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Machine learning dismantling and early-warning
signals of disintegration in complex systems
Marco Grassia 1, Manlio De Domenico2,3✉ & Giuseppe Mangioni 1,3✉

From physics to engineering, biology and social science, natural and artificial systems are

characterized by interconnected topologies whose features – e.g., heterogeneous con-

nectivity, mesoscale organization, hierarchy – affect their robustness to external perturba-

tions, such as targeted attacks to their units. Identifying the minimal set of units to attack to

disintegrate a complex network, i.e. network dismantling, is a computationally challenging

(NP-hard) problem which is usually attacked with heuristics. Here, we show that a machine

trained to dismantle relatively small systems is able to identify higher-order topological

patterns, allowing to disintegrate large-scale social, infrastructural and technological net-

works more efficiently than human-based heuristics. Remarkably, the machine assesses the

probability that next attacks will disintegrate the system, providing a quantitative method to

quantify systemic risk and detect early-warning signals of system’s collapse. This demon-

strates that machine-assisted analysis can be effectively used for policy and decision-making

to better quantify the fragility of complex systems and their response to shocks.
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Several empirical systems consist of nonlinearly interacting
units, whose structure and dynamics can be suitably repre-
sented by complex networks1. Heterogeneous connectivity2,

mesoscale3,4, higher-order5,6 and hierarchical7 organization, effi-
ciency in information exchange8, and multiplexity9–12 are dis-
tinctive features of biological molecules within the cell13,
connectomes14, mutualistic interactions among species15, urban16,
trade17, and social18–20 systems.

However, the structure of complex networks can dramatically
affect its proper functioning, with crucial effects on collective
behavior and phenomena such as synchronization in populations
of coupled oscillators21, the spreading of infectious diseases22,23

and cascade failures24, the emergence of misinformation25,26, and
hate27 in socio-technical systems or the emergence of social
conventions28. While heterogeneous connectivity is known to
make such complex networks more sensitive to shocks and other
perturbations occurring to hubs29, a clear understanding of the
topological factors—and their interplay—responsible for a sys-
tem’s vulnerability still remains elusive. For this reason, the
identification of the minimum set of units to target for driving a
system towards its collapse—a procedure known as network
dismantling—attracted increasing attention30–34 for practical
applications and their implications for policy making. Dis-
mantling is efficient if such a set is small and, simultaneously, the
system quickly breaks down into smaller isolated clusters. The
problem is, however, NP-hard and while percolation theory
provides the tools to understand large-scale transitions as units
are randomly disconnected35–38, a general theory of network
dismantling is missing and applications mostly rely on approxi-
mated theories or heuristics.

Here, we develop a computationally efficient framework—
named GDM (Graph Dismantling with Machine learning) and
conceptually described in Fig. 1—based on machine learning, to
provide a scalable solution, tackle the dismantling challenge, and

gain new insights about the latent features of the topological
organization of complex networks. Specifically, we employ graph
convolutional-style layers, overcoming the limitations of classic
(Euclidean) deep learning and operate on graph-structured data.
These layers, inspired by the convolutional layers that empower
most of the deep-learning models nowadays, aggregate the fea-
tures of each node with the ones found in its neighborhood by
means of a learned nontrivial function, producing high-level node
features. While the machine is trained on identifying the critical
point from dismantling of relatively small systems—that can be
easily and optimally dismantled—we show that it exhibits
remarkable inductive capabilities, being able to generalize to
previously unseen nodes and way larger networks after the
learning phase.

This work follows and combines two recent trends in Machine
Learning: learning on synthetic data and generalizing to real-
world instances39, and learning heuristics to tackle/solve hard
combinatorial problems on graphs40,41. While the motivation
behind the latter is easy to understand, as—thanks to the
increasing availability of data—graphs are becoming larger and
larger and many interesting applications would be unfeasible due
to computational constraints, the idea of learning on synthetic
data can be motivated by the unlimited availability of (easily)
generated examples with training labels. Thanks to their inductive
capabilities and extensive training, deep-learning models trained
on synthetic data are able to generalize to real-world instances,
providing a useful tool to approach hard problems in general.

