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Abstract

When the value of a quantity x for a number of systems (cells, molecules, people, chunks of metal, DNA vectors, so on) is
measured and the aim is to replicate the whole set again for different trials or assays, despite the efforts for a near-equal
design, scientists might often obtain quite different measurements. As a consequence, some systems’ averages present
standard deviations that are too large to render statistically significant results. This work presents a novel correction method
of a very low mathematical and numerical complexity that can reduce the standard deviation of such results and increase
their statistical significance. Two conditions are to be met: the inter-system variations of x matter while its absolute value
does not, and a similar tendency in the values of x must be present in the different assays (or in other words, the results
corresponding to different assays must present a high linear correlation). We demonstrate the improvements this method
offers with a cell biology experiment, but it can definitely be applied to any problem that conforms to the described
structure and requirements and in any quantitative scientific field that deals with data subject to uncertainty.
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Introduction

Assume a given quantity x is measured in the laboratory for six

different systems (from system 1 up to system 6) where they could

be everything from cell types to people or proteins to DNA vectors

and even the same system at different points in time (whenever the

quantity x is expected to evolve in some reproducible manner).

And as any scientist who wants to be sure he makes no mistakes,

the whole set of six measures are repeated three times, say, at

different times in different days.

We will call each one of these repeated experiments assays,

namely, assay 1, assay 2 and assay 3. At the end of the process, we

are in possession of 6|3 values of the quantity x; six per each

assay, three for each system. Now imagine we obtain the values in

table 1 (the odd names given to the six systems in the first column

will be later explained). The first thing we can notice about the

results is that they do not look right at all. The standard deviation

from the average is comparable to the average itself for most of the

systems, and only on a couple of them you are ‘‘lucky’’ enough in

that the former is about half the value of the latter. When we check

the corresponding chart in fig. 1, we run into the same despairing

situation. The error bars are huge!

Before throwing in the towel, we realize two things about our

experiments that might save our day:

N The fact that the absolute value of x for each given system is not

really of much importance but rather the variation that x suffers

from one system to another, such as whether or not you could

safely claim that the value of x corresponding to system 1 is

larger than, and approximately the double of that associated to

system 5.

N And that although you seem to be measuring huge differences

in absolute value across different assays, it looks as if the

‘‘tendency’’ of the variations is similarly captured in all three of

them. This is even more apparent in the graphical represen-

tation in fig. 2.

In this work, besides arguing that we were right in not throwing

in the towel in such circumstances, we will be interpreting the

structure of the results as being caused by a multiplicative systematic

error (across the different assays). We will also suggest a method to

correct experimental results in a way where systematic errors may

be removed. As a result, the corrected numbers will not tell us

anything significant about the ‘‘true’’ absolute value of x for the

different systems. In return, they will maximally capture the

tendency that we seemed to be correctly measuring, namely, the

averages of the corrected results will present appreciable smaller
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standard deviations while still follow an average tendency of

variation.

In the next section, we will make this precise by introducing the

general method of correction as well as a real experiment in cell

biology which suffers from the problems (and the virtues!) that we

have mentioned in this introduction. In Results, we will apply the

correction method to this experiment to show that both the

standard deviations and the statistical significance of the results

improves considerably. In Discussion, we will discuss our

interpretation of the studied situation and the suggested method,

compare it to a simpler alternative, and try to explain the

surprising fact that something so straightforward cannot be found

(as far as we are aware) in the previous literature. Finally, in

Conclusions, we will briefly summarize the main conclusions of

this work, outline some open questions and suggest lines of future

research.

Methods

Experimental Setup
As we advanced we will have in general N systems, among

which a specific one may be called system j, with j~1,2, . . . ,N . We

now measure a quantity x for each one of the N systems, and we

repeat M times the whole set of N measures. A generic repetition

is termed assay k, with k~1,2, . . . ,M, and each one of them is

carried out under expected identical conditions. It is convenient to

use xk
j to denote the value of the quantity x measured for system j

in the k-th assay (e.g., in table 1, x2
4~4:78).

Each of the different systems can be anything from cities to

DNA sequences, from people to chunks of metal and can even be

the same system at different points in time if the quantity x is

expected to evolve in some reproducible manner. The differences

among the assays may appear due to the experiments being

performed by the same researcher at different days, by different

but equally skilled researchers using the same equipment or by the

same researcher using different (but in principle equally accurate)

equipment. It can even be due to different (but in principle equally

proficient) laboratories but, as long as we expect different assays to

yield same results, their definition is compatible with what we

perform here.

For example, the different assays in table II of [1], where the

production of four isoforms of Monilophthora perniciosa chitinase is

presented, do not qualify as the setup described here. The reason

for it is simple, as they are knowingly carried out at different pH and

temperature and therefore they are naturally expected to yield

different results.

The experimental setup is thus very general, but we will

introduce the correction method as we apply it to a specific

example of a real experiment in cell biology.

