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Abstract: Texture and flavor are currently the main challenges in the development of plant-based
dairy alternatives. To overcome them, the potential of microorganisms for fermentation of plant-based
raw materials is generating great interest in the food industry. This study examines the effect of
Lactobacillus rhamnosus, LGG R© (LGG R© is a trademark of Chr. Hansen A/S) on the physicochemical
properties of fermented soy, oat, and coconut. LGG R© was combined with different lactic acid bacteria
(LAB) strains and Bifidobacterium, BB-12 R© (BB-12 R© is a trademark of Chr. Hansen A/S). Acidification,
titratable acidity, and growth of LGG R© and BB-12 R© were evaluated. Oscillation and flow tests
were performed to analyze the rheological properties of fermented samples. Acids, carbohydrates,
and volatile organic compounds in fermented samples were identified, and a sensory evaluation
with a trained panel was conducted. LGG R© reduced fermentation time in all three bases. LGG R©

and BB-12 R© grew in all fermented raw materials above 107 CFU/g. LGG R© had no significant
effect on rheological behavior of the samples. Acetoin levels increased and acetaldehyde content
decreased in the presence of LGG R© in all three bases. Diacetyl levels increased in fermented oat
and coconut samples when LGG R© was combined with YOFLEX R© YF-L01 and NU-TRISH R© BY-01
(YOFLEX R© and NU-TRISH R© are trademarks of Chr. Hansen A/S). In all fermented oat samples,
LGG R© significantly enhanced fermented flavor notes, such as sourness, lemon, and fruity taste,
which in turn led to reduced perception of the attributes related to the base. In fermented coconut
samples, gel firmness perception was significantly improved in the presence of LGG R©. These findings
suggest supplementation of LAB cultures with LGG R© to improve fermentation time and sensory
perception of fermented plant-based products.
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1. Introduction

The demand for plant-based alternatives to fermented dairy products is increasing [1–3] and
meeting consumer’s expectations is a major challenge for food producers. Favorable organoleptic
properties dominate over sustainability or health when it comes to consumer behavior [4].
In this regard, texture and flavor attributes play an important role in plant-based products [5] and
their improvement is essential for successful product development. This can be achieved through
fermentation [6], since the use of microorganisms facilitates the development of clean label products.
Thereby, some of the main challenges that plant-based products currently face, such as excessive food
processing or the use of additives, [7], can be avoided. In this context, it is crucial to understand the
effect that bacterial cultures have on plant-based raw materials, focusing on their potential for sensorial
and textural improvement of fermented plant-based products. A wide variety of plant-based substrates
(i.e., bases) with different compositions are currently being studied [1,8] with the goal of mimicking

Foods 2020, 9, 1182; doi:10.3390/foods9091182 www.mdpi.com/journal/foods

http://www.mdpi.com/journal/foods
http://www.mdpi.com
https://orcid.org/0000-0002-9328-7295
https://orcid.org/0000-0001-6524-7723
https://orcid.org/0000-0001-8420-4569
http://dx.doi.org/10.3390/foods9091182
http://www.mdpi.com/journal/foods
https://www.mdpi.com/2304-8158/9/9/1182?type=check_update&version=2


Foods 2020, 9, 1182 2 of 31

the functionality of dairy milk. Soybean has dominated for the past decades [1,9], but the portfolio
of plant-based raw materials for plant-based fermented products has expanded into other legumes,
nuts, seeds, pseudocereals, and cereals [2]. Soy [2,3,10], oat [11], and coconut [12] are some of the most
popular substrates due to their nutritional value and/or their physicochemical properties.

Soy milk has the highest protein content among all plant-based milks (2.5–3.1 g per 100 mL [13]),
and its amino acid profile resembles the one from bovine milk [14]. It contains lower saturated and
higher mono- and polyunsaturated fat content than dairy milk [13]. However, storage globulins
in soy are considered to be allergens [15], one of the reasons for consumer rejection. Soybeans
also contain a high amount of galactooligosaccharides (GOSs), mainly raffinose and stachyose [16].
They are considered non-digestible oligosaccharides (NDOs) due to an absence of α-galactosidase
in human intestine [17]. For this reason, soy has gained bad reputation for generating bloating and
gastrointestinal disorders [16]. Fermentation with lactobacilli has been proven to metabolize soy
oligosaccharides [18]. Acidification of commercial soy drinks down to pH 3.5 after 48 h of fermentation
at 37 ◦C has been reported [19]. Fermentation also contributes to the rheological characteristics of
soy-based gels, as shown in numerous studies [20,21]. Soy protein gelation is the main feature in
fermented soy gels [22] and it is affected by different factors, such as globulin (7S and 11S) ratios [23]
in protein-polysaccharide blends and molecular weight of polysaccharides [22]. In addition, gelation
of soy proteins can also be induced by enzymes. Transglutaminase induced soy protein gelation for
plant-based yogurt with encapsulated probiotics [24]. Previous studies suggested that soy protein
could have a similar isoelectric point to casein [25,26] and its high gelation potential [22] could be
influenced by its endogenous peptidases [27]. Moreover, combinations of bacterial strains could
influence soy gels rheological properties. For instance, higher viscosity was observed with binary
cultures fermentation, specifically with a combination of L. acidophilus and L. plantarum [25]. Fermented
soy is associated with a characteristic beany flavor caused by lipid oxidation products (mostly pentanal
and n-hexanal [28]). This limits its acceptance in occidental cultures. However, this can be overcome
using different methods, such as pulse electrification or lipoxygenase treatment [29].

Oats have lately gained popularity due to their high nutritional value [30]. Their dietary fibers,
specifically soluble fibers β-glucans found in the endosperm cell walls, are considered prebiotics.
They serve as feed for the intestinal microflora, promoting bacterial growth during fermentation [31].
β-glucans also contribute to a regulation of satiety levels [32] and act as thickening agents, increasing
product viscosity [33] and avoiding the addition of other functional ingredients or stabilizers [34].
Oat groats contain 15–20% protein [35] with a complete amino acid profile with almost all essential
amino acids exceeding human requirements except for lysine and threonine [35]. Oat protein
digestibility is generally high [36]. However, commercial oat-based milks present a protein deficiency
(≤1 g per 100 mL of product) [3]. This questions their suitability as a substrate for yogurt- and
cheese-like products, since proteins are an essential factor for texture formation in fermented
materials [22,27]. Nevertheless, this can be solved with protein supplementation or by preparing
a matrix from an oat concentrate. Globulins are the main proteins in oat and they have a similar
structure to soy 11S protein, also aggregating under 100 ◦C [37] and allowing gelation. The major
component of oat groats carbohydrates is starch (40–60%) [38] and its functionality has a positive
effect on the rheological properties of fermented products, contributing to gelatinization. Oat lipids
range from 2 to 13% and their oxidation is responsible for the off-flavor of oat-based products [39].
Volatile compounds generated through lipid oxidation, such as hexanal, pentanal, and certain
carbonyl compounds [40,41], give oat drink an unpleasant aftertaste related to rancidity. Additionally,
the presence of long-chain hydroxy fatty acids causes bitter off-notes in oat flavor [42]. These negative
attributes should be masked to achieve consumer acceptance of an oat-based dairy alternative.