Results
The machine learning framework proposed here consists of
a (geometric) deep-learning model, composed of graph
convolutional-style layers and a regressor (a multilayer percep-
tron), that is trained to predict attack strategies on small synthetic
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Fig. 1 Training a machine to learn complex topological patterns for network dismantling. To build our training data, we generate and dismantle small
networks optimally and compute the node features. After the model is trained, it can be fed the target network (again, with its nodes' features) and it will
assign each node n a value pn, the probability that it belongs to the (sub-)optimal dismantling set. Nodes are then ranked and removed until the dismantling
target is reached. The machine learning architecture used consists of graph convolutional-style layers (Graph Attention Network (GAT) layers) coupled
with linear layers—that provide residual connections between consecutive layers—followed by a regressor (i.e., a Multilayer Perceptron) with a sigmoid
activation function that constrains the pn value to the [0, 1] range.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25485-8

2 NATURE COMMUNICATIONS |         (2021) 12:5190 | https://doi.org/10.1038/s41467-021-25485-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


networks—that can be easily and optimally dismantled—and then
used to dismantle large networks, for which the optimal solution
cannot be found in reasonable time. To give an insight, the graph
convolutional-style layers aggregate the features of each node
with the ones found in its neighborhood by means of a learned
nontrivial function, as they are inspired by the convolutional
layers that empower most of the (Euclidean) deep-learning
models nowadays. More practically, the (higher-order) node
features are propagated by the neural network when many layers
are stacked: deeper the architecture, i.e., the more convolutional
layers, the farther the features propagate, capturing the impor-
tance of the neighborhood of each node. Specifically, we stack a
variable number of state-of-the-art layers, namely Graph Atten-
tion Networks (GAT)42, that are based on the self-attention
mechanism (also known as intra-attention), which was shown to
improve the performance in natural language processing tasks43.
These layers are able to handle the whole neighborhood of nodes
without any sampling, which is one of the major limitations of
other popular convolutional-style layers (e.g., GraphSage44), and
also to assign a relative importance factor to the features of each
neighboring node that depends on the node itself thanks to the
attention mechanism.

Such detailed model takes as input one network at a time plus
the features of its nodes and returns a scalar value pn between
zero and one for every node n. During the dismantling of a
network, nodes are sorted and removed (if they belong to the
LCC) in descending order of pn until the target is reached.

Dismantling synthetic and real-world systems. In our experi-
ments, we dismantle empirical complex systems of high societal
or strategic relevance (e.g., biological, social, infrastructure,
communication, trophic, and technological systems), our main
goal being to learn an efficient attack strategy. To validate the
goodness of such a strategy, we compare against state-of-the-art
dismantling methods, such as Generalized Network Dismantling
(GND)34, Explosive Immunization (EI)45, CoreHD46, Min-Sum
(MS)33, and Collective Influence (CI)32, using local (node degree
and its χ2 value over the neighborhood), second-order (local
clustering coefficient), and global (k–core value) node features as
input features.

To quantify the goodness of each method in dismantling the
network, we consider the Area Under the Curve (AUC) encoding
changes in the Largest Connected Component (LCC) size across
the attacks. The LCC size is commonly used in the literature to
quantify the robustness of a network, because systems need the
existence of a giant cluster to work properly. The AUC indicator
has the advantage of accounting for how quickly, overall, the LCC
is disintegrated: the lower the area under the curve, the more
efficient is the network dismantling. We compute the AUC value
by integrating the LCC(x)/∣N∣ values using Simpson’s rule.

As a representative example, we show in Fig. 2a the result of
the dismantling process for the corruption network47, built from
65 corruption scandals in Brazil, as a function of the number of
removed units. Results are shown for GDM and the cutting-edge
algorithms mentioned above. In Fig. 2b, c, instead, we show the
structure before and after dismantling, respectively. Our frame-
work disintegrates the network faster than other methods: to
verify if this feature is general, we perform a thorough analysis of
several empirical systems.