Figure 1. Errors in the starting results. Bar chart representation of
the average values m (orange bars) and the associated standard
deviation s (black capped lines) in tab. 1.
doi:10.1371/journal.pone.0078205.g001

Table 1. Starting results.

assay 1 assay 2 assay 3 m ± s

pMAN12 33.88 5.65 15.53 18.36 6 14.33

pMAN17 17.60 3.61 11.29 10.83 6 7.01

pMAN18 4.62 0.94 2.72 2.76 6 1.84

pMAN19 55.35 9.30 14.52 26.39 6 25.22

pMAN20 11.15 4.78 9.10 8.35 6 3.52

pMetLuc– 0.00 0.39 0.54 0.31 6 0.28

Activity of the MetLuc protein (x quantity) under the control of six different
promoter sequences (the six systems) measured in three assays. The last two
columns correspond to the average m of the three assays for each system, and
the associated standard deviation (or error) s. The units as well as the rest of the
experiment’s details are described in The experiment.
doi:10.1371/journal.pone.0078205.t001

Figure 2. Tendency in the starting results as captured by the
different assays. Variation of the quantity x (MetLuc activity) in table 1
for the six systems (vectors) studied. Each color corresponds to a
different assay, and the lines joining the experimental points have been
added for visual comfort.
doi:10.1371/journal.pone.0078205.g002

Table 2. p-values associated to the starting results.

pMAN12 pMAN17 pMAN18 pMAN19 pMAN20 pMetLuc–

pMAN12 – 0.475 0.198 0.662 0.349 0.161

pMAN17 – – 0.178 0.399 0.618 0.121

pMAN18 – – – 0.246 0.077 0.145

pMAN19 – – – – 0.340 0.215

pMAN20 – – – – – 0.050

pMetLuc– – – – – – –

Probabilities (or p-values) that the observed differences between the averages
mj and ml of the measured promoter activity (x quantity) for each pair of

systems (vectors) can be produced by pure chance. Values smaller than 0.05
indicate that the observed difference is statistically significant.
doi:10.1371/journal.pone.0078205.t002

Increasing Significance in Multi-Assay Experiments
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The Experiment
The aim of the experiment is to elucidate the regulatory

network of the human protein called mitochondrial carrier homolog 1

(Mtch1), and also presenilin 1-associated protein (PSAP). Although this

protein has been known for almost 15 years to be involved in

apoptosis [2] and a number of studies have probed its cellular

function [3–7], not all the details are known, especially those

concerning its regulation, which is uncharted territory at present.

To identify binding sites for transcriptional regulators at the

Mtch1 promoter region, different DNA vectors have been

constructed and transfected into Human embryonic kidney 293T

(HEK-293T) cells. Each one of the vectors contains a part of the

Mtch1 promoter attached to a Metridia luciferase (MetLuc) reporter

gene. When each vector is transfected into the HEK-293T cells,

the MetLuc protein is produced and secreted to the medium,

where its activity has been measured using the Ready-to-Glow

Dual Secreted Reporter Assay Kit (Clontech). Part of this protocol

involves co-transfecting each time with a vector containing the

secreted alkaline phosphatase (SEAP) gene under the control of an early

SV40 virus promoter. The SEAP protein is also secreted to the

medium, and the measure of its activity is used to normalize the

activity of MetLuc. This is done with the objective of eliminating

differences in the signal due to changes in the transfection

efficiency. Hence, the activity of MetLuc is divided by that of co-

transfected SEAP, and the results are reported in relative light units

(RLU), which are the units used in table 1 and throughout this

section. The complete study will be presented elsewhere.

The example we will further consider here is related to only a

small part of the data obtained for the mentioned study (since it is

enough for us to illustrate the correction method). We will use the

MetLuc activity values corresponding to five vectors containing

incrementally deleted parts of the Mtch1 promoter (denoted by

pMAN12, pMAN17, pMAN18, pMAN19 and pMAN20) as well

as a control vector containing the MetLuc gene but no promoter

region at all (pMetLuc–). The measured MetLuc activity values

(the quantity x in this example) for the six vectors (or the systems)

in three assays are presented in table 1 in the Introduction. This is

our starting point.

The Problem with the Results
As we advanced in the Introduction, the problem with the data

in table 1 began to emerge when we computed the average of x for

the system j, namely summed the results of all the assays divided

by the total number of assays M:

mj~
1

M

XM
k~1

xk
j , j~1,2, . . . ,N : ð1Þ

The corresponding standard deviation is computed as usual

through:

sj~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
k~1

xk
j {mj

� �2

vuut

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
k~1

xk
j

� �2

{
1

M

XM
k~1

xk
j

 !2
vuut , j~1,2, . . . ,N:

ð2Þ

These two values were represented for all systems in the last two

columns of table 1, and we could see there that the standard

deviations were so large that they rendered the results almost

useless. The same problem could be appreciated by looking at fig. 1

(in the Introduction) at the bar chart associated to the last two

columns of table 1.

In a more quantitative way and advancing the requirement that

the inter-system variation of x is what really matters to us, we

calculated the probability that the observed difference between

two average values, mj and ml (corresponding to two different

vectors) could be produced by pure chance, i.e., without the need

to resort to any supplementary explanation such as the difference

in the sequences of the two promoter regions in the vectors. This

probability can be obtained as the so-called p-value associated to a

two-sample Student’s t-test with unequal variances, see, e.g., p.

