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Abstract

The microbial communities in the gastrointestinal tract of a young calf are essential for the
anatomical and physiological development that permits a transition from milk to solid feed.
Selected methanogens, fibrolytic bacteria, and proteobacteria were quantified in the rumen
fluid and tissue, abomasum fluid, cecum fluid and tissue, and feces of Holstein bull calves
on day 0 (0-20 mins after birth), day 1 (24 + 1 h after birth), day 2 (48 £ 1 h after birth), and
day 3 (72 £ 1 h after birth). Methanogens, fibrolytic bacteria, and Geobacter spp. were found
to be already present from birth, indicating that microbial colonization of the gastrointestinal
tract occurred before or during delivery. The abundance of methanogens and Geobacter
spp. differed between the days tested and between compartments of the digestive tract and
feces, but such difference was not observed for fibrolytic bacteria. Our findings suggests
that methanogens might have an alternative hydrogen provider such as Geobacter spp.
during these early stages of postnatal development. In addition, fibrolytic bacteria were
present in the rumen well before the availability of fibrous substrates, suggesting that they
might use nutrients other than cellulose and hemicellose.

Introduction

At the moment of birth, the rumen of a calf has been reported to be sterile and not yet func-
tional [1]. The rumen is then rapidly colonized by microorganisms in the days after birth [2,3].
In their first 3 days of life, the dietary requirements of the calf are fulfilled by the uptake of
colostrum only, which is enzymatically digested in the abomasum and the small intestine, and
the resulting nutrients are then absorbed in the small intestine. The colostrum provides energy,
essential nutrients, and passive immunity to the calf [4,5]. At this stage, the rumen is underde-
veloped and virtually no solid feed is consumed during the first 3 days of life [6]. Fibrolytic bac-
teria are critical for the rapid anatomical and physiological development of the rumen as the
new-born calf changes from a liquid diet (colostrum and milk) to solid feed (such as grass and
hay) [3,7]. Fibrolytic microbes begin the process of fermentation when the first solid feed is
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taken up and the products of this fermentation process, such as volatile fatty acids (VFAs; ace-
tic, propionic, and butyric acids), stimulate development of the rumen papillae (rumen tissue)
that increase absorption rates of VFAs into the blood. The VFAs supply the metabolic energy
required by the calf for essential processes such as growth, thermoregulation, and immunity
[6,8].

Three largely unexplored aspects of the symbiosis between bovine ruminants and microbes
are the very early colonization of the gastrointestinal tract (GIT) and feces, the development of
the microbial communities in the days after birth, and their distribution in the fluid and tissue
fractions of GIT components. Using traditional techniques of microbial cultivation and molec-
ular techniques, studies of the rumen fluid in lambs found the first presence of methanogens at
2 days [9,10]. Similar results have been obtained for fibrolytic bacteria [11,12], and more
recently, studies using molecular techniques have reported the presence of fibrolytic bacteria
and Proteobacteria in the rumen fluid of calves at 1 and 2 days after birth [2,3].

The aim of this study was to determine the abundance of specific microbial species in the
GIT (rumen fluid and tissue, abomasum fluid, cecum fluid and tissue, and feces) of calves at 0,
1, 2, and 3 days after birth. We focused on species of microorganisms that have previously been
detected in the GIT of 7-day-old calves [13]: methanogens (Methanomicrobiales mobile,
Methanococcales voltae, and Methanobrevibacter spp.), proteobacteria (Geobacter spp.), and
fibrolytic bacteria (Fibrobacter succinogenes, Ruminococcus flavefaciens, and Prevotella
ruminicola).