Figure 3 shows the performance of each dismantling method
on each empirical system considered in this study, allowing for an
overall comparison. On average, our approach outperforms the
others. For instance, Generalized Network Dismantling’s cumu-
lative AUC is ~12% higher and the Min-Sum algorithm is
outscored by a significant margin, which is remarkable

considering that our approach is static—i.e., predictions are
made at the beginning of the attack—while the other ones are
dynamic—i.e., structural importance of the nodes is (re)
computed during the attacks. For a more extensive comparison
with these approaches, we also introduce a node reinsertion phase
using a greedy algorithm which reinserts, a posteriori, those
nodes that belong to smaller components of the (virtually)
dismantled system and which removal is not actually needed in
order to reach the desired target33. Once again, our approach
outperforms the other algorithms: even without accounting for
the reinsertion phase, GDM performs comparably with GND+
reinsertion and outscores the others, highlighting how it is able to
identify the more critical nodes of a network.

We extend the comparison against the more promising state-
of-the-art algorithms (GND and MS with and without reinser-
tion, and CoreHD) to 12 large networks with up to 1.8M nodes
and up to 2.8M edges. As shown in Fig. 4, the results on smaller
empirical networks are confirmed even for the large ones,
although with smaller margins (i.e., ~5.6% and ~7.6% against
GND, respectively, with and without the reinsertion phases). This
is still impressive as the proposed approach is static while the
others recompute the nodes’ structural importance during
the dismantling process, which involves many removals for these
networks (e.g., 70K on hyves network) and changes the network
topology drastically, confirming the validity of our approach.

We also test synthetic networks—i.e., Erdős-Rényi (ER), on
Configuration Model networks (CM) with power law distribution
and Stochastic Block Model (SBM). As reported in Fig. 5, the best
approach is Min-Sum, scoring 6% and 3% lower AUC than GDM
and GDM+ R, respectively. The reason behind this slightly lower
GDM performance can be found in our training set and on what
the models learn. Specifically, we train on networks generated
using three different models, which teaches the models to look for
patterns that turn out to be suboptimal in the long term (as no
recomputation is made during the process) when it comes to
specific synthetic networks. It should also be noted that GND—
the second best-performing algorithm on real-world networks—is
the worst of the tested algorithms on synthetic networks.

We refer the reader to Supplementary Figs. 5 and 6 for the full
dismantling curves (i.e., LCC as a function of the removed nodes),
to the Supplementary Tables 1 and 3 for the numerical results of
all the experiments, and to Supplementary Table 2 for the
extensive list of the real-world test networks.

An interesting feature of our framework is that it can enhance
existing heuristics based on node descriptors, by employing the
same measure as the only node feature, as shown in Supplemen-
tary Fig. 3.

We stress that the node features used in this work are arbitrary.
In fact, while we selected them to keep low the computational
complexity of the dismantling process, the graph convolutional
networks (and, therefore, GDM) can process any node feature
combination. That is, if better dismantling performance are
required, more complex ones can be chosen.

Understanding the models. After validating the dismantling
performance of our approach, an investigation of what the models
are actually learning and how they are making the long-term pre-
dictions is needed to open the black box of deep learning and use
the resulting insights to improve the state-of-the-art algorithms.