Coconut is another popular raw material for the development of plant-based products; especially
its oil is used in cheese alternatives. It has the highest amount of fat and the lowest amount of
protein [1]. Commercial coconut milk has ca. 1 g of protein or less and 4–6 g of fat per 100 g of
product [13,43]. 87% of the fat is saturated [1] and it is mostly constituted by myristic acid, lauric acid,
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palmitic acid, and capric acid [14]. The high saturated fatty acids content in coconut oil enables
the formation of a solid structure at ambient temperature with a small melting temperature range
(18.3–26.4 ◦C [44]) influenced by short chain lauric acid [45]. Its ability to provide solid textures
makes it a good candidate to obtain firmer products, such as non-dairy yogurt or non-dairy cheese,
but, because of its lack of protein and high saturated fat content, it is not the most optimal replacement
for dairy alternatives [13]. Coconut milk contains a low carbohydrate content (5.5 g/100 g of product)
that can be reduced to 1.32 g/100 g of product after fermentation [46]. Previous studies reported
coconut milk as a favorable medium for probiotic bacterial growth [12] and for the preservation of cell
viability after fermentation [9].

Fermentation is an essential process to transform plant-based raw material into non-dairy
alternatives. Lactic acid bacteria (LAB) have been used since ancient times to ferment cereals, fruits,
vegetables, meat, and milk, among others, with the preservation and organoleptic improvement
purposes [6,47]. LAB are a group of gram-positive, non-spore-forming, facultative anaerobic
bacteria whose main carbohydrate fermentation product is lactic acid [48]. LAB can generate
an extended portfolio of aromatic compounds, endowing fermented products with characteristic
flavors and aromas originated with the breakdown of the predominant macronutrients in the food
matrix [49]. A wide range of alcohols, aldehydes, and acids are obtained from pyruvate precursors
and amino acids metabolism. Certain LAB can produce exopolysaccharides (EPS), compounds that are
known to improve texture in fermented products, increasing viscosity and improving stability [34].
This feature can enable the replacement of thickening agents. LAB that have already been used in
the development of fermented plant-based dairy alternatives are L. delbrueckii [50], S. thermophilus,
and L. delbrueckii subsp. bulgaricus [10], B. longum or L. rhamnosus [51]. In order to observe synergistic
effects similar to those in dairy fermentation, plant-based fermentation with pure and mixed cultures
has been evaluated [52]. It was found that both pure and mixed cultures are suitable for oat
fermentation, but pure cultures showed better flavor profiles. In the current study, different cultures
were combined with Lactobacillus rhamnosus, LGG R©, a registered trademark of Chr. Hansen A/S
identifying the L. rhamnosus strain and related products. LGG R© is one of the world’s most documented
probiotic strains. It originates from human intestinal microbiota and has been used worldwide
since 1990. Previous studies showed that L. rhamnosus can grow in bases containing cereals and
pseudocereals [11,53,54] and lower the pH. LGG R© has a strong proteolytic capacity and it is able to
produce exopolysaccharides (EPS) in dairy milk [55], which characterizes it as a functional starter
culture [56]. Its functionality has been studied in plant-based raw materials [57]. EPS were detected in
oat fermented with EPS-producing strains. In a later study, it was reported that EPS production takes
place at lower temperatures than growth temperature, which indicates that EPS are produced after
fermentation [58]. Their contribution to product viscosity [8,33] and prevention of phase separation in
oat yogurts fermented with EPS-producing strains was also highlighted. Polysaccharide production is
conditioned by the presence of different sugars in varying amounts in the base (i.e., growth media) [59].
Lactose, galactose, glucose were remarked as the most efficient carbon sources for EPS production with
L. rhamnosus [59]. This strain has also been used in studies that involve the fermentation of different
legumes [53], cereals [54], coconut, and hemp [9]. All of the studies reported its ability to grow and
lower the pH of the media and no negative effects on its viability or on the sensory properties of
the final products. Nevertheless, further research is being carried on for a deeper understanding of
probiotics in plant-based fermentation. One of the world’s other most documented strains is BB-12 R©

Bifidobacterium, also a trademark of Chr. Hansen A/S. Satisfactory growth of BB-12 R© in fermented
soy with different carbohydrate content has been reported [60]. In addition, α-galactosidase activity
of BB-12 R© can reduce GOSs content in soy milk. Viability of BB-12 R© was likewise shown in a soy
dessert during 6 months of storage at colony forming units (CFU) levels above 107 CFU/g [4]. It has
been suggested that soy milk and coconut milk could be richer media for BB-12 R© growth due to their
amino acids profile in comparison to dairy milk [61].
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The objective of this study was to investigate the growth and viability of LGG R© and BB-12 R©

in fermented plant bases. Soy, oat, and coconut were selected as substrates to cover a broad
spectrum of plant-based raw materials: legumes, cereals, and high fat substrates, respectively.
In addition, the synergy of LGG R© and different starter cultures, including BB-12 R©, and their effect on
physicochemical and sensory properties were studied. It was intended to demonstrate the growth of
both probiotic strains in plant materials above 107 CFU/g, overtaking the recommended levels for a
beneficial effect on human intestinal health (106 CFU/g) [62,63].

2. Materials and Methods

For each base, three separate batches were produced; for each batch, duplicate measurements
were taken in all the experiments.

2.1. Preparation and Fermentation of Plant Bases

The raw materials used for the preparation of the bases were soy milk (Naturli Foods,
Vejen, Denmark), coconut milk (Aroy-D, Thai Agri Foods, Samut Prakan, Thailand), oat concentrate
(Oatvita, Frulact, Tortosendo, Portugal), sucrose (Nordic Sugar, København, Denmark), and starch
(Clearam CJ5025, Roquette, Frankfurt am Main, Germany). The preparation of the media was
performed following the composition that is shown in Tables 1 and 2. Ingredients were mixed
until obtaining a homogeneous matrix. Oat concentrate was previously subjected to an enzymatic
treatment (partial hydrolysis and saccharification of starch) followed by a heat treatment.

Table 1. Composition of the plant bases.

Base Composition

Soy 95% soy milk, 5% sucrose
Oat 30% w/w oat concentrate

Coconut 93% coconut milk, 3% sucrose, 4% starch

Table 2. Nutritional content of the unfermented bases produced for this study.

Base Protein (%) Carbohydrates (%) Main Sugar Fat (%)

Soy 3.7 5 Sucrose 2
Oat 4.5 18 Glucose 2.2

Coconut 1.49 3 Sucrose 17.67

Sample size for base fermentation oscillated between three and five liters. Soy, oat, and coconut
bases were pasteurized at 90 ◦C for 20 min and cooled at the fermentation temperature of 43 ◦C.
The cultures used for the fermentation of the plant bases were provided by Chr. Hansen A/S
(Hørsholm, Denmark) and they are shown in Table 3. Samples were inoculated with 0.02% of either
YOFLEX R© YF-L01 DA (YF-L01), YOFLEX R© YF-L02 DA (YF-L02), and NU-TRISH R© BY-01 DA (BY-01)
separately and with a combination of each of the previous cultures with LGG R©. A total of six different
culture combinations were inoculated in each base.

Table 3. List of bacterial cultures used for the fermentation of the plant bases.

Culture Name Composition

YOFLEX R© * YF-L01 DA (YF-L01) Streptococcus thermophilus

YOFLEX R© * YF-L02 DA (YF-L02) Streptococcus thermophilus and Lactobacillus bulgaricus supplemented with
Lactobacillus acidophilus, Lactobacillus paracasei, and Bifidobacterium

NU-TRISH R© * BY-01 DA (BY-01) Streptococcus thermophilus and Lactobacillus bulgaricus with Bifidobacterium, BB-12 R©

LGG R© Lactobacillus rhamnosus

* YOFLEX R© and NU-TRISH R© are trademarks of Chr. Hansen A/S.
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pH variation was measured at intervals of 4 min with iCinac (AMS S.R.L., KPM Analytics,
Rome, Italy) until the samples reached pH 4.5. Afterwards, the coagulum was broken with a
perforate disc and a cooling and a smoothing process (25 ◦C and two bars back-pressure) were
applied. The samples were stored at 6 ◦C.