Materials and Methods
Animals, diets, and experimental design

The experiment was approved by the Animal Ethics Committee of La Trobe University, Mel-
bourne, Australia (AEC12-32). Twelve Holstein bull calves, all born naturally, were used in
total. Samples were collected on day 0 (0-20 mins after birth), day 1 (24 £ 1 h after birth), day
2 (48 £ 1 h after birth), and day 3 (72 + 1 h after birth). Five days before the delivery date the
cow was separated from the herd and placed into a covered area for continuous monitoring.
When parturition initiated, the vagina, anus, tail, and legs of the cow were washed with sterile
water and then dried with sterile towels. The floor was covered with sterile towels and the calf
was received into sterile towels. The calves euthanized on day 0 were separated from their
mother immediately after birth and did not consume colostrum prior to euthanization. The
calves euthanized on day 1, 2, and 3 were separated from their mother immediately after birth,
weighed and fed colostrum. The average body weight of these calves was 40.2 + 1.3 kg. The
calves euthanized on day 1, 2, and 3 had ad-libitum access to water and were fed with colos-
trum twice daily at 8 am and 4 pm, provided at 15% of the average body weight (6 L/day). The
chemical composition of the colostrum calculated on a dry-matter (DM) basis was 210 g DM/
kg fresh colostrum, 360 g crude protein/kg DM, 210 g crude fat/kg DM, 61.8 g ash/kg DM, and
256 g lactose/kg DM (DTS Food Laboratories, Melbourne, Australia). The calves were fed
colostrum using individual Milkmaid feeders (Polymaster, Melbourne, Australia) fitted with
individual Single Peach Teats (Skellerup Industries, Melbourne, Australia). The calves eutha-
nized on days 1, 2, and 3 were housed 3 per 2.5 m x 2.5 m pen in a covered shed with a concrete
floor without any sawdust or wood shavings.

Sample procedures

The calves were euthanized with 20 mL of a single dose of Euthanyl (240 mg/mL; Sigma-
Aldrich, Castle Hill, New South Wales, Australia) by intravenous injection into the jugular
vein, and all actions minimized suffering. The calves were checked for the absence of breathing,
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heartbeat and blinking response (corneal reflex) to confirm their death, and then samples were
taken within 20 mins. The abdomen was opened and each GIT compartment (rumen, aboma-
sum, cecum, and rectum) was tied with sterile surgical thread at the start and at the end to
avoid mixing the contents, and then separated. Each compartment was longitudinally incised
along the dorsal line using sterile equipment for each sample. The contents of each compart-
ment were collected and weighed, and then each empty compartment was weighed. Samples
consisted of rumen fluid, rumen tissue, abomasum fluid, cecum fluid, cecum tissue, and feces
(or meconium for day-0 calves). Triplicate samples were collected from 3 calves per time point
resulting in 54 samples per day (3 calves x 6 GIT samples x 3 replicates). Fluid samples from
the rumen, cecum, and abomasum were filtered through two layers of sterile cheesecloth and
stored in sterile tubes according to Stevenson and Weimer [14]. Tissue samples (2 cm?) from
the rumen were taken in the dorsal area, and tissue samples from the cecum were taken 5 cm
posterior to the ileocecal valve. All tissue samples were rinsed three times with sterilized phos-
phate-buffered saline (PBS) (pH 7.0) to remove the non-adherent bacteria, according to Li

et al. [7]. Pellets of meconium and feces (100 g) were taken by severing the rectum 5 cm from
the anus, and then the pellets were rinsed three times with sterile PBS solution according to Yu
and Morrison [15]. The samples were transported on dry ice in sterile, airtight plastic tubes
within sealed, airtight plastic bags to the laboratory where they were processed immediately.

DNA extraction

DNA was extracted from 200 mg of each sample of rumen tissue, rumen fluid, abomasum
fluid, cecum tissue, cecum fluid, and feces. DNA was extracted using the ZR Fungal/Bacterial
DNA MiniPrep Kit and ZR Fecal DNA MiniPrep Kit (Zymo Research, Melbourne, Australia)
following the manufacturer’s instructions. The concentration and purity of the extracted DNA
samples were assessed spectrophotometrically by measuring the absorbance (A) ratio (A,go/
Ajg0) using a Nanodrop 1000 (Thermo Fisher Scientific, Waltham, MA, USA).