For this purpose, we employ GNNExplainer48, the novel
framework for explaining graph convolutional-style networks, to
extract the explanation subgraphs (the subsets of nodes and
edges) that most account for the value predicted by the model for
each node. What we find in the analysis of the explanation
subgraphs of the networks in our test-set is that, as shown for the
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Brazilian corruption network in the Supplementary Information,
the model is removing the nodes that bridge multiple clusters,
discovered by combining the input features and by looking to
other bridges in their K-hop neighborhood, which confirms the
insight provided by the toy-examples discussed in the Supple-
mentary Information. The identification of this kind of bridges is
achieved thanks to the local and second-order features combined
with the propagation performed by the model. In fact, while Lauri
et al.41 show that the degree, its χ2 value over the neighborhood
and the local clustering coefficient can be used to estimate the
likelihood a node belongs to a clique via classical deep-learning
tools, our geometric deep-learning model improves the idea by
extending the feature propagation in a K-hop radius and the
result is improved further by the k–core value that helps to filter
the nodes at the core of the network. Although some of the
targeted nodes are not the direct cause of large damage to the
network, they are needed to drive the network in a vulnerable
state where the removal of other nodes disrupts it. In other words,
the models seem to predict a long-term strategy that aims not
only to remove the Articulation Points (AP, also known as Cut
Vertices, are nodes that, when removed, cause the creation of new
connected components) but also create new ones with the
removal of other non-AP nodes.

This insight led us to investigate further in this direction with
an analysis of the Articulation Points as the nodes are removed.
Specifically, we compute, removal after removal, the number of
APs in the network and how many of them are in the removal list
(R) predicted by the model. As shown in Fig. 6a, b for the linux
and internet-topology networks, the number of APs increases as
nodes are removed, and so do the ones in the removal list, until
there is a natural decay due to the decreasing size of the removal
list itself. This trend is confirmed for most of our test networks, as
shown in Supplementary Fig. 9.

Considering the high dismantling performance, this proves
that not only the model is effectively learning to target the nodes
that cause the network collapse when removed together, but also
that does so more efficiently than other algorithms. Note that a
strategy barely based on AP removal would not be effective, since
an AP can be one node whose removal separates a giant
connected component from a component consisting of a
negligible number of nodes (e.g., only one node). Instead, we
demonstrate that our model is learning to identify the most
effective AP for disintegrating the target system: elegantly, these
ones turn out to be bridges between large clusters, not between
one large and one small cluster.

Moreover, if we analyze the number of APs in the removal list
(∣AP ∩ R∣) as a function of the total number of APs (∣AP∣), we find
that the two are related by a kind of deterministic dynamics,
resembling the one which characterizes chaotic systems and,
specifically, chaotic maps such as the logistic map or the Hénon
map, where parabolic attractors emerge when the state of the
system at the n+ 1th step is plotted against the state at the nth
step. In our case, the nth step coincides with the removal of the
nth node in the removal list. The shape of the resulting attractor
provides a strong characterization of the system and its
robustness: we show an example for each type in Fig. 6c, d
(more examples can be found in Supplementary Fig. 10). That is,
in the first case, the model drives the network in a state where the
nodes in the removal list become Articulation Points, in the latter
it mainly removes nodes that are already APs.

After understanding what the model is learning, we analyze
how features account in the computation of the output values to
get an insight on how the model selects the nodes. While there is
no prevailing feature for all the networks—e.g., sometimes the
degree is the key feature, others the K–core value, etc.—an
interesting result is that the feature weight also changes with the
score of the nodes. For instance, while the clustering coefficient is
the main feature, scoring up to the 60% of the relative
importance, in the first 250 removals of the subelj-jdk network
(Fig. 6f), all the features gain equal weight after that removal. In
the Brazilian corruption network, instead, the node degree is the
most important feature to identify the first nodes to remove, but
other features gain more importance to identify less important
nodes, needed to reach the dismantling target. These results
confirm that the definition of new algorithms based on these
insights is extremely hard, as the weight of each feature is adapted
by the model to the topology and to the patterns in the network.
At this point, it is plausible to assess that our framework learns
correlations among node features. To probe this hypothesis, in
Supplementary Fig. 4 we analyze the configuration models of the
same networks analyzed so far: those models keep the observed
connectivity distribution while destroying topological correla-
tions. We observe that the dismantling performance drops on
these models, confirming that the existing topological correlations
are learned and, consequently, exploited by the machine.

For more insights, details about the implementation and the
information about the tools used, we refer the reader to the
Supplementary Information.