2.1.1. Post Acidification and Titratable Acidity during Storage

Post acidification of fermented samples was measured with a standard pH-meter at day 1, 7,
14, and 21. Acidimetric titration of fermented samples was performed by auto-titrator InMotion Pro
(Mettler Toledo, Columbus, OH, USA). Samples of 5–15 g of fermented product were mixed with
demineralized water in a disposable titration breaker (Mettler Toledo, Columbus, OH, USA) up to
60 g without stirring. The samples were titrated against a 0.1 M sodium hydroxide (NaOH) solution
and analyzed in duplicates. The equation used to calculate titratable acidity (TA) values was as follows:

TA(% lactic acid) =
(mL 0.1 N NaOH× 0.9)

g sample
(1)

The molecular weight of lactic acid (90.08) is used as a constant in the equation (0.9). Buffer
solutions (pH 4.01, pH 7, and pH 9.21 at 20 ◦C) used for titratable acidity and post-acidification pH
measurements were provided by Hamilton Nordic AB (Kista, Denmark) and NaOH was obtained
from VWR (Søborg, Denmark).

2.1.2. Cell Growth during Storage

For the selective cell count of Lactobacillus rhamnosus, LGG R© and Bifidobacterium, BB-12 R©,
different growth media were prepared. The colony forming units count of LGG R© was performed
on De Man, Rogosa y Sharpe (MRS) 6.5 agar media (BD Difco, NJ, USA) with 100 µL of vancomycin
(internal solution) per 200 mL. The colony forming units count of BB-12 R© was performed on MRS
6.5 agar media with 1 mL of cystein hydrochloride 10% (CyHCl) (Merck, Søborg, Denmark), and 300 µL
of lithium mupirocin (MUP) (Sigma Aldrich, Søborg, Denmark) per 200 mL. Vancomycin and MUP
inhibit the growth of enterococci and lactic acid bacteria that could be present in the samples. They do
not affect the growth of LGG R© and BB-12 R©, respectively, enabling the selective enumeration of
colonies of interest. Initial samples were thoroughly mixed and stirred. The first dilution was prepared
with 5 g of each sample in 45 g of sterile peptone saline diluent (Oxoid, Roskilde, Denmark) in sterile
stomacher bags. The samples were mixed during 1 min at 230 rpm to ensure homogeneity and serial
10-fold dilutions were prepared. Each dilution was vortexed for 3 s. 1 mL of each dilution was
inoculated in empty Petri dishes and 12–15 mL of previously prepared melted MRS agar media with
vancomycin for LGG R© count was poured into the Petri dish. The same procedure was performed with
MRS media with CyHCl and MUP for BB-12 R© count. Diluted samples and growth media were mixed
by moving the Petri dishes in circular movements without incorporation of air. After solidification
of the medium, all Petri dishes were incubated at 37 ◦C for three days in an inverted position under
anaerobic conditions. After the incubation period, plates with 15 to 300 colonies were selected
for cell count and verified by microscopy. The results were reported as colony forming units per
gram (CFU/g).

2.2. Physicochemical Analysis of Fermented Bases

2.2.1. Rheological Measurements

Rheological experiments were performed after seven days of storage. A flow test and an
oscillation test were performed with a rheometer MCR 302 (Anton Paar GmbH, Graz, Austria).
A stainless-steel coaxial cylinder (CC27 system, stator inner radius 28.9 mm, rotor outer radius
26.7 mm, height 40 mm, gap 1.130 mm) was used. The oscillation test was performed between
0.5–8 Hz at constant strain, and complex modulus (G*), storage modulus (G′) and loss modulus (G′ ′)
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were measured. Complex modulus at a frequency of 1.52 Hz were used for the statistical comparison
of all samples based on a previous internal study. The flow test was performed with shear rates (γ)
from 10−3 s−1 to 300 s−1 for the up-flow and from 300 s−1 to 10−3 s−1 for the down-flow. Shear stress
(τ) was measured for each of the samples. Shear stress values for 45.2 s−1 shear rates were statistically
compared, according to previous findings about oral perception of thickness being strongly correlated
to deformation measurements for viscosity at a shear rate of 50 s−1 [64]. The hysteresis loop area
between up-flow curve and down-flow curve was also calculated.

2.2.2. Identification of Carbohydrates and Acids

Ion chromatography on Dionex systems 2–4 was performed to identify acids and carbohydrates
present in all fermented samples. All of the chemicals as well as analytes used for the standard
solutions were provided by Sigma–Aldrich, Munich, Germany. Internal standard solutions following
Dionex methods and a perchloric acid (PCA) protein precipitation solution were prepared. For the
latter, 6.9 mL PCA were mixed with 20 mL 0.1 M disodium ethylenediaminetetraacetate dehydrate
(Na2-EDTA), and Milli-Q Water (MQW) (Merck-Millipore, Merck KGaA, Darmstadts, Germany) was
added to a final volume of 1.000 mL. For the preparation of samples without sucrose (oat samples),
1 g or 1 mL of sample was quenched with 200 µL 4N sulfuric acid (H2SO4) in a 7 mL glass tube,
mixed and stored at −20 ◦C until analysis. For the preparation of samples with sucrose (soy and
coconut samples), 1 g or 1 mL sample was quenched with 2 mL ice-cold (−20 ◦C) 96% ethanol in 7 mL
glass tube, mixed and stored at −20 ◦C) until analysis. Acids standards were prepared by weighing
exact amounts of each acid and transferring them to a 200 mL volumetric flask. 150 mL MQW was
added and after ensuring that all acids were completely dissolved, pH was adjusted to pH to 8–9
with 4M carbonate-free NaOH. The carbohydrate standards were weighed in exact amounts and
dissolved in the acid mix. The flask was filled up to 200 mL with MQW and well mixed to ensure
that all solids were completely dissolved. Two types of controls were prepared: systemic controls to
tack the systems performance and matrix controls to calculate the variation within each individual
sequence. Systemic controls were prepared by adding 0.5 mL basic standard solution and 1 mL internal
standard solution at room temperature in a 500 mL volumetric flask. 300 mL MQW were added,
well mixed and filled up to 500 mL. The solution was aliquoted into HPLC vials adding 1.5 mL per
vial and stored at −20 ◦C until use. For the matrix controls, a 100 g sample was transferred to a 500 mL
blue cap flask and quenched by adding 20 mL of 4N H2SO4 and protein precipitated with 180 mL
PCA solution. The solution was stirred for 30 min, distributed into 50 mL falcon tubes, and centrifuged
for 15 min at 2.800 g (4 ◦C). The supernatant was taken out (150 mL) and pooled, adjusting pH to
8–9 with carbonate-free NaOH (app. 15–20 mL). The same standards are used for samples with and
without sucrose. pH was readjusted with ca. 5 mL NaOH and transferred to a 200 mL volumetric flask
that was filled up to 200 mL with MQW, ensuring that all of the standards were properly dissolved. For
each analytical series, a blank sample (1 mL MQW) as well as the relevant standard (1 mL) and control
are prepared in the same way as the actual samples. To samples without sucrose (oat samples), 1.8 mL
of PCA solution and 2 mL internal standard solution were added to each sample. To the correspondent
blanks, standards, and controls, 200 µL 4N H2SO4, 1.8 mL of PCA solution, and 2 mL internal standard
solution were added. To samples with sucrose, 2 mL internal standard solution were added. To the
correspondent blanks, standards, and controls, 2 mL ice-cold (−20 ◦C) 96% ethanol and 2 mL internal
standard solution were added. All of the samples were centrifuged for 30 min (2.800 g, 4 ◦C) and tubes
were directly transferred to Perkin–Elmer robot. Samples were diluted five times and those with a
solid layer of supernatant on top after centrifugation were filtered with 0.45 µm filter into a 7 mL tube.
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2.3. Identification of Volatile Organic Compounds (VOCs)