Primers and real-time qPCR

Real-time polymerase chain reaction (qQPCR) primers were used to identify the presence of 16S
rDNA sequences of M. mobile, M. votae, and Methanobrevibacter spp. [9]; Geobacter spp. [16];
F. succinogenes [14]; and R. flavefaciens and P. ruminicola [17]. The primers were obtained
from Geneworks (Adelaide, Australia) (Table 1). To confirm the specificities of the primer
pairs, standard PCR reactions were conducted by cloning the 16S rDNA of each species or
genus as a template control. After confirming the specific amplification of a DNA fragment of
the correct size on agarose gel (Table 1), the PCR products were excised from the gel, purified
using the QIAquick Gel Extraction Kit (QIAGEN, Melbourne, Australia), and cloned into the
PGEM-T Easy vector (Promega, Melbourne, Australia). Competent Escherichia coli J]M109
cells were transformed with the ligation products following the manufacturer’s instructions.
Plasmids were purified from the transformed E. coli using a QIAprep Spin Miniprep Kit (QIA-
GEN) and the plasmid product was sent for sequencing at the Australian Genome Research
Facility. The National Center for Biotechnology Information (NCBI) basic local alignment
search tool (BLAST) was used to analyse whether the plasmids contained the correct inserts,
and to confirm the identity of the microorganisms targeted by the primers (Table 1).
Real-time qPCR was performed in triplicate using a Stratagene Mx 3000P qPCR System
(Agilent Technologies, Melbourne, Australia). Each reaction mixture (20 pL final volume)
contained 10 pL of Brilliant IT SYBR Green qPCR Master Mix (Stratagen, Melbourne, Austra-
lia), 0.4 uL which contained 10 uM of each primer, and 20 ng of extracted DNA. A no-template
sample was included as a negative control to verify that no contaminating nucleic acid was
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Table 1. Sequences of primers used for qPCR detection of methanogens and bacteria. F: forward primer; R: reverse primer.

Target microorganisms

Methanomicrobiales
mobile

Methanoccocales votae

Methanobrevibacter spp.

Geobacter spp.

Fibrobacter succinogenes

Ruminococcus
flavefaciens

Prevotella ruminicola

General bacteria

Forward or reverse

primer
F

M T M T T TV M IV M DT

m 3T T D

By)

doi:10.1371/journal.pone.0133048.1001

Primer sequence (5' to 3') Annealing temperature  Product size Reference
(C) (bp)

TTCYGGTTGATCCYGCCRGA 65 185 [9]

GCGGTGTGTGCAAGGAGC 65

TTCYGGTTGATCCYGCCRGA 65 167 [9]

WASTVGCAACATAGGGCACGG 65

CTCCGCAATGTGAGAAATCG 62 175 [9]

GCGGTGTGTGCAAGGAGC 62

AGGAAGCACCGGCTAACTCC 54 320 [16]

TACCCGCRACACCTAGT 54

GCGGGTAGCAAACAGGATTAGA 58 208 [14]

CCCCCGGACACCCAGTAT 58

CGAACGGAGATAATTTGAGTTTACTTAGG 56 272 [17]

CGGTCTCTGTATGTTATGAGGTATTACC 56

GCGARAGTCGGATTAATGCTCTATG 59 215 [17]

CCCATCCTATAGCGGTAAACCTTTG 59

CGGCAACGAGCGCGAACCC 57 130 [19]

CCATTGTAGCACGTGTGTAGCC 57

introduced into the master mix or into samples. Positive control samples contained plasmid
DNA for each microorganism as a template control.

Real-time qPCR amplification conditions were as follows: an initial denaturation at 95°C for
10 min, followed by 40 cycles of denaturation at 95°C for 30 s, and various annealing tempera-
tures (Table 1) for 30 s, and extension at 72°C for 1 min. A final melting-curve analysis was car-
ried out by continuously monitoring the fluorescence between 55°C and 95°C with 0.5°C
increments every 8 s.

Absolute quantification (copy number per uL) was determined using a serial 10-fold dilu-
tion from 10~" to 10" to generate a calibration curve using pure DNA from M. mobile, M.
votae, Methanobrevibacter spp., obtained from the Institute of Agricultural Sciences, Zurich,
Switzerland, and Geobacter spp. obtained from the University of Massachusetts Amherst,
Ambherst, USA. Relative quantification of the fibrolytic bacteria (F. succinogenes, R. flavefaciens,
and P. ruminicola) was conducted using the delta cycle threshold [ACt = Cr (target microor-
ganism)-Cr (general bacteria)] [18,19].