Fig. 2 Dismantling the Brazilian corruption network. a GDM and state-of-the-art algorithms with reinsertion of the nodes are compared. The network
before (b) and after (c) a GDM attack is shown. The color of the nodes represents (from dark red to white) the attack order, while their size represents
their betweenness value. In the attacked network, darker nodes do not belong to the LCC, and their contour color represents the component they belong to.
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Early-warning signals of systemic collapse. Another relevant
output of our method is the calculation of a damage score that can
be used to predict the impact of future attacks to the system.
Accordingly, we introduce an estimator of early warning that can be
used for inform policy and decision-making in applications where
complex interconnected systems—such as water management sys-
tems, power grids, communication systems and public transporta-
tion networks—are subject to potential failures or targeted attacks.

We define Ω, namely early warning, as a value between 0 and 1,
calculated as follows. We first simulate the dismantling of the target
network using our approach and call So the set of virtually removed
nodes that cause the percolation of the network. Then, we sum the
pn values predicted by our model for each node n∈ So and define

Ωm ¼ ∑
n2So

pn ð1Þ

Fig. 3 Dismantling empirical complex systems. Per-method cumulative area under the curve (AUC) of real-world networks dismantling. The lower the
better. The dismantling target for each method is 10% of the network size. Each value is scaled to the one of our approach (GDM) for the same network.
GND stands for Generalized Network Dismantling, EGND for Ensemble approach for GND (in both GND and EGND, cost matrix W= I), MS stands for
Min-Sum, EI σ1 stands for Explosive Immunization (σ1) algorithm and CI for Collective Influence.+R means that the reinsertion phase is performed. CoreHD
and CI are compared to other +R algorithms as they include the reinsertion phase. Also, note that some values are clipped (limited) to 3× for the MS
heuristic to improve visualization.
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The value of the early-warning Ω for the network after the removal
of a generic set S of nodes is given by

Ω ¼ Ωs=Ωm if Ωs ≤ Ωm

1 otherwise

�
ð2Þ

where Ωs ¼ ∑n2S pn.
The rationale behind this definition is that the system will

tolerate a certain amount of damage before it collapses: this value
is captured by Ωm. Ω will quickly reach values close to 1 when
nodes with key-role in the integrity of the system are removed. Of
course, the system could be heavily harmed by removing many
less relevant nodes (e.g., the peripheral ones) with an attack that
causes a small decrease in LCC size over time, and probably get a

low value of Ω. However, this kind of attacks does not need an
early-warning signal since they do not cause an abrupt disruption
of the system and can be easily detected.

Why do we need an early-warning signal? In Fig. 7 we show a
toy-example meant to explain why the Largest Connected
Component size may not be enough to determine the state of a
system. The toy-example network in Fig. 7a is composed of two
cliques (fully connected subnetworks) connected by a few border
nodes (bridges) that also belong to the respective cliques. Many
dismantling approaches (like the degree and betweenness-based
heuristics, or even ours) would remove those bridge nodes first,
meaning that the network would eventually break in two, as
shown in Fig. 7b. Now, when most of the bridge nodes are
removed (e.g., after 16 removals), the LCC is still quite large as it
includes more than 80% of the nodes, but it takes just a few more
removals of the bridges to break the network in two. While Ω is
able to capture the imminent system disruption (i.e., the Ω value
gets closer to 1 very fast), the LCC size is not, and one would
notice when it is too late. Moreover, the LCC curve during the
initial part of the attack is exactly the same as the one in Fig. 7c,
showing the removal of nodes in inverse degree (or betweenness)
order, which does not cause the percolation of the system. Again,
Ω captures this difference and does not grow, meaning that a slow
degradation should be expected.