2.3.1. Identification of Targeted VOCs

The identification of targeted (VOCs) was performed with a static head space sampler connected
to a Gas Chromatograph with Flame Ionization Detector (GC-FID) (Perkin Elmer, MA, USA) and
equipped with a HP-FFAP column (length: 25 m; internal diameter: 0.20 mm; layer thickness:
0.33 µm; Agilent Technologies, Glostrup, Denmark). Helium was selected as the carrier gas.
The chemicals that were used for dilution and acidification were 1-methyl-2-pyrrolidone, MQW,
and 4N H2SO4. The compounds for the preparation of the standards were the following: acetone
(100 mg), acetaldehyde (100 mg), ethyl acetate (100 mg), 3-methyl butanal (100 mg), ethanol (100 mg),
diacetyl (100 mg), butan-1-ol (500 mg), and acetoin (500 mg). The chemicals were weighed and
transferred to a 100 mL measuring flask containing ca. 50 mL methyl-pyrrolidone. Acetaldehyde was
weighted as the last compound due to its volatility. Methyl-pyrrolidone was added until 100 mL and
stirred for 10 min. This was equivalent to a 1000/5000 ppm solution. 1 mL of the stock solution was
added to 99 mL MQW in a measuring flask and mixed carefully. This was equivalent to a 10/50 ppm
solution. For the analysis of the standard solution, 10 headspace vials (20 mL) with 1 mL of the
prepared standard plus 200 µL 4N H2SO4 were prepared, sealed with teflon-lined aluminium caps
and analyzed on the day of preparation. The remaining volume of the calibration solution was used
as aqueous control solution. It was frozen in tubes containing 3 mL, sealed and stored at −18 ◦C
prior to analysis. On the day of analysis, the solution was thawed and 1 mL of the solution was
transferred to headspace vials with 200 µL 4N H2SO4 and sealed with teflon-lined aluminium caps.
Kovats retention index solution (KI) was prepared with a mix of 25 µL hexane, 25 µL heptane, 40 µL
octane, 80 µL nonane, 160 µL decane, 360 µL undecane, 640 µL dodecane, 2500 µL tridecane, 100 µL
1-heptanol, 500 µL 1-octanol, and 1000 µL 1-nonanol, from which 25 µL were transferred to 20 mL
vials. For the preparation of the samples, 1 mL of each sample was transferred to a headspace vial
(20 mL) with 200 µL of 4N H2SO4 and sealed with teflon-lined aluminium caps. The samples were
analyzed with Masked Clean Air for volatile compounds (MCA-VOC) method with a split flow
of 10 mL/min. The identification of VOCs was based on retention time in comparison with that of
standards. The injector and detector were maintained at 180 ◦C and 220 ◦C, respectively. The oven
was initially heated to 60 ◦C and held for 2 min, then increased to 230 ◦C and held for 0.5 min.
The calculation of the concentration of each compound in each sample was based on the peak height
divided by the response factor (Equation (2)). The response factor was previously established with the
standard solutions by the quotient of the peak height divided by the known sample concentration.

Sample concentration =
Peak height

Response factor
(2)

2.3.2. Identification of Untargeted VOCs

For the analysis of untargeted VOCs, Gas Chromatography and Mass Spectrometry (GC-MS)
was performed. The chromatographer was equipped with a column DB-5M (length, 30 m; internal
diameter, 0.25 mm; layer thickness, 1 µm; Agilent Technologies, Glostrup, Denmark). It was
coupled to a MS-detector equipped with Solid Phase Micro Extraction (SPME, Multi-Purpose Sampler,
Gerstel, Skovlunde, Denmark) for identification and relative quantification of volatiles. A 2 cm fiber
(DVB/Carboxen/PDMS, Supelco) was used for the analysis. Helium was selected as the carrier gas.
Prior to analysis, a KI solution containing linear alkanes from C5 to C20 was prepared according to an
internal protocol. For the internal standard solutions (IS), 10 g/L stock solutions of ethanol-d6,
dimethyl-d6 disulfide, 2-methyl-3-meptanone, and pyrazine-d4 were prepared by dissolving in
1-Methyl-2-pyrrolidone. All four IS stock solutions were stored at −80 ◦C. In a 200 mL measuring
flask, approximately 150 mL water was added and the individual IS stock solutions were added
according to previously defined ratios. The measuring flask was filled to 200 mL with water as diluent.
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At this concentration level, the expected signal-to-noise values for all compounds was of around 50.
IS-solutions were stored at −18 ◦C.

For the sample preparation, 1 mL or 1 g of fermented sample was dispensed into a 20 mL vial
with 100 µL IS solution and stored at −18 ◦C until analysis. Fermented samples were analyzed after a
blank sample and the retention index sample (KI). GC was performed at an initial temperature of
32 ◦C that gradually increased to 325 ◦C. The incubation temperature and time for the SPME were
10 min and 60 ◦C, respectively. Penetration distance of the fiber in the vial was 30 mm and extraction
time was 20 min. Volatiles were adsorbed or absorbed onto the SPME fiber. The fiber was retracted
and injected into the GC inlet at 60 mm distance, liberating volatiles to be separated in the column and
detected by MS. Fiber was desorbed for 2 min. The results were analyzed with MatLab and reported
as relative signal-to-noise values for each sample (Equation (3)).

S/N =
Heightanalyte

HeightIS × Noiseanalyte
(3)

Chemicals for targeted and untargeted VOCs identification were obtained from Sigma–Aldrich
(Munich, Germany), except from 1-Methyl-2-pyrrolidone, which was purchased from Merck
(Merck KGaA, Darmstadts, Germany).

2.4. Sensory Analysis

Descriptive analysis of the fermented samples was performed by a trained sensory panel
composed of nine trained panelists. A training session took place before the tasting session to
familiarize the panelists with the samples and to define the attributes to be evaluated. Three different
sessions took place, one for each fermented base, and six samples were presented per session,
corresponding to the six different culture combinations. The samples were evaluated in duplicate,
in a randomized order and following a Latin square design. The identified attributes were rated on
a five-level scale of perceived intensity from “none” to “a lot”. Table 4 shows the definitions and
indications established for the evaluation of the most complex attributes.

Table 4. List of attributes evaluated during the sensory analysis.

Attribute Definition Indications

Gel firmness Resistance to deformation of the product. Slowly take a spoon of the product and place it on
the untouched sample surface. Note how long it keeps its shape.

Ropiness Sticky, glutinuous or soft Dip the bottom of the spoon several times fast in the surface
nature of the product. of the sample. A long string indicates high ropiness.

Astringency Similar feeling to very unripe fruit. If the sample dries out your mouth, it means high astringency.

Mouth coating The extent to which the product coats Distribute the product in your mouth and swallow it. If it leaves a
the palate and teeth during mastication. coating in your mouth, it is high in mouth coating.

Mouth thickness Sensation of sample consistency in mouth. Evaluate the product’s resistance when swallowed
with normal speed without tasting the sample.

Smoothness The smoothness against the palate as Perceive the smoothness of the sample by
it breaks up during mastication. squeezing it between palate and tongue.

Acetic Acidic smell of vinegar. Hold your nose to perceive acidic flavor.

Cardboard Aromatic associated with slightly oxidized fats, Tasting of the sample.reminiscent of wet cardboard packaging.

Fatty/creamy Feeling associated with heavy Compare the product with the given
whipping cream. full fat cream (38%) sample.