Amplification efficiencies for each primer pair were investigated by examining the dilution
series (from 107" to 107°) of a pooled DNA template in triplicate and plotting the observed
threshold cycle (Cr) values against the logarithm of total DNA concentration. Values of slopes
(ranging from —3.37 to —3.67) and regression coefficients (0.99) were similar to those previ-
ously reported for the same primers by Denman and McSweeney (2006), and PCR efficiencies
ranged from 95.9% to 98.0%. In this experiment we did not measure feed intake or concentra-
tions of VFAs.

Statistical analysis

The treatment means were compared one-way ANOVA with post-hoc multiple comparisons
using Tukey’s HSD test. All statistical analyses were conducted using SPSS version 22.0 soft-
ware. Results were considered significant at the P < 0.05 level.
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Results

At day 0, which is earlier than in previous studies, we detected methanogens (M. mobile, M.
votae, and Methanobrevibacter spp.), fibrolytic bacteria (F. succinogenes, R. flavefaciens, and P.
ruminicola), and Geobacter spp. (phylum Proteobacteria) in the rumen fluid, tissues, aboma-
sum fluid, cecum fluid, tissues and feces of calves.

Rumen fluid and tissue

The abundance of methanogens and Geobacter spp. was different between the rumen fluid and
rumen tissues. In the rumen fluid, Geobacter spp. were more abundant than methanogens on
days 2 and 3 (P < 0.05) (Fig 1A, S1 Table). The abundance of M. mobile was higher than that
of M. votae and Methanobrevibacter spp. on days 1-3 (P < 0.05) (Fig 1A). Across the days, the
abundance of each methanogen and Geobacter spp. changed whereby M. mobile was signifi-
cantly higher in abundance on day 2 than day 0; M. votae was higher in abundance on day 3
than day 0, and Methanobrevibacter spp. were higher in abundance on day 0 than day 1

(P < 0.05) (S1 Table). Geobacter spp. were more abundant on day 2 than day 0 (P < 0.05) (S1
Table). In rumen tissues, the abundance of methanogens was higher or similar to Geobacter
spp. on days 0-3 (P < 0.05) (Fig 1B). The abundance of each methanogen differed across the
days. For example, M. mobile was higher in abundance on day 1 than day 2; M. votae abun-
dance was higher on day 2 than day 0; and Methanobrevibacter spp. were more abundant on
day 2 than day 0 (P < 0.05). Geobacter spp. were more abundant on day 1 than day 2

(P < 0.05). Fibrobacter succinogenes, R. flavefaciens, and P. ruminicola showed no significant
difference in abundance between 0, 1, 2, and 3 days in the rumen fluid and in the rumen tissues
(P < 0.05) (S2 Table).

Abomasum fluid

In this compartment M. mobile and Geobacter spp. abundances were greater than M. votae and
Methanobrevibacter spp. (P < 0.05) (Fig 1C). Like for rumen fluid, M. mobile was higher in
abundance on day 2 than day 0; M. votae was higher on day 3 than day 0 and the abundance of
Geobacter spp. was higher on day 2 than day 0 (P < 0.05; S1 Table). However, in contrast to
rumen fluid Methanobrevibacter spp. were more abundant on day 3 than day 0 (P < 0.05) in
abomasum fluid. The fibrolytic bacteria showed no significant difference in abundance
between 0, 1, 2, and 3 days in the abomasum fluid (P < 0.05) (S2 Table).

Cecum fluid and tissue

The abundance of the methanogens relative to Geobacter spp. differed in the cecum fluid. Geo-
bacter spp. were higher in abundance than all methanogens on all days (P < 0.05) (Fig 1D).
Methanomicrobiales mobile and Geobacter spp. abundance were higher than M. votae and
Methanobrevibacter spp. on days 0-2 (P < 0.05) (Fig 1D). Methanobrevibacter spp. were lower
in numbers than all other measured microorganisms in the cecum fluid and cecum tissues