181 in [8], and p. 253 in [9]. One usually considers the observed

difference to be statistically significant when pv0:05, that is, when

the probability that it can be obtained by pure chance is less than

5% [10]. In table 2, we present the p-values associated to the

activity measures of each pair of vectors in table 1, as computed by

Microsoft Excel. We can appreciate that our intuition about the

poor quality of our results is confirmed: Only two out of the fifteen

possible pairs came close to the p~0:05 threshold, none is below

it, and several are significantly larger.

It is at this point when we are tempted to think that everything is

lost and just throw in the towel. Our results are bad. We have to

dump them and perform the experiments again. Period.

However, as we advanced in the Introduction, there are two

characteristics about the problem we are considering here that, when

combined, can save our day.

Requirements to Apply the Correction Method
The first one is related to the type of questions we are interested

in making and answering:

We are not interested in the absolute value of x for each given

system (the MetLuc activity for each vector). What really matters

to us is the variation in x from one system to another.

For example, whether or not we could safely claim that the

activity corresponding to pMAN12 is larger than, and approxi-

mately the double of that associated to pMAN20. Indeed, if we are

interested in the absolute value of MetLuc activity in RLU, the

results in table 1 are just beyond rescue and the discussion ends

here.

The second characteristic together with the one we have just

discussed will allow us to correct the bad looking results in table 1

and has to do with the properties of the observed measures

themselves:

Even if large differences in absolute value are observed across

the different assays, the ‘tendency’ of the variations is similarly

captured in all three of them. Technically, the different assays

present high linear correlation with one another.

This is even more apparent in the graphical representation in

fig. 2 (in the Introduction), and without this kind of behavior in our

data the correction method we will introduce next would not yield

satisfactory results.

In fig. 3, we have represented two scatter plots: both using the

values of assay 2 in the x-axis, one of them using the values of

assay 1 as the y-coordinate (blue squares), the other using the

values of assay 3 (green triangles). We have performed the two

corresponding linear fits and we have depicted the corresponding

tendency lines using the same color as the respective points. We

also show the y~x line in red for reference. For the reason behind

the choice of these two concrete pairs of assays, see The method.

Several points are worth making about this graph:

Increasing Significance in Multi-Assay Experiments
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N As we guessed, the linear correlation between the values in the

different pairs of assays is high, with Pearson’s correlation

coefficient r~0:947 for assay 2 vs. assay 1, r~0:881 for assays

2 vs. assay 3. This is the mathematical property that embodies

the intuitive property that ‘‘different assays similarly capture

the tendency in the measured data’’. And as we mentioned

before, this high correlation is one of the two requirements for

our method to be applicable.

N The fact that the fit lines present a non-unit slope is telling us

that, although the tendency is similar across assays, the

absolute value is not. The two things combined mean that

among the pairs of assays there is a multiplicative systematic

error and can be removed.

N The fact that the fit lines have a non-zero intercept is telling us that

we also have an additive multiplicative systematic error that can be

eliminated by applying our method.

The Method
To quantitatively assess the possibility that the data in table 1 (or

the corresponding one in any other experiment having the

structure as described in Experimental setup) satisfies the second

requirement in the previous section) and can therefore be

corrected, we begin by performing all least-squares linear fits

between all possible pairs of assays k and l [see, e.g., p. 70 in [11]].

For each pair we use the values of the first assay for the x

coordinate and those of the second one for the y coordinate. The

result of such a fit is a tendency line of the form:

y~bklxzakl , ð3Þ

where bkl is called the slope and akl the intercept (or y-intercept). They

are computed using the following formulas:

bkl~
Cov(k,l)

S2
k

, ð4aÞ

akl~Al{bklAk , ð4bÞ

where Ak is the average of the measured quantity across systems

and in the one single assay k [not to be confused with the averages

across assays for one single system computed using eq. (1), and

presented in table 1 and fig. 1]:

Ak~
1

N

XN

j~1

xk
j : ð5Þ

Of course, Al is obtained just changing k by l in this expression.

The quantity Sk is the standard deviation in Ak, given by

[compare now with eq. (2)]:

Sk~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

j~1

xk
j {Ak

� �2

vuut ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

j~1

xk
j

� �2

{
1

N

XN

j~1

xk
j

 !2
vuut , ð6Þ

and Cov(k,l) is the covariance between the values in assay k and

those in assay l:

Cov(k,l)~
1

N

XN

j~1

xk
j {Ak

� �
xl

j{Al

� �
: ð7Þ

With these quantities in hand, we are prepared to compute the

Pearson correlation coefficient rkl associated to the goodness of the

linear fit between each pair of assays k and l, which is given by eq.

(5.62) in [11]:

rkl~
Cov(k,l)

SkSl

: ð8Þ

In the first three columns of table 3, we present the Pearson

correlation coefficients corresponding to each pair of assays in the

example experiment whose results can be read in table 1. We can

see that rkl is close to 1.0 for all pairs, and we can therefore suspect

that our correction method will produce sizable improvements in

the data.

The first step to actually apply the method consists of selecting a

reference assay. Since we do not know the ‘true’ values of the x

quantity (MetLuc activity) for the different systems, we will

compare all the assays to the reference one and we will correct

them against it.