Foamy Foam appearance of the sample. Visual evaluation of the sample.

Powdery/chalky Powder sensation in mouth. Visual evaluation of the sample.

Pudding-like Similar structure to a pudding. Visual evaluation of the sample.

Shininess How shiny the surface of the product Visual evaluation of the sample.looks like.
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2.5. Statistical Analysis

Statistical analysis of obtained data was performed with SPSS. Three-way analysis of variance
(ANOVA) and Tukey tests were performed for the analysis of fermentation times, post-acidification,
TA, cell growth, VOCs, acids, carbohydrates, and rheology data. Sensory data were analyzed with
two-way ANOVA. Statistical evaluation of the results for the intensity perception included three-way
MANOVA (multivariate analysis of variance) with Wilks test to identify the overall sample differences
and ANOVA to find for which attribute there were significant differences, both considering the
factors product, judge and replicate as well as their two-way interactions. The Least Significant
Difference (LSD) test was used to detect significant differences among the product samples when
the attributes had a significant product effect. Rolling correlations were performed with rheological
experimental measurements and sensory perception data. Correlation coefficients between 1 and 0.6
and between −1 and −0.6 were accepted as significant. Principal Component Analysis (PCA) was
performed to correlate VOCs and flavor attributes for each of the bases and all culture combinations.
For all statistical analyses, except for the rolling correlations, significant differences were assumed at
95% confidence intervals (p < 0.05).

3. Results

3.1. Effect of LGG R© in Acidification Time

The time needed to reach pH 4.5 for all samples was compared to identify differences across bases
and a potential effect of LGG R© on acidification (Table 5). There was a significant difference between
the fermentation time in the three bases. This was related to their carbohydrates content and to the
initial pH of the unfermented bases. pH of unfermented soy, oat, and coconut were 6.96, 6.16, and 5.96,
respectively. Coconut samples needed shorter times to reach pH 4.5 and the initial pH was lower in
comparison to the other two bases. Therefore, the pH drop was smaller. However, the initial pH in
unfermented oat samples was lower than in unfermented soy samples, and the former needed more
time to reach pH 4.5 than the latter. A reasonable explanation could be attributed to the buffering
capacity of oat samples, since it was the base with higher protein content. Its globulins may have
caused the need for a higher production of acid to decrease the pH and consequently fermentation time
was increased. In fermented soy samples, the three culture combinations containing LGG R© needed ca.
1 h less to reach pH 4.5 in comparison to those without LGG R©. In fermented oat samples, LGG R© also
decreased in ca. 1 h and a half the fermentation time when combined with YF-L01, YF-L02, and BY-01.
In fermented coconut samples, there was no significant difference between culture combinations and,
therefore, LGG R© did not affect fermentation time.

Table 5. Fermentation time in hours required to reach pH 4.5 in all fermented bases.

Culture Combination
Base

Soy Oat Coconut

YF-L01 7.09 ± 0.10 Ac 8.57 ± 0.07 Bd 5.32 ± 1.18 C

YF-L02 6.64 ± 0.10 Ab 7.38 ± 0.03 Bbc 5.11 ± 1.26 C

BY-01 6.91 ± 0.10 Abc 7.94 ± 0.05 Bc 5.70 ± 1.16 C

YF-L01+LGG R© 6.27 ± 0.07 Aa 7.27 ± 0.05 Bb 5.33 ± 1.40 C

YF-L02+LGG R© 6.02 ± 0.10 Aa 6.65 ± 0.13 Ba 5.43 ± 1.18 C

BY-01+LGG R© 6.05 ± 0.23 Aa 6.80 ± 0.09 Bab 5.93 ± 1.16 C

ABC Means with different uppercase superscripts indicate significant differences between different columns
(p < 0.05). abc Means in the same column with different lowercase superscripts indicate significant differences
between different culture combinations (p < 0.05).
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3.2. Changes during Storage

3.2.1. Post-Acidification and Titratable Acidity

Post-acidification and titratable acidity of all fermented samples after day 1, 7, 14, and 21 were
evaluated to understand changes in acidity during storage. Results are shown in Figure 1.

Figure 1. pH changes and titratable acidity of fermented (A) soy, (B) oat, and (C) coconut samples
during storage at 6 oC for 21 days.

Oat samples showed significantly different post-acidification trends in comparison to soy and
coconut when LGG R© was present in culture combinations. In the two latter bases, there was no clear
difference in acidification patterns in regards to the culture combinations. In contrast, in oat samples
(Graph B, Figure 1, the presence of LGG R© in the culture combination contributed to a more drastic
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post-acidification and to higher lactic acid levels. These samples reached pH values around four
after 21 days of storage. This difference can be justified by a higher glucose content in the oatbase
(Table 2), which could have encouraged LGG R© to keep growing and producing lactic acid after
fermentation [65], especially at the latest stages of the storage period. This result concurs well with the
findings of Helland et al. [66]. They demonstrated the highest lactic acid production by L. rhamnosus in
comparison to other Lactobacillus strains in a plant-based blend. TA of fermented oat in this study was
higher than the one reported by Bernat et al. [65]. The highest value was 0.84% in samples fermented
by BY-01+LGG R© after 21 days of storage. In fermented soy samples, the presence of LGG R© showed
no significant differences in lactic acid production (Graph A, Figure 1). The highest value was 0.52%
in samples fermented with YF-L01 after seven days of storage. Similar TA values were reported by
Mishra et.al. in 2019 [67] in fermented soy blends and by Kpodo et al. in fermented soy-peanut
blends [68]. In coconut samples (Graph C, Figure 1), LGG R© only had an effect in day 14 and 21,
where the samples showed significantly higher lactic acid content. The highest value was 0.48%, found
in samples fermented by BY-01+LGG R© after 14 days of storage.

3.2.2. Viability of BB-12 R© and LGG R© during Storage

The growth of BB-12 R© and LGG R© was evaluated through their viable cell count during storage.
According to the results that are shown in Figure 2, all of the substrates were suitable for the growth of
both probiotic strains. BB-12 R© CFU ranged from 1.8 × 107 to 3.2 × 108 log CFU/g (Graph A, Figure 2).
This values are in line with the results that were obtained by Pavunc et al., who reported BB-12 R©

growth to be higher than 106 CFU/g in fermented cereal matrices [69].

Figure 2. Viable cell counts of (A) BB-12 R© and (B) LGG R© in fermented (s) soy, (o) oat, and (c) coconut
bases in day 1, 7, 14, and 21 of storage at 6 ◦C. ABC Means with different uppercase superscripts
indicate significant differences between different bases (p < 0.05). ab Means with different lowercase
superscripts indicate significant differences between different culture combinations (p < 0.05). Because
no significant difference between different cultures in each base was observed in the case of LGG R©

CFU, only uppercase superscripts are shown.
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There was a significant interaction between the base and the storage time as well as the culture
combination. This indicates that different BB-12 R© CFU values at different time points or fermented
with different cultures depend on the fermented base. BB-12 R©CFU were significantly different in the
three bases. Highest values were reported in soy, followed by oat and lastly coconut. A reasonable
explanation for this would be that Bifidobacterium was able to metabolize sucrose and GOSs [70], which
are present in the soy base, while it was not capable of degrading starch, the main carbon source in the
oat base. The viable cell count of BB-12 R© was significantly improved when BY-01 was combined with
LGG R© only in oat samples. It was also observed that BB-12 R© growth decreased over storage time.
In fermented soy and coconut samples, LGG R© did not have any significant effect on BB-12 R© growth.