(P < 0.05) (Fig 1D). In the cecum fluid, the abundance of M. mobile was higher on day 2 than
day 0; M. votae was higher on day 3 than day 1 (P < 0.05), but there was no significant differ-
ence between days for Methanobrevibacter spp. (S1 Table). Geobacter spp. were significantly
more abundant on day 3 than day 0 (P < 0.05) (S1 Table). In the cecum tissue, microbial abun-
dances differed to those in the cecum fluid, whereby Geobacter spp. were not more abundant
than the methanogens on all days (P < 0.05) (Fig 1E). The abundance of M. mobile was not sig-
nificantly different between the days, M. votae numbers were higher on day 3 than day 2, and
Methanobrevibacter spp. were not significantly different between the days. Geobacter spp. were
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Fig 1. Relative abundance of different species of microorganisms in different parts of the digestive
tract of calves during the first four days after birth. The abundance of Methanomicrobiales mobile,
Methanococcales votae, Methanobrevibacter spp. and Geobacter spp. was determined in (A) rumen fluid,
(B) rumen tissue, (C) abomasum, (D) cecum fluid, (E) cecum tissue, and (F) feces of calves of 0 days old
(blue bars), 1 day old (orange bars), 2 days old (grey bars), and 3 days old (yellow bars). Abundance, as
Log1o copy number per pl of 16S ribosomal DNA, is expressed relative to the lowest value among all species.
Data are means + SEM (n = 3). For each species, data without a common letter are significantly different
(ANOVA, P < 0.05). Note the logarithmic scale of the y-axis.

doi:10.1371/journal.pone.0133048.g001

significantly more abundant on day 3 than day 2 (P < 0.05). The abundance of fibrolytic bacte-
ria did not significantly differ between the days in the cecum fluid and in the cecum tissues
(P < 0.05) (S2 Table).

Feces

Methanomicrobiales mobile and Geobacter spp. were generally more abundant than the other
methanogens (P < 0.05) (Fig 1F). Methanobrevibacter spp. were lower in numbers than all
other methanogens (P < 0.05) (Fig 1F). The abundances of M. mobile, M. votae, and Geobacter
spp. were higher in the feces on day 3 than on the other days (P < 0.05), and the abundance of
Methanobrevibacter spp. and fibrolytic bacteria in the feces were generally not significantly dif-
ferent between the days (P < 0.05; S1 and S2 Tables).

Discussion

Less than 20 minutes after birth, which is earlier than in previous studies, we detected metha-
nogens (M. mobile, M. votae, and Methanobrevibacter spp.), fibrolytic bacteria (F. succinogenes,
R. flavefaciens, and P. ruminicola), and Geobacter spp. (phylum Proteobacteria) in the GIT and
feces of calves. This suggests that these organisms start to colonize the GIT as soon as the ani-
mal is born, during delivery or even before birth. It was assumed for decades that the human
fetus and GIT are sterile at birth, and that during birth the neonatal GIT acquires microorgan-
isms from the maternal vagina and/or from maternal skin and the surrounding environment
[20,21]. However, there are now several studies indicating that colonization of the human fetus
and GIT by beneficial (non-pathogenic) microbes begins before birth in the placental tissue
[22], umbilical cord blood [23], amniotic fluid [24], fetal membranes [25], and meconium [26].
The human fetus swallows some amniotic fluid from the late second trimester of pregnancy
[27]. This suggests that microbes present in the amniotic fluid could lead to the microbial
colonization of the fetal gut, although the mechanism is not fully understood. The microbes in
the amniotic liquid might enter via the placenta, the microbiome of which notably shows

PLOS ONE | DOI:10.1371/journal.pone.0133048 July 17,2015 6/11



@’PLOS ‘ ONE

Microbes in the Digestive Tract of Neonatal Calves

similarities to the oral microbiome [22]. The human placental microbiome was found to be
composed of Firmicutes, Tenericutes, Proteobacteria, Bacteroidetes, and Fusobacteria, which
was similar (at the phylum level) to the oral microbiome but differed from the microbiome of
the human skin, vagina, ear, and gut [22]. This suggests that the microorganisms can transfer
through the gums in the oral cavity into the bloodstream to colonize the placenta, amniotic lig-
uid and GIT of the fetus before the neonate is born. While the precise mechanisms of microbial
colonization of the human fetus are still unclear, similar mechanisms may be responsible for
the prenatal microbial colonization of the calf.