Figure 3. Linear correlation between assays in the starting
results. Scatter plots comparing the x quantity (MetLuc activity) of the
six systems (vectors) in table 1 for different pairs of assays. Using blue
squares, MetLuc activity in assay 2 vs. the same quantity in assay 1.
Using green triangles, assay 2 vs. assay 3. The least-squares fit lines are
depicted using the same color as the respective points, and we also
show the y~x line in red for reference.
doi:10.1371/journal.pone.0078205.g003

Table 3. Pearson’s correlation coefficient between the assays
in the starting results.

assay 1 assay 2 assay 3 rk

assay 1 0.000 0.947 0.852 0.900

assay 2 – 0.00 0.881 0.914

assay 3 – – 0.000 0.867

Pearson’s correlation coefficient rlk between each pair of assays in the
experiment described in The experiment. The last column displays the average
rk of each assay with respect to all the rest of them.
doi:10.1371/journal.pone.0078205.t003

Increasing Significance in Multi-Assay Experiments
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In order to perform the selection of the reference assay with the

least bias possible, we measure ‘how different’ each assay is to the

rest and we choose the one that is the least different; in a sense, the

most representative one. To quantify this ‘difference’ we use in fact

the Pearson correlation coefficient, since it presents a property

which makes it very convenient for our purposes: It discounts (is

insensitive to) the possible existence of both additive and

multiplicative systematic errors between the compared assays,

thus measuring the difference in the variation tendency only [12];

which is exactly what we need. Also notice that, as a simple

consequence of its definition in eq. (8), rkl is symmetric under the

permutation of the indices k and l. This is intuitive, since it means

that ‘the difference between assays k and l’ is the same as ‘the

difference between assays l and k’.

The step that remains to be able to select the reference assay is

simple: Just compute the average correlation coefficient rk of the k-th

assay with respect to all the rest of them:

rk~
1

M{1

X
l=k

rkl , ð9Þ

and pick the one with the largest rk.

In the last column of table 3, we show the average correlation

coefficient rk associated to each assay. We can see that it is the

largest for assay 2. Therefore, we select assay 2 as our reference

assay in the example we are discussing (which, by the way, explains

the particular fits portrayed in fig. 3).

Now that the reference assay has been chosen and all the linear

fits have been computed, we are ready to apply the correction to the

rest of assays. If we denote by f the value of the index k that

corresponds to the reference assay (f ~2 in our example) and we

use ~xxl
j for the corrected value associated to the original quantity xl

j

(system j, assay l), the correction formula reads like this:

~xxl
j~

xl
j{Al

bfl

zAf : ð10Þ

In order to produce the whole set of corrected results, we should

apply this for all assays l=f , with l~1, . . . ,M, and for all systems

with the index j~1, . . . ,N .

In order to understand the reason behind this formula, it is

convenient to write the inverse transformation by solving for xl
j :

xl
j~bfl(~xx

l
j{Af )zAl , ð11Þ

and also to notice that the systems-average of ~xxl
j is given by:

~AAl~
1

N

XN

j~1

~xxl
j~

(1=N)
PN
j~1

xl
j{Al

bfl

zAf

~
Al{Al

bfl

zAf ~Af ,

ð12Þ

i.e., all the averages of the corrected assays are equal to the

average of the reference one. Now, if we take eq. (11) to the

covariance in eq. (7) with k~f , we obtain:

Cov(f ,l)~
1

N

XN

j~1

x
f
j {Af

� �
xl

j{Al

� �

~
1

N

XN

j~1

x
f
j {Af

� �
(bfl ½~xxl

j{Af �zAl{Al)

~bfl

1

N

XN

j~1

x
f
j {Af

� �
~xxl

j{Af

� �

~bfl
1

N

XN

j~1

~xxf
j {

~AAf

� �
~xxl

j{
~AAl

� �

~bflCov(~ff ,~ll),

ð13Þ

where, in the last step of the second line, we have used that

Af ~~AAl [as we proved in eq. (12)], but also that the correction in

eq. (10) is obviously the identity for the reference assay f (it suffices

to notice that bff ~1), which makes x
f
j ~~xxf

j , as well as all the

derived quantities, such as Af ~~AAf . In the last line of eq. (13), we

have simply used the natural notation Cov(~ff ,~ll) to indicate the

covariance between the corrected assays ~ff and ~ll. Finally, if we use

eq. (13) together with the definition of the slope in eq. (4a) (with

k~f ), we obtain:

~bbfl~
Cov(~ff ,~ll)

~SS2
f

~
1

bfl

Cov(f ,l)

S2
f

~
bfl

bfl

~1 , ð14Þ

where we have denoted by ~bbfl the slope associated to the fit

between the corrected assays ~ff and ~ll, and we have used that
~SSf ~Sf . Also, it is easy to prove that:

~aafl~~AAl{~bbfl
~AAf ~~AAl{~AAf ~~AAf {~AAf ~0 : ð15Þ

That is, the slope of the fits among the corrected assays is 1 and the

intercept is 0. Since we argued that the first can be interpreted as a

multiplicative systematic error and the second as an additive one,

we have just proved that our proposed correction in eq. (10) has

the promised effect of eliminating both errors. To see that this also

has the effect of reducing the standard deviations and improving

the statistical significance of our results, we turn to the next

section.