Regarding LGG R© viable cell count (Graph B, Figure 2), CFU values ranged from 5.7 × 107 to
6.2 × 108 log CFU/g. These values correlate to the ones previously found in fermented cereal bases [66]
and legume bases [53]. The only significant interaction was between the base and the storage time.
This indicates that different LGG R© CFU at different time points depends on the fermented base.
LGG R© growth in oat samples was significantly different to soy and coconut. A reasonable explanation
may be LGG R©’s preference for simple carbohydrates [71]. Carbohydrate content in oat was higher
than in the other two bases [1]. Thus, LGG R© has access to a greater amount of sugars that can use as
carbon source. YF-L01, YF-L02, and BY-01 did not show any significant difference between them when
combined with LGG R©, which indicates that none of them affected the growth of LGG R©. The only
exception was the sample that was fermented by YF-L02+LGG R© in soy samples, whose LGG R© CFU
were higher in comparison to the other two combinations in day 14 and 21.

All fermented samples showed BB-12 R© and LGG R© CFU values above 107 CFU/g. This would
suggest both strains as good candidates for probiotic plant-based alternatives to dairy.

3.3. Rheological Behavior

Figure 3 shows the flow curves of fermented soy, oat, and coconut samples. The shape of all flow
curves was the same among different culture combinations. Therefore, one flow curve per fermented
base was reported.

Figure 3. Flow curves under controlled shear rates from 0 to 300 s−1 and from 300 to 0 s−1 of
fermented soy, oat, and coconut samples. Continuous lines correspond to up-flow and discontinuous
lines to down-flow.
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Literature supports that fermented soy-based beverages [72], oat-based preparations [4],
and coconut yogurts [73] experience shear thinning. Nevertheless, the flow test revealed shear
thinning in fermented soy and oat samples, which was already reflected in previous studies [8,58,74],
but unexpected behavior in fermented coconut samples. The microstructure in each of the plant bases
was expected to be different from each other, due to the very different components. Therefore, different
flow behavior and different shear stress values were expected. A regular hysteresis loop was observed
in fermented soy and oat samples, typical of dairy fermented products. In contrast, fermented coconut
flow curves had an atypical S-shape in comparison to those reported in previous studies with coconut
yogurt [75] and significantly higher shear stress values in comparison to the other two bases. Large
crystal particles may have formed in these fermented samples due to the high fat content in coconut
milk [14]. Fat crystals form a three-dimensional structure that confer resistance to deformation [76] until
the yield value is exceeded. After that, the material behaves like a viscous fluid [77]. A shear thickening
behavior was observed in fermented coconut samples up to 100 s−1, which could be attributed to
dominating starch structure. At higher shear rates, a shear thinning behavior was observed, indicating
a potential breakdown of the starch and a predominant effect of the crystal.

All of the shear stress values of fermented soy, oat, and coconut at a shear rate of 45.2 s−1 were
evaluated (Table 6). There was no significant interaction between the effect of the base and the effect
of the culture in fermented soy and oat samples. No significant differences between the culture
combinations were found in any of the fermented bases, but all fermented bases were significantly
different from each other.

Table 6. Shear stress and complex modulus of fermented soy, oat, and coconut samples at a controlled
shear rate of 42.5 s−1 and an oscillatory frequency of 1.52 Hz, respectively

Base τ (Pa) G* (Pa)

Soy 24.1 ± 0.3 A 170.1 ± 3.3 A

Oat 44.8 ± 1.7 C 471.7 ± 40.9 C

Coconut 35.8 ± 3.5 B 232.9 ± 69.4 B

ABC Means with different uppercase superscripts in the same column indicate significant differences between
different bases (p < 0.05).

Oat shear stress values at 45.2 s−1 shear rate were significantly higher. A reasonable explanation
could be the higher protein content in oats in combination with their starch, which may be responsible
for a higher viscosity. A firmer structure could have been formed from β-glucans already present in
oat [33]. β-glucans have a high water-holding capacity, which could have enhanced gel strength.
Their gelling properties can increase viscosity in liquid solutions [32]. β-glucans can form a
polysaccharide-protein matrix where fat droplets are held [32]. Another type of polysaccharides
that contributes to improving the textural and rheological properties of fermented foods are EPS.
Girard et al. concluded that dairy gels containing EPS reduced gelation time in comparison to those
without EPS, especially when the polysaccharides had a high net negative charge [78]. Bernat et al.
concluded that strains with EPS-producing capacity could increase viscosity [79] and, therefore, reduce
shear thinning behavior [80]. Consequently, the presence of EPS could confer stability to the structure
of fermented samples. The LGG R© strain is not the only EPS-producing strain used in this study.
Stijepic et al. noted the ability to produce EPS of S. thermophilus [81]. Moreover, Martensson et al.
observed EPS produced by L. delbrueckii subsp. bulgaricus in oats [57], and Salazar et al. demonstrated
EPS-producing ability of different Lactobacillus and Bifidobacteria strains [82]. Therefore, further studies
would be needed to precisely determine the origin of EPS present in the samples of this study, since its
production cannot only be attributed to LGG R©. However, high LGG R© cell count was observed in
fermented oat samples, which may confirm the previous hypothesis about its ability to produce EPS.
Soy protein can aggregate at its isoelectric point (pH 4.5) [26], forming a gel network that contains other
matrix components, such as lipids and carbohydrates. Their high water absorption capacity can fortify
the gel-like structure and, therefore, increase the viscosity of fermented soy samples [10]. Nevertheless,
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soy samples in this study showed lower shear stress values than the other two bases and, therefore,
lower viscosity. This indicates weaker gel structures in fermented soy samples. Grygorczyk reported
that the composition and processing of soy proteins may affect gelation properties [83]. If glycinin
(11S) content is higher than β-conglycinin (7S), the gel will have higher deformability when the stress
is applied, since the former has better gel-forming properties than the latter. Given the obtained results,
soy proteins in the samples could have lower 11S content than 7S. The different culture combinations
did not have any significant effect in any of the bases. These results indicate that the addition of LGG R©

did not have any negative effect in the flow behavior of any of the samples.
The hysteresis area of fermented soy and oat samples represents the structural recovery

during shear and it is shown in Table 7. It was not possible to calculate hysteresis area for
coconut samples, since the obtained loop was not regular, as can be seen in Figure 3. Therefore, it was
removed from the results. However, Aboulfazli et al. reported high viscosity of fermented coconut
milk samples, higher firmness, and higher hysteresis areas in comparison to soy and dairy samples [84].
Larger hysteresis loop areas reflect higher energy amounts that are needed to deform internal structural
network and therefore, firmer structures [76]. Smaller hysteresis areas reflect higher ability to recover
the structure when shear rate is reduced. Soy samples fermented with YF-L01+LGG R© showed higher
hysteresis area values than those fermented with YF-L01. This indicates that LGG R© in combination
with YF-L01 could increase viscosity of fermented soy samples. Oat samples did not show any
significant differences between culture combinations. Therefore, LGG R© did not have any effect
on their structural recovery. Brückner et al. reported partial recovery of high protein fermented
oat samples, relating the high solid contents to a faster rearrangement of the microstructure [85].

Table 7. Hysteresis loop area of fermented soy and oat samples.

Culture Combination Base
Soy Oat

YF-L01 1239.6 ± 83.8 a 3849 ± 110.1
YF-L02 1286 ± 43 ab 3693.5 ± 71.8
BY-01 1275.7 ± 39.6 ab 4505.4 ± 63.2

YF-L01+LGG R© 1357.4 ± 58.8 b 4019.7 ± 317
YF-L02+LGG R© 1327.6 ± 75.3 ab 4015.5 ± 104.5
BY-01+LGG R© 1346.1 ± 72.5 ab 3987.3 ± 466

ab Means in the same column with different lowercase superscripts indicate significant differences between
different culture combinations (p < 0.05).