There are no previous reports of the presence of the methanogenic species that we examined
in the fluid and tissue fractions of the developing rumen in calves prior to 3 days of age. Guz-
man et al. found the same methanogens in rumen fluid and rumen tissue of 7-day-old calves
[13], and other studies have reported the presence of Methanobrevibacter spp. and Methano-
bacterium spp [9], and methanogens in general [10], in rumen fluid of young lambs 2 days
after birth. Furthermore, the methanogens in the rumen changed in abundance in the first
three days of life. It is unlikely that these organisms responded directly to the diet of colostrum
because the colostrum and any milk pass directly into the abomasum via the oesophageal
groove, which is an anatomical structure resembling a channel [28]. It is more likely that the
methanogens in the rumen responded to hydrogen. Methanogens obtain their energy for
growth via methanogenesis [29], which requires hydrogen to reduce carbon dioxide, formate,
or acetate to methane [30]. Our results raise the question: what is the source of hydrogen for
these methanogens between days 0 and 3? In mature ruminants, archaea have been found to
associate with protozoa (such as Entodinium spp.) because they provide a constant supply of
hydrogen and thus significantly contribute to ruminal methanogenesis [31]. However, proto-
zoa have been found to initially establish in the rumen of calves at 21 days and to become fully
established at 59 days [32]. Therefore, at 0 to 3 days, this relationship between methanogens
and protozoa is unlikely, and other microorganisms such as proteobacteria (Geobacter spp.), R.
flavefaciens, or other species might supply the hydrogen for methanogenesis. Proteobacteria
(Geobacter spp.) are the most abundant, and hence possibly the most important microorgan-
isms during the first 3 days of life in the calf rumen. At the phylum level, a study showed that
proteobacteria (which includes Geobacter spp.) represent 70% of the bacterial community in
the ruminal fluid of calves on day 2 [3] and 45% on days 1 to 3 [2]. Geobacter spp. have previ-
ously been reported to be present in the developing rumen of 7-day-old calves [13]. In the
present study, we found Geobacter spp. in the rumen on days 0 to 3, and they were generally in
higher abundance than the methanogens on day 2 and 3, suggesting that this relative abun-
dance of Geobacter spp. could potentially supply enough hydrogen to the methanogens. We
propose that Geobacter spp. could form a syntrophic partnership with methanogens by direct
electron transfer and provision of hydrogen for the reduction of organic compounds in the
rumen of calves in this early stage of life. Geobacter spp. has been shown to use the recently
identified mechanism of direct extracellular electron transfer to supply electrons directly to
archaea [33,34]. Xu et al. found that Methanobacterium spp. and Methanosarcina spp. have the
capacity for directly accepting electrons and hydrogen from Geobacter spp. [35] Alternatively,
R. flavefaciens might also supply hydrogen and electrons to the methanogens [36].

The relative abundance of methanogens species in the rumen differs between 0- to 3-day-
old calves and mature animals. In mature cows, Methanobrevibacter spp. represented 62% of
the rumen archaea, and they were among the most important and dominant archaea in the
rumen fluid [30,37]. We detected Methanobrevibacter spp. in the rumen of neonatal calves, but
at lower abundance than M. mobile and M. votae, indicating that Methanobrevibacter spp. is
not the most important methanogen, at least in terms of abundance, in the first 3 days after
birth. The reason for this difference is not clear.
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In this study, the abundance of fibrolytic bacteria did not differ between the days. Fibrolytic
bacteria digest solid fiber (i.e., cellulose, hemicellulose, and xylan) in the mature ruminant [38],
but these nutrients were not present in the calves’ diet at this age. Therefore, colonization of
the rumen by these fibrolytic bacteria began before solid fiber was present in the rumen. An
interesting question is: what nutrients did the fibrolytic microorganisms use to maintain their
population? Our recent study suggested that fibrolytic bacteria in the rumen of 7-day-old calves
could obtain nutrients from milk [13]. In addition, other species of microorganisms might pro-
vide an alternative supply of nutrients for the fibrolytic bacteria.