We test our method on key infrastructure networks and predict
the collapse of the system under various attack strategies (see
Fig. 8 for details). Remarkably, while the LCC size decreases
slowly without providing a clear alarm signal until the system is
heavily damaged and collapses, Ω grows faster when critical
nodes are successfully attacked, reaching warning levels way
before the system is disrupted, as highlighted by the First
Response Time, defined as the time occurring between system’s
collapse and an early-warning signal of 50% (i.e., Ω= 0.5).
Moreover, the first order derivative Ω0 tracks the importance of
nodes that are being attacked, providing a measure of the attack
intensity over time.

Discussion
Our results show that using machine learning to learn network
dismantling comes with a series of advantages. While the ultimate
theoretical framework is still missing, our framework allows one
to learn directly from the data, at variance with traditional
approaches, which rely on the definition of new heuristics,
metrics or algorithms. An important advantage of our method,
typical of data-driven modeling, is that it can be further improved
by simply retuning the parameters of the underlying model and
training again: conversely, existing approaches require the (re)
definition of heuristics and algorithms which are more
demanding in terms of human efforts. Remarkably, the compu-
tational complexity of dismantling networks with our framework
is considerably low: just O(N+ E), where N is system’s size and E
the number of connections—which drops to O(N) for sparse
networks (for more information about the computational com-
plexity, see the dedicated section of the Supplementary infor-
mation). This feature allows for applications to systems consisting
of millions of nodes while keeping excellent performance in terms
of computing time and accuracy. We also provide deep-insights
about the models that should help to understand the power of
geometric deep learning. Last but not least, from a methodolo-
gical perspective, it is worth remarking that our framework is
general enough to be adapted and applied to other interesting
NP-hard problems on networks, opening the door for new
opportunities and promising research directions in complexity
science, together with very recent results employing machine
learning, for instance, to predict extreme events49.

Fig. 5 Dismantling synthetic complex systems. Per-method cumulative
area under the curve (AUC) of the dismantling of synthetic networks. The
lower the better. Each value is the average on 10 different instances, and is
scaled to the AUC of our approach (GDM) for the same network type. CM
stands for Configuration Model, ER stands for Erdős-Rényi, and SBM stands
for Stochastic Block Model.

Fig. 4 Dismantling empirical complex large systems. Per-method
cumulative area under the curve (AUC) of real-world networks dismantling.
The lower the better. The dismantling target for each method is 10% of the
network size. We compute the AUC value by integrating the LCC(x)/∣N∣
values using Simpson’s rule, and each value is scaled to the one of our
approach (GDM) for the same network. GND stands for Generalized
Network Dismantling (with cost matrixW= I) and MS stands for Min-Sum.
+R means that the reinsertion phase is performed. Also, note that some
values are clipped (limited) to 3× for the MS heuristic to improve
visualization.
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Fig. 6 Understanding our models. The analysis of the Articulation Points of the networks (AP) and how many of them are in the removal list (R) shows
that the models are learning a long-term strategy that aims to create new articulation points and remove the ones that deal most damage to the network.
As an example, we show the linux (a, c) and the internet-topology (b, d) networks. This is achieved using the input node features discussed above, that
allow the identification of clusters and bridges. We show an example of the relative importance of the node features for the corruption (e) and for the
subelj-jdk (f) networks.
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Fig. 7 Why do we need an early-warning signal? Toy-example meant to explain why the LCC is not sufficient to evaluate the state of the system: in (a) we
show a toy-example network composed of two cliques connected by 10 bridges. The size of the nodes represents their betweenness value and the color
(from dark red to white) represents their importance to the system’s health according to our method. As illustrated in (b) and (c), the LCC decreases at the
same rate during the initial part of both a betweenness and an inverse betweenness-based attacks. Instead, Ω values do not and reach warning levels
before the system suddenly collapses. Note that LCC and SLCC are the largest and second-largest connected components respectively, Ω is the early-
warning descriptor introduced in this study, and PI is the pn value of each removed node.