An oscillation test was performed to evaluate the viscoelastic properties of fermented soy,
oat, and coconut. Storage modulus (G′) and loss modulus (G′′) determine the elastic and viscous
components of all fermented bases, respectively, and are shown in Figure 4. The graphical
representation of the data shows that G′ and G′′ increased with progressively increasing frequency
in all bases. All samples showed higher G′ values than G′′ for all culture combinations, revealing
a gel-like rheological behavior. Donkor et al. reported similar G′ values for fermented soy milk
with probiotic cultures [21]. Brückner-Gühman et al. stated that, in fermented oat samples, protein
aggregates, starch granules, and fat droplets increase the rigidity of the gel [85]. This could explain
high G′ values in fermented oat samples in this study, which were significantly higher than those
reported by Brückner-Gühman et al. [85]. They also concluded that the main contributor to the stability
of an oat concentrate gel would be the swollen starch instead of an oat protein network. G* indicates
the firmness of the samples and it was chosen to compare all three bases (Table 6). It comprises
G’ and G”, and it represents the overall resistance to deformation [86]. G* values of fermented soy,
oat, and coconut were significantly different from each other. Oat samples reported higher complex
modulus. Different culture combinations did not have any significant effect in G* in any of the bases,
which indicates no significant effect of LGG R© in complex modulus.
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Figure 4. Dynamic mechanical spectra in frequency sweeps of fermented soy, oat, and coconut samples.
Continuous lines correspond to G′, discontinuous lines correspond to G′′.

For a greater understanding of the textural properties of the fermented samples, up-flow shear
stress and complex modulus were correlated with evaluated textural attributes in each sample
(Tables 8 and 9). A combination of sensory perception and physical measurements allows a more
precise characterization of the food material. The correlations were clearly different across bases,
which emphasizes different behavior of the different microstructures in each fermented base.
In soy samples, only the perception of gel firmness and mouth thickness showed a positive correlation
with the shear stress. However, it did not occur along the entire flow, but only at specific shear
rates. Mouth thickness was positively correlated to shear stress at the end of the flow. This could
be explained by the ability to recover its structure after the shear rate is applied, which was already
observed in fermented dairy [87]. Fermented soy complex modulus was strongly correlated to
gel firmness, showing that G* at increasing frequencies enhanced the perception of this attribute.
Shear stress in fermented oat samples was positively correlated with gel firmness along the entire
flow curve and with mouth coating and smoothness at the beginning of the up-flow curve. This is
supported by the findings of Buldo et al [87]. Nevertheless, G* of fermented oat samples was positively
correlated with gel firmness, but negatively correlated with mouth coating and smoothness perception.
The firmer the sample, and the higher G*, the less product remains in the palate when it is swallowed.
In coconut samples, gel firmness, mouth thickness, and mouth coating showed remarkable positive
correlation with shear stress and with the complex modulus. The more fat crystals are produced,
the higher the elastic modulus will be and, therefore, the harder and firmer the sample will be
perceived [10]. Consequently, when shear stress and G* increase, the perception of these attributes
will be enhanced. These results encourage further investigation on rheological behavior of fermented
plant-bases with this relatively novel approach, where the perception of textural attributes is correlated
to experimental measurements.
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Table 8. Correlation coefficient between up-flow and textural attributes identified in each fermented base.

Base

Shear Rate (s−1)
SOY OAT Coconut

Textural Attributes Textural Attributes Textural Attributes

Gel Firmness Mouth Thickness Ropiness Creaminess Gel Firmness Mouth Coating Smoothness Gel Firmness Mouth Thickness Mouth Coating

0.3 0.0 −0.3 0.0 0.4 0.9 * −0.3 −0.4 0.8 * 0.8 * 0.7 *
15.3 0.9 * 0.4 −0.5 0.1 1.0 * −0.7 * −0.7 * 0.9 * 0.8 * 0.8 *
30.2 0.6 * 0.5 −0.5 0.3 1.0 * −0.6 * −0.6 * 0.9 * 0.8 * 0.8 *
45.2 0.6 * 0.4 −0.5 0.4 1.0 * −0.6 * −0.6 * 0.8 * 0.8 * 0.8 *
60.2 0.6 * 0.5 −0.5 0.3 1.0 * −0.7 * −0.6 * 0.8 * 0.8 * 0.7 *
75.2 0.5 0.5 −0.5 0.3 1.0 * −0.6 * −0.6 * 0.8 * 0.8 * 0.7 *
90.2 0.6 * 0.6 * −0.5 0.3 0.9 * −0.6 * −0.5 0.8 * 0.8 * 0.7 *

105.0 0.6 * 0.6 * −0.5 0.3 0.9 * −0.6 * −0.5 0.8 * 0.8 * 0.7 *
120.0 0.5 0.6 * −0.5 0.3 0.9 * −0.6 * −0.5 0.8 * 0.8 * 0.6 *
135.0 0.5 0.6 * −0.5 0.3 0.9 * −0.5 −0.4 0.8 * 0.8 * 0.6 *
150.0 0.5 0.6 * −0.5 0.3 0.9 * −0.5 −0.4 0.8 * 0.8 * 0.6 *
165.0 0.5 0.6 * −0.4 0.3 0.9 * −0.5 −0.4 0.8 * 0.8 * 0.6 *
180.0 0.6 * 0.6 * −0.5 0.3 0.9 * −0.5 −0.4 0.8 * 0.8 * 0.7 *
195.0 0.5 0.6 * −0.5 0.3 0.9 * −0.4 −0.3 0.8 * 0.8 * 0.8 *
210.0 0.5 0.6 * −0.5 0.3 0.8 * −0.4 −0.3 0.8 * 0.9 * 0.8 *
225.0 0.5 0.6 * −0.4 0.3 0.8 * −0.4 −0.3 0.8 * 0.9 * 0.8 *
240.0 0.5 0.7 * −0.4 0.2 0.7 * −0.4 −0.2 0.8 * 0.9 * 0.8 *
255.0 0.6 * 0.7 * −0.4 0.2 0.8 * −0.3 −0.2 0.9 * 0.9 * 0.8 *
270.0 0.6 * 0.6 * −0.4 0.2 0.8 * −0.3 −0.2 0.9 * 0.9 * 0.8 *
285.0 0.6 * 0.6 * −0.5 0.2 0.8 * −0.3 −0.2 0.9 * 0.9 * 0.8 *
300.0 0.6 * 0.6 * −0.5 0.2 0.8 * −0.3 −0.1 0.9 * 0.9 * 0.8 *

* Asterisk denotes significant correlation between rheological parameter and textural attribute (value between 0.6–1 and (−0.6)–(−1)).

Table 9. Correlation coefficients between G* and textural attributes identified in each fermented base.