But before, let us mention a final consistency property of the

correction method: In mathematical jargon, it is idempotent. In plain

words, applying it twice is the same as applying it once, i.e., if we

apply the whole correction process to the corrected results, we find

that nothing changes. The corrected-corrected results are just the

corrected results.

All the formulae needed to compute the linear fits, the inter-

assay correlation coefficients, as well as the correction in eq. (10)

are provided in this section and they are very simple. The reader

can choose to implement them in any spreadsheet of her liking, or

she can use the Perl scripts we have written for the occasion and

which can be found in file S1. Also in file S2, we provide a cheat

sheet with the bare steps of our method, conveniently organized,

briefly stated, and stripped off of all the explanatory text that

surrounds the steps in this article.

Increasing Significance in Multi-Assay Experiments
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Results

If we apply the correction in eq. (10) to our original results in

table 1, we obtain the corrected values in the second part of tab. 4

(where we have repeated the uncorrected data to facilitate the

comparison).

At first sight, the corrected standard deviations ~ss seem much

better when compared to their associated averages ~mm for each

system. This impression is reinforced if we take a look at the

corresponding bar charts in fig. 4.

If we want to be rather quantitative, and recall that the inter-

system variation of MetLuc activity is what really matters to us, we

can repeat the p-values calculation in The problem with the results

for the corrected data. In tab. 5, we present both the original p-

values obtained from the uncorrected results as well as the new

ones. We remind the reader that the p-value’s meaning is that it

quantifies the probability that the observed difference between two

average values, mj and ml , corresponding to two different vectors

can be produced by pure chance, i.e., without the need to resort to

any supplementary explanation such as the difference in the

sequences of the two promoter regions in the vectors. One

typically considers the observed difference to be statistically

significant when pv0:05, that is, when the probability that it

can be obtained by pure chance is less than 5%. As we can see in

tab. 5, while the original situation was despairing, with two out of

the fifteen possible pairs close to the p~0:05 threshold, none

below it, and several significantly larger, the corrected p-values

show a much better behavior. For the corrected data, eleven out of

the fifteen possible comparisons are below the p~0:05 threshold,

two of them are close to it, and only two are significantly larger.

This means that most of the observed differences in MetLuc

activity are now statistically significant.

In order to enrich our picture of what is going on here, we can

also take a look at the corrected version of the tendency plot that

we presented before in fig. 2 and which we now repeat here on the

left of fig. 5. As we can see in the corrected tendency plot on the

right, the fact that all three assays correctly captured the overall

variation tendency of the data has been maximally leveraged by

the correction in eq. (10). Without altering the legitimate random

noise in the original results, the additive and multiplicative

systematic errors have been eliminated, and the corrected

tendency lines are now optimally superimposed.

Similarly, we can compare the original and corrected scatter

plots in fig. 6. In the second one, the best fit lines corresponding to

assays 2 vs. 1 and assays 2 vs. 3 have been omitted because they

coincide with the zero-intercept unit-slope y~x line. This is the

precise mathematical embodiment of the fact that the correction in

eq. (10) eliminates the additive and multiplicative errors’: it

transforms all the fits against the reference assay from non-zero

intercept and non-unit slope to zero intercept and unit slope. The

fact that the random error is unmodified can be appreciated by the

remaining dispersion of the scatter plot points with respect to the

y~x line in the second graph in fig. 6.

Discussion

We have introduced a simple method for correcting results in

multi-assay experiments under two very basic conditions, namely,

only inter-system variations matter to us, and the different assays

present high linear correlation with one another. The method

allows to considerably reduce the standard deviation of the

systems’ averages across assays, consequently increasing the

statistical significance of the results. We have applied the

correction method to a real experiment in cell biology where

great improvements have been appreciated.

Our interpretation of the situation is that uncontrolled

differences (errors) appear when a given experiment is repeated.

Some of them are random (i.e., we see no pattern in them) and

therefore cannot be eliminated. Some others are systematic and

can be. If we represent a scatter plot where the results of one assay

are placed on the x-axis, the results of a different one are placed on

the y-axis, and we perform a linear fit, we can expect to observe

two different situations:

N The best fit line has zero y-intercept and a unit slope. We

interpret this as all the error being random, and no correcting

action can be applied here. The data must be used ‘as is’.

N The best fit line has a non-zero intercept, a non-unit slope or

both. We interpret this as some of the error being systematic,

some of it random. The non-zero intercept signals an additive

systematic error, the non-unit slope a multiplicative systematic

one, and the dispersion of the scatter plot points from the fit

line signals the part of the error that is random. In such a case,

we can apply the correction in eq. (10), thus eliminating both

systematic components and reducing the situation to the one

described in the previous point.