In the abomasum fluid, the abundance of methanogens differed between the days, whereas
the abundance of fibrolytic bacteria did not change. The methanogens were in lowest abun-
dance compared with the other GIT compartments, which is not surprising given the pH in the
abomasum of calves is around 2.0-3.2 [39]. Currently, there are no studies about microorgan-
isms in the abomasum of calves in the first 3 days after birth, which limits a substantial discus-
sion about this topic. A study in mature horses found Proteobacteria, Firmicutes,
Actinobacteria, and Bacteroidetes in the stomach [40], indicating that microorganisms capable
of surviving in the very acidic environment of the abomasum.

Methanogens, fibrolytic bacteria, and Geobacter spp. have been found in the cecum of
7-day-old calves [13], and different concentrations of Bacteroidetes, Firmicutes, and Proteo-
bacteria have been found between cecum ingesta and cecum tissue of 21-day-old calves [41].
Here we report the presence of methanogens, fibrolytic bacteria, and Geobacter spp. in the
cecum of neonatal calves, with changes in the number of methanogens and Geobacter spp. but
not of fibrolytic bacteria during the first 3 days of life. Microorganisms in the cecum of mature
cattle digest the fiber that was not digested in the rumen and produce fermentation products,
mainly VFAs, and vitamins in addition to waste products such as methane [42]. However, 0- to
3-day-old calves do not ingest solid feed; hence they have no fiber in their cecum. This once
again suggests that fibrolytic bacteria (and methanogens by extension) may utilize another
energy source.

Lastly, methanogens, Geobacter spp., and fibrolytic bacteria were already present in the
feces on day 0. At this time the feces are known as meconium, which is the earliest stool of a
mammalian neonate, different to the subsequent feces. The meconium is composed of materi-
als ingested during gestation such as intestinal epithelial cells, lanugo, mucus, amniotic fluid,
bile, and water [26]. Meconium sampled 5 cm anterior to the anus within the rectum might be
isolated from contact with microorganisms during the birthing process when the fetus is
exposed to rich sources of microbes, such as vaginal secretions from the mother and skin con-
tact. The unborn calf might have ingested microbes during labor, but it is unknown whether
these microbes could accumulate in the meconium within 20 mins. The second major micro-
bial exposure to the neonate occurs with the consumption of colostrum. However, the calves
were separated from the mother immediately after birth and did not have contact with the
mother and did not drink colostrum. We therefore speculate that the presence of methanogens,
Geobacter spp., and fibrolytic bacteria in the meconium again suggests that the GIT was colo-
nized before the calves were born. Studies in human indicate that the microorganisms in the
meconium differ from those observed in early feces. Firmicutes was the main phylum detected
in meconium, whereas Proteobacteria (Geobacter spp.) was predominant in early feces [26,43].
The presence of these microorganisms in the meconium may result from the human fetus swal-
lowing amniotic liquid during the last three months of pregnancy [27] and a similar process
may explain the presence of microbes in the meconium of the calf. After birth, on day 2 and on
day 3, the methanogens M. mobile and M. votae, and Geobacter spp. in the feces showed a
10-fold increase in abundance, suggesting that calf exposure to colostrum and the environment
did contribute to microbial growth.
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Conclusions

This study shows that less than 20 minutes after birth, methanogens, Geobacter spp., and fibro-
lytic bacteria are present in the GIT of calves. Moreover, the composition of the microbial
community throughout the GIT of calves up to 3 days of age varied in abundance between
compartments (rumen, cecum, and abomasum) and feces. Methanogens were detected prior to
the colonization by protozoa, suggesting that other microorganisms such as Geobacter spp.
might play a role in supplying hydrogen and electron transfer. Fibrolytic bacteria present in the
rumen and cecum before the calves were capable of consuming and digesting solid fiber, indi-
cates that fibrolytic bacteria might use nutrients other than cellulose, hemicellose, and xylan,
such as the nutrients obtained from colostrum or provided by other species of microorganisms.
If we understand the microbial colonization of the entire GIT from the time before birth, then
we might be equipped to assist its anatomical and physiological development during the transi-
tion from milk to solid feed.
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