Fig. 8 Early warning due to network dismantling of real infrastructures. Three empirical systems, namely the European power grid (left), the North-
American power grid (middle) and the London public transport (right), are repeatedly attacked using a degree-based heuristics, i.e., hubs are damaged first.
A fraction of the most vulnerable stations is shown for the original systems and some representative damaged states (i.e., before and after the critical point
for system’s collapse), in the top of the figure. The plots show the behavior of the largest (LCC) and second-largest (SLCC) connected components, as well
as the behavior of Ω, the early-warning descriptor introduced in this study and the pn value of each removed node (PI). Transitions between green and red
areas indicate the percolation point of the corresponding systems, found through the SLCC peak. We also show the first response time in arbitrary units
(arb. units), to highlight how our framework allows to anticipate system’s collapse, allowing for timely emergency response.
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The impact of our results is broad. On the one hand, we
provide a framework which disintegrates real systems more effi-
ciently and faster than state-of-the-art approaches: for instance,
applications to covert networks might allow hindering commu-
nications and information exchange between harmful individuals.
On the other hand, we provide a quantitative descriptor of
damage which is more predictive than existing ones, such as the
size of the largest connected component: our measure allows to
estimate the potential system’s collapse due to subsequent
damages, providing policy and decision makers with a quantita-
tive early-warning signal for triggering a timely response to
systemic emergencies, for instance in water management
systems, power grids, communication, and public transportation
networks.

Methods
Training methodology. We train our models in a supervised manner. Our training
data are composed of small synthetic networks (25 nodes each) generated using the
Barabási-Albert (BA), the Erdős-Rényi (ER), and the Static Power law generational
models that are implemented in igraph50 and NetworkX51. Each synthetic network
is dismantled optimally using brute-force and nodes are assigned a numeric label
(the learning target) that depends on their presence in the optimal dismantling
set(s). That is, we find all the minimum size solutions using brute-force (i.e., we try
all the combinations of nodes) that reduce the Largest Connected Component
(LCC) to a given target size, ~18% in our tests; then, the label of each node is
computed as the number of optimal sets it belongs to, divided by the total number
of optimal solutions. For example, if there is only a set of optimal size, we assign a
label value of 1 to the nodes in that set and 0 to all other nodes; if there are two
optimal solutions, we assign 1 to the nodes that belong to both sets, 0.5 to the ones
that belong to a single set and 0 to all the others. This is meant to teach the model
that some nodes are more critical than others since they belong to many optimal
dismantling sets.

We stress that the training label is arbitrary and others may work better for
other training sets or targets. Moreover, while we train on a generic purpose dataset
that includes both power law and ER networks, the training networks can also be
chosen to fit the target networks, e.g., by using networks from similar domains or
with similar characteristics.

Model parameters. We run a grid search to test various combination of model
parameters, which are reported here, and select the models that better fit the
dismantling target (i.e., lower area under the curve or lower number of removals).

● Convolutional-style layers: Graph Attention Network layers.

– Number of layers: from 1 to 4;
– Output channels for each layer: 5, 10, 20, 30, 40, or 50, sometimes with a

decreasing value between consecutive layers;
– Multi-head attentions: 1, 5, 10, 15, 20, or 30 concatenated heads;
– Dropout probability: fixed to 0.3;
– Leaky ReLU angle of the negative slope: fixed to 0.2;
– Each layer learns an additive bias;
– Each layer is coupled with a linear layer with the same number of input

and output channels;
– Activation function: Exponential Linear Unit (ELU). The input at each

convolutional layer is the sum between the output of the GAT and the
linear layers;

● Regressor: multilayer perceptron

– Number of layers: from 1 to 4;
– Number of neurons per layer: 20, 30, 40, 50, or 100, sometimes with a

decreasing value between consecutive layers.

● Learning rate: fixed to 10−5;
● Epochs: we train each model for 50 epochs;

Data availability
The synthetic data generated in this study has been deposited in the Zenodo database
available at https://doi.org/10.5281/zenodo.510591252.

Code availability
The code of the GDM framework proposed in this paper is available on GitHub at
https://github.com/NetworkScienceLab/GDM and on Zenodo at https://doi.org/10.5281/
zenodo.510591252.
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