As it is always the case with systematic errors, one might or

might not know the actual reasons behind them (we left the

apparatus on too much time, the cell number was larger than

usual, we inadvertently used the wrong pipette, etc.), but we do not

really need to know the reasons to confidently assert that a

systematic error is indeed there. If the difference between two

assays is (mostly) captured by multiplying the results of one of them

by a number b=1 and adding a number a=0, we are entitled to

entertain the strong suspicion that some very real causes are

Table 4. Starting and corrected results.

Before

assay 1 assay 2 assay 3 m ± s

pMAN12 33.88 5.65 15.53 18.36 6 14.33

pMAN17 17.60 3.61 11.29 10.83 7.01

pMAN18 4.62 0.94 2.72 2.76 1.84

pMAN19 55.35 9.30 14.52 26.39 6 25.22

pMAN20 11.15 4.78 9.10 8.35 6 3.52

pMetLuc– 0.00 0.39 0.54 0.31 6 0.28

After

assay 1 assay 2 assay 3 ~mm 6 ~ss

pMAN12 6.35 5.65 8.10 6.70 6 1.26

pMAN17 3.64 3.61 5.52 4.26 6 1.10

pMAN18 1.48 0.94 0.34 0.92 6 0.57

pMAN19 9.93 9.30 7.48 8.91 6 1.27

pMAN20 2.56 4.78 4.20 3.85 6 1.15

pMetLuc– 0.71 0.39 20.98 0.04 6 0.90

Activity of the MetLuc protein under the control of six different promoter
sequences measured in three assays, before and after the correction described
in The method. The last two columns correspond to the average m of the three
assays for each vector, and the associated standard deviation (or error) s. The
units as well as the rest of the experiment’s details are described in the text.
doi:10.1371/journal.pone.0078205.t004
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behind this predictable pattern. Hence, even if we do not know

these causes, it would be a wasted opportunity not to apply the

correction in eq. (10). If you do know the causes, good for you. So

much the better. In fact, by applying the reasoning associated to

the method described here, the presence of a non-zero intercept or

a non-unit slope in the fits of the different pairs of assays (plus a

high linear correlation among them) may suggest to the

experimenter that some additive or multiplicative systematic error

is being made from assay to assay. With this clue, she can then

proceed to look for the actual experimental causes behind them (in

case they were previously unknown).

Also notice that systematic errors might not end at the linear

order. The relation between the results of two different assays

could be well described by a quadratic relation y~cx2zbxza
plus some random error for example; or even by higher order

polynomials. No a priori reason can reject this possibility, however,

a treatment of these more complicated cases is outside the scope of

this work.

An important part of the method introduced here is that, since

we do not know the ‘real’ absolute value of the measured

quantities (and in fact it does not matter to us), we have to choose a

reference assay to fit all the rest of assays to. The most reasonable way

to perform this choice in an unbiased manner is to select the most

representative assay in the experiment, the one that is ‘most similar

to all the others’. We make this condition precise by measuring the

difference of every assay to all the rest of them and choosing the

one that is the least different to all the others. We use the Pearson

correlation coefficient associated to the goodness of the linear fit

for this purpose because it correctly discounts the additive and

multiplicative systematic errors.

It is also worth mentioning that the use of the word ‘error’ for

differences among one specific assay and the rest of them might

seem unorthodox at first sight. After all, the ‘error’ is ideally

defined as the difference between the measured quantities and

their ‘real’ values. However, we think that this apparent overuse of

the term is just that: apparent. Since the ‘real’ values are never

actually known, the ideal definition of ‘error’ is philosophically

appealing but practically inapplicable. What researchers always do

is to compare one set of measures to some more accurate ones (but

not ‘real’ yet), to some theoretical prediction (not ‘real’ either), etc.

In this sense, and given that the ‘real’ values of the quantity x are

unknown in our experimental setup described in Methods (as in all

setups!), the ‘best’ guess we a priori have (before the proposed

correction) of the most accurate set of measures is precisely the

most representative of our assays, i.e., the one that is the least

different from the rest. This is why we choose it as the reference to

which all the rest of the assays are compared, and this is why the

observed differences deserve to be intuitively called ‘errors’.

Although our facts come straightforward, we have found in the

literature only one related proposal for a correction method that

could be compared to ours (even if its rationale is never clearly

expressed as we do here). This related method readily comes to

mind and it consists of dividing, in each assay, the value of x for all

systems by the value of one of them. For example, we could select

pMAN18 as our normalizing vector, divide the activities of all the

vectors in each assay by the activity of pMAN18 in the same assay,

Figure 4. Errors in the starting and corrected results. Bar chart representation of the average values m (orange bars) and the associated
standard deviation s (black capped lines) in table 4, before and after the correction described in The method.
doi:10.1371/journal.pone.0078205.g004

Table 5. p-values associated to the starting and corrected
results.

