exert its
protective properties in DCM through the prevention of Drp1-
mediated mitochondrial fission by SIRT1/PGC1-a pathway
(37). Another study showed that melatonin could also inhibit
pro-inflammatory cytokine production in the progression of
DR (97). Recently, Xue et al. showed that salidroside, an active
component of the Traditional Chinese Medicinal plant
Rhodiola rosea L., also activated SIRT1/PGC1-a signaling
pathway to stimulate mitochondrial biogenesis, thus
improving DN (80). Other herbal medicines or compounds,
such as puerarin, Tangshen formula, astragaloside IV, and
astragalus polysaccharide, have also been reported to
ameliorate diabetic complications via the activation of SIRT1
(81–83, 96). Metformin, a derivative of biguanides, is a first line
drug for the therapy of T2D and it has been reported to alleviate
DN by inducing the SIRT1/FOXO1 autophagic signaling axis
(84). Moreover, a study focused on the protective properties of
acetaldehyde dehydrogenase 2 (ALDH2), a rate-limiting
enzyme for alcohol metabolism, and found that ALDH2
could improve damage induced by STZ in rats with aged
diabetic retinas (101). Recently, Qu et al. indicated that 1,25
(OH)2D3, as a potential PARP1 inhibitor, played a crucial
Frontiers in Endocrinology | www.frontiersin.org 9
protective role in DCM through PARP1/SIRT1/mTOR-
related mechanisms (40).

In summary, SIRT1 agonists are promising candidates to use
in a novel therapeutic approach for the treatment of diabetic
complications. Although the effects of numerous SIRT1
agonists on diabetic complications have been reported, the
specificity of the SIRT1 agonists remains a concern. Further
research is required to investigate specific SIRT1 agonists and
push them closer to clinical application. SIRT1 agonists and
their related roles in diabetic complications are summarized
in Table 2.
CONCLUSION

Advances in the field of epigenetics have deepened and aided our
understanding of gene regulation in health and disease. The
evidence discussed above suggests that epigenetic mechanisms
play crucial roles in the pathophysiological process of diabetic
complications. Further study of epigenetic regulatory events will
help us predict the onset or progression of diabetic complications
more accurately. Therefore, therapeutic options based on
epigenetic regulation may provide a unique treatment strategy
whereby physiological gene expression patterns can be recovered
and the progression of diabetic complications can be prevented.
SIRT1 as a deacetylase has been found to exert protective roles in
diabetic complications. To date, research regarding the
important role of SIRT1 in reducing diabetic complications is
underway but the exact effects in clinical applications have not
been fully established due to the intricacy of the regulatory
mechanisms and the multiple pathways involved. Therefore,
the related epigenetic regulation of SIRT1 for the clinical
treatment of diabetic complications is still a long way off.
TABLE 1 | The role of ncRNA-mediated SIRT1 changes in diabetic retinopathy.

ncRNAs Model Effect on expression of
SIRT1

Functions regulated References

miR-211 STZ-induced diabetic Wistar rats and HUVEC Inhibition Apoptosis Liu et al. (88)
miR-29b-3p HRMEC Inhibition Apoptosis Zeng et al. (89)
miR-221 HRMEC Inhibition Apoptosis Chen et al. (90)
miR-34a ARPE-19 Inhibition Inflammation and apoptosis Tong et al. (91)
miR-217 ARPE-19 Inhibition Inflammation and apoptosis Xiao et al. (92)
miR-195 STZ-induced diabetic Sprague-Dawley rats, HRMEC and

HMEC
Inhibition Oxidative stress and production of ECM

proteins
Mortuza et al.
(93)

miR-377 HREC Inhibition Angiogenesis and inflammation Cui et al. (94)
miR-543 HREC Inhibition Angiogenesis Ke et al. (95)
miR-204 PRPEC and ARPE-19 Inhibition ER stress and apoptosis Peng et al. (96)
miR-204 High-fat diet and STZ-induced mice and MIO-M1 Inhibition Inflammation Tu et al. (97)
LncRNA
MEG3

ARPE-19 Activation Inflammation and apoptosis Tong et al. (91)

LncRNA
MEG3

High-fat diet and STZ-induced mice and MIO-M1 Activation Inflammation Tu et al. (97)

LncRNA
SNHG7

HREC Activation Angiogenesis Ke et al. (95)
January 2021 | Volume 11
SIRT1, Sirtuin 1; ncRNA, non-coding RNA; miR, microRNA; LncRNA MEG3, long non-coding RNA maternally expressed gene 3; SNHG7, small nucleolar RNA host gene 7; ECM,
extracellular matrix; ER, endoplasmic reticulum; STZ, streptozocin; EC, epithelial cell; HUVEC, human umbilical vein EC; HRMEC, human retinal microvascular EC; ARPE-19, human retinal
pigment EC; HREC, human retinal EC; HMEC, human dermal microvascular EC; PRPEC, primary retinal pigment EC; MIO-M1, human Müller cell line.
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Additional research is required to identify the causal relationship
between epigenetic mechanisms and disease status, and the
precise mechanisms of SIRT1 involvement in epigenetic
regulation for the treatment of diabetic complications require
further investigation.
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