Before

pMAN12 pMAN17 pMAN18 pMAN19 pMAN20 pMetLuc–

pMAN12 – 0.475 0.198 0.662 0.349 0.161

pMAN17 – – 0.178 0.399 0.618 0.121

pMAN18 – – – 0.246 0.077 0.145

pMAN19 – – – – 0.340 0.215

pMAN20 – – – – – 0.050

pMetLuc– – – – – – –

After

pMAN12 pMAN17 pMAN18 pMAN19 pMAN20 pMetLuc–

pMAN12 – 0.066 0.007 0.100 0.045 0.003

pMAN17 – – 0.018 0.009 0.679 0.007

pMAN18 – – – 0.003 0.030 0.236

pMAN19 – – – – 0.007 0.001

pMAN20 – – – – – 0.012

pMetLuc– – – – – – –

Probabilities (or p-values) that the observed differences between the averages
mj and ml of the measured promoter activity for each pair of vectors can be

produced by pure chance. The two tables correspond to the data before and
after the correction described in The method. Values smaller than 0.05 indicate
that the observed difference is statistically significant in both cases, and the
entries satisfying this condition have been highlighted using boldface fonts.
doi:10.1371/journal.pone.0078205.t005
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and thus obtain a new set of results now expressed as a normalized

fold change in activity with respect to the pMAN18 value (which now

becomes 1.0). This is used for example in [13–16] or fig. S3 in

[17].

The result of applying this normalization to the original data in

tab. 6 is presented in tab. 6. We see that the standard deviations

have been reduced and in fact the overall improvement is similar

to what we obtained when applying the correction method

introduced in this work. However, this normalization procedure

presents some drawbacks which, in our opinion, render it inferior

to our method. Namely:

N It demands an arbitrary choice (that of the normalizing system)

which seems ad hoc and prevents automatization in some

degree. And related to this, it does not seem easy to interpret

nor does it seem completely legitimate that the corrected result

for the normalizing system has a zero standard deviation.

N If we recall the general formula for the propagation of errors in

p. 50 of [11],

s2
f ~

Xn

i~1

Lf

Lqi

� �2

s2
i , ð16Þ

where f (q1, . . . ,qn) is a function of n random variables with

standard deviations (errors) s1, . . . ,sn, we can use it to compute

the error in the normalized quantity yj~xj=x�, where xj is the

measured result for the system j (in a given assay) and x� is the

quantity measured for the system chosen to normalize the

results:
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We see that the error in the normalized quantity yj relative to the

Figure 5. Tendency in the starting and corrected results. Variation of the quantity x (MetLuc activity) in table 1 for the six systems (vectors)
studied, before and after the correction described in The method. Each color corresponds to a different assay, and the lines joining the experimental
points have been added for visual comfort.
doi:10.1371/journal.pone.0078205.g005

Figure 6. Linear correlation between assays in the starting and corrected results. Scatter plots comparing the x quantity (MetLuc activity)
of the six systems (vectors) in table 4 for different pairs of assays, before and after the correction described in The method. Using blue squares:
MetLuc activity in assay 2 vs. the same quantity in assay 1. Using green triangles: assay 2 vs. assay 3. The least-squares fit lines are depicted using the
same color as the respective points, and we also show the y~x line in red for reference.
doi:10.1371/journal.pone.0078205.g006
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value of yj itself is the sum of the relative errors of xj and x�. Now,

if we happen to choose a particular normalizing system with high

relative error, this could spoil the whole assay when we divide all

the results by x�, even if the rest of measures were accurate.

N The described normalizing procedure seems fit to eliminate

multiplicative systematic errors, but not additive ones.

Our method suffers from none of these problems:

N No choice of a ‘special’ normalizing system is needed. (There is

a choice of a reference assay, but it is made in a justified way,

as we have explained.)

N In a manner of speaking, it distributes the normalization

among all the values in a given assay, thus minimizing the

probability that one specially bad apple spoils the whole

basket.

N It eliminates both multiplicative and additive systematic errors.

If we check out exhaustive textbooks in biostatistics, such as

[8,9,18], or more wide ranging ones, such as [19–23], we do not

find any account of a correcting method that is similar to that we

propose here. Sometimes the texts come close but never hit the

target.

One way of coming close is discussing repeated measures. See for

example chap. 9 in [21], chap. 27 in [20], or chap. 8 in [24], [18],

and p. 346 [8] for detailed discussions of such concept in

biosciences.

A very similar experimental setup to the one used here (and

thoroughly described in Experimental setup (i.e., measuring the

same quantity on N systems and repeating the experiment M
times) is the ‘‘Repeated measures’’ one, but with a fundamental

difference attached to it, as it tackles measurements that are expected

to change from repetition to repetition [e.g., a time series, or table II of [1]

discussed in Experimental setup]. In turn, in our setup, results of

several repetitions are expected to be the same, and this is key to

our further decision to correct them, a rather unnatural take in the

repeated-measures setup. A second essential difference adds up to

it, and that is, for the ‘‘repeated measures’’ setup, the interest lies

not only with the inter-system variation but with the absolute value

as well, while in ours, the absolute value does not matter.

Another similar situation to the one we have considered here is

dealt with in In p. 539 of [19], namely blocking. However, they do

not discuss what to do if there is an obvious linear correlation

between the blocks (as in their figure 13.6a) or take any correction

action on it (as shown from their example in figure 13.12).

One of the reasons we can offer for not finding any previous

references in the literature to a method as straightforward as ours

(for as much as we have inquired) could be the usual interpretation

of the range of application of the least-squares fit protocol. That is

typically fitting some values in the x-axis against those on the x-

axis and uses them as such to assess a possible linear relationship

between two different quantities, let’s say apples and oranges. So much

so that x is typically called the independent variable, while y is the

dependent one. It is a key conceptual step in our approach to

realize that it actually makes sense to investigate the linear

correlation of some quantity against itself (as measured in two

different assays), and consequently interpret any difference

between the two as an experimental error (in the manner we

explained above).

Another reason that could possibly be behind the absence of any

precedents is the fact that despite being quite intuitive to us,

systematic errors of the multiplicative kind are very rarely

discussed in such literature as they are normally considered to

be additive.

After a thorough search we have only found anecdotal mentions

in a paper that discusses the influence of natural fires on the air

pollution of the Moscow area [25], in a proceedings paper about

anticorrosion coating [26], in a recent work concerned with

calibration of spectrographs for detecting earth-mass planets

around sun-like stars [27], and in a similar paper focused in the

detection and study of quasars [28]. All authors consider the

possibility of a multiplicative systematic error in their models or

measurements but take no action to correct it.

Discussions on multiplicative systematic errors are given more

room in papers by [29] (in p. 3), who acknowledge the existence of

multiplicative systematic errors in the context of analytical

chemistry and the necessity to eliminate them or by [30] who

discusses the possibility of both additive and multiplicative

systematic errors, as well as their respective relation with non-

zero y-intercepts and non-unit slopes. Finally, in p. 39 of [11], the

authors discuss multiplicative systematic errors (which they call

gain shifts or gain errors) and also provide several examples where this

multiplicative systematic error can appear, but none of the above-

mentioned authors provide any method for eliminating them.

It is also worth mentioning that, in [30] and in [11], the authors

consider the error to be defined with respect to ‘‘true’’ results (to

calibrate experimental protocols) or at least more accurate results

(to calibrate measuring devices). As we have explained above

(when discussed the choice of the reference assay), our perspective

on the issue is different, and so it is the approach. That is why, if

we want to correct our results against some ‘‘better’’ data, we are

presumably interested not only in the variations of the measured

quantity, but also in its absolute value.

We have only found one work, concerned with gas electron

diffraction data [31], in which the authors both consider the

existence of multiplicative systematic errors and take actions to

correct them. However, the proposed correction is particular to

the concrete problem studied, and the experimental setup is

different to the one described in Experimental setup: The authors

refer to systematic errors in experimental data with respect to the

‘‘true’’ values, not to systematic errors between different measures

of the same quantity as we do here.

It is also worth mentioning that sometimes scientists choose to

show a ‘‘representative’’ assay in which the trend among the

different systems is apparent but the Pearson correlation is not

strong between pairs of assays. This could be justified in a

qualitative way and based on the knowledge of the experiment by

the scientist. However, application of our method to such a

Table 6. Results normalized via division by the values of one
system.

assay 1 assay 2 assay 3 m ± s

pMAN12 7.33 6.01 5.71 6.35 6 0.86

pMAN17 3.81 3.84 4.15 3.93 6 0.19

pMAN18 1.00 1.00 1.00 1.00 6 0.00

pMAN19 11.98 9.89 5.34 9.07 6 3.40

pMAN20 2.41 5.09 3.35 3.62 6 1.36

pMetLuc– 0.00 0.41 0.20 0.20 6 0.21

Fold change in activity of the MetLuc protein under the control of six different
promoter sequences measured in three assays. The numbers in this table have
been obtained from the activity data in table 1 through division by the value for
pMAN18.
doi:10.1371/journal.pone.0078205.t006
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situation would not be legitimate since one of the fundamental

conditions needed for that is not satisfied.

Conclusions

We have introduced a method for correcting the data in

experiments in which a single quantity x is measured for a number

of systems in multiple repetitions or assays. If we are not interested

in the absolute value of x but in the inter-system variations only,

and if the results in different assays are highly correlated with one

another, we can use the proposed method to eliminate both

additive and systematic differences (errors) between each one of

the assays and a suitably chosen reference one. As we have shown,

using a real example of a cell biology experiment, such correction

can considerably reduce the standard deviation in the systems’

averages across assays, and consequently improve the statistical

significance of the data.

The method is of a very wide applicability to experimental

results and very likely to numerical simulations as well, (as long as

the structure of the setup and the requirements on the data are

those mentioned and carefully discussed in Experimental setup).

This, together with its simplicity of application (the only

mathematical infrastructure needed to apply it is basically least-

squares linear fits), makes the method of very wide interest in any

quantitative scientific field that deals with data subject to

uncertainty.

Some possible lines of future work include the application of the

method to a wider variety of problems, a deeper statistical analysis

of its properties and the assumptions behind it, as well as the

extension to systematic differences of higher-than-linear order

(that we briefly mentioned in Discussion).

Supporting Information

File S1 Perl scripts for correcting the experimental data
as described in this article. Compressed zip file including the

scripts, example data files, and a README file explaining basic

installation and usage.

(ZIP)

File S2 Cheat sheet. Summary of the experimental setup, the

possible problem with the data, the requirements to apply the

correcting method, and the method itself. Quick reference for the

reader.

(PDF)
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