Base

Shear Rate (s−1)
SOY OAT Coconut

Textural Attributes Textural Attributes Textural Attributes

Gel Firmness Mouth Thickness Ropiness Creaminess Gel Firmness Mouth Coating Smoothness Gel Firmness Mouth Thickness Mouth Coating

0.5 0.8 * 0.4 −0.5 0.3 0.9 * −0.7 * −0.7 * 0.9 * 0.8 * 0.9 *
0.9 0.8 * 0.3 −0.5 0.3 0.9 * −0.7 * −0.7 * 0.9 * 0.8 * 0.9 *
1.5 0.8 * 0.3 −0.5 0.3 0.9 * −0.7 * −0.7 * 0.9 * 0.8 * 0.9 *
2.6 0.9 * 0.3 −0.5 0.3 0.9 * −0.8 * −0.7 * 0.9 * 0.8 * 0.9 *
4.6 0.9 * 0.2 −0.5 0.3 0.9 * −0.8 * −0.7 * 0.9 * 0.8 * 0.9 *
8.0 0.8 * 0.0 −0.4 0.3 0.9 * −0.8 * −0.8 * 0.9 * 0.8 * 0.9 *

* Asterisk denotes significant correlation between rheological parameter and textural attribute (value between 0.6–1 and (−0.6)–(−1)).
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3.4. Carbohydrates and Acids in Fermented Samples

The carbohydrate levels identified in fermented samples (Table 10) were directly correlated
to acid levels (Table 11). Acids were produced when carbohydrates were consumed. The results
of oat samples fermented with culture combinations containing LGG R© were not reliable and,
therefore, not included in the comparison. However, part of the carbohydrates present in these
samples prior to fermentation were consumed, since they became acid after fermentation and
during storage time. Therefore, the performance of LGG R©-containing culture combinations in oat
can be assumed as satisfactory, since they were able to acidify and also intensify some sensory
attributes (described below). Oat samples were the ones containing more carbohydrates and the
ones with smaller amounts of sucrose. Moreover, they were the only ones that had glucose and
in high amounts. Additionally, fructose content was higher than in soy and coconut samples.
Maltose was also detected only in oat samples. A reasonable explanation would be that it was a
product from oat starch degradation. In fermented soy samples, 9.5% of the total sucrose content
was metabolized in comparison to the unfermented sample, producing a small amount of fructose.
Previous studies already identified sucrose, fructose, and glucose in fermented soy milk with mixed
cultures of Bifidobacterium [88]. However, only sucrose and fructose were found in soy samples in
this study. This occurred because the strains utilized the glucose resulting from sucrose breakdown.
There were no differences between the culture combinations, since all of the samples showed the
same levels of carbohydrates. Coconut samples were the only ones containing different amounts of
sucrose between the different culture combinations. However, they were not significantly different.
Fructose was identified in low quantities in all samples fermented without LGG R© and in those
that were fermented with YF-L01+LGG R©. Although the differences between all samples were not
significant, this could reflect inability to ferment sucrose of LGG R©, which was also reported by
Meurman et al. [89]. However, more recent studies proved the ability of L. rhamnosus GG to ferment
this carbohydrate [90].

Acetic acid, hexanoic acid, octanoic acid, and decanoic acid are the main organic acids that
have been attributed to vinegary, pungent, and rancid flavor in yogurt [91]. The presence of these
compounds could negatively influence the sensory perception of fermented plant-based products [68].
However, only acetic acid was identified in the samples that were fermented in this study. Lactic acid
was the only acid found in all samples of all three bases. Fermented soy samples presented lactic
acid and acetic acid, the main products of carbohydrate metabolism of LAB and bifidobacteria [19].
However, acetic acid was only found in soy samples fermented with culture combinations containing
LGG R© and in equal amounts. The ability of LGG R© to produce acetic acid through fermentation of
legume substrates was already shown by Petruláková and Valík [53]. Lactic acid content did not
vary across the different culture combinations. In fermented oat samples, no differences in acids
content were observed among the different culture combinations. The lactic acid content significantly
increased after fermentation due to metabolization of sugars and, also, small amounts of acetic acid
were produced. In fermented coconut samples, lactic, acetic, and citric acid were identified in different
amounts. LGG R© significantly increased the amount of detected lactic acid when it was combined
with YF-L01 and with BY-01. Acetic acid and citric acid content was not significantly different among
all fermented coconut samples. Malic acid was identified in samples fermented without LGG R© in
the culture and in unfermented samples. An explanation could be that LGG R© performed malolactic
fermentation, completely degrading malic acid that is present in the initial sample [92].
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Table 10. Carbohydrates identified in fermented soy, oat, and coconut samples.

Base Culture Combination Glucose Fructose Sucrose Maltose

Soy

YF-L01 0.00 0.74 50.55 0.00
YF-L02 0.00 0.74 50.55 0.00
BY-01 0.00 0.74 50.55 0.00

YF-L01+LGG R© 0.00 0.74 50.55 0.00
YF-L02+LGG R© 0.00 0.74 50.55 0.00
BY-01+ LGG R© 0.00 0.74 50.55 0.00

Unfermented soy 0.00 0.00 55.81 0.00

Oat

YF-L01 92.38 4.06 4.34 24.15
YF-L02 92.38 4.06 4.34 24.15
BY-01 92.38 4.06 4.34 24.15

Unfermented oat 94.55 3.93 5.77 24.08

Coconut

YF-L01 <LOD 1.50 48.35 <LOD
YF-L02 <LOD 1.35 47.45 <LOD
BY-01 <LOD 1.65 49.05 <LOD

YF-L01+LGG R© <LOD 1.20 47.40 <LOD
YF-L02+LGG R© 0.60 0.55 47.70 <LOD
BY-01+LGG R© <LOD 0.60 48.25 <LOD

Unfermented coconut 0.27 1.13 27.64 0.00

Contents are measured in mg of compound per gram of sample.

Table 11. Acids identified in fermented soy, oat, and coconut samples.

Base Culture Combination Lactic Acid Acetic Acid Tartaric Acid Citric Acid Malic Acid

Soy

YF-L01 3.50 0.00 a 3.50 0.00 0.00
YF-L02 3.50 0.00 a 3.50 0.00 0.00
BY-01 3.50 0.00 a 3.50 0.00 0.00

YF-L01+LGG R© 3.50 2.00 b 3.50 0.00 0.00
YF-L02+LGG R© 3.50 2.00 b 3.50 0.00 0.00
BY-01+LGG R© 3.50 2.00 b 3.50 0.00 0.00

Unfermented soy 0.10 0.00 0.00 0.85 0.00

Oat

YF-L01 3.40 0.10 0.00 0.18 0.05
YF-L02 3.40 0.10 0.00 0.18 0.05
BY-01 3.40 0.10 0.00 0.18 0.05

Unfermented oat 0.03 0.00 0.00 0.22 0.27

Coconut

YF-L01 2.90 0.25 a <LOD 0.30 1.55
YF-L02 3.25 0.25 a <LOD 0.25 1.00
BY-01 2.80 0.50 b <LOD 0.30 1.45

YF-L01+LGG R© 4.25 0.25 a <LOD 0.30 <LOD
YF-L02+LGG R© 4.50 0.25 a <LOD 0.30 <LOD
BY-01+LGG R© 4.35 0.50 b <LOD 0.30 <LOD

Unfermented coconut 0.15 0.15 0.0 0.47 1.89

Contents are measured in mg of compound per gram of sample. ab Means in the same column inside each base
with different lowercase superscripts indicate significant differences between different culture combinations
(p < 0.05).

3.5. Volatile Organic Compounds

The obtained results were classified in two categories to evaluate the presence of VOCs and
the effect of fermentation with and without LGG R©: major contributors to fermented dairy flavor
and characteristic VOCs of each of the fermented raw materials. This was done to observe potential
increase of dairy flavor and reduction of off-flavors of the plant-based raw materials, respectively.
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3.5.1. Major Contributors to Fermented Dairy Flavor

The targeted VOCs were those that were related to dairy flavor. Fermented soy, oat, and coconut
bases were screened for their presence by FID and the results are shown in Table 12. When all fermented
bases were compared, diacetyl, acetoin, acetaldehyde, acetone, and ethanol levels were significantly
different in all three bases. Ethyl acetate, an ester that is found in lactobacilli fermented products [93]
and in dairy cheese [94], was targeted but not identified in any of them.

Table 12. Targeted Volatile Organic Compounds (VOCs) identified by FID in fermented soy, oat,
and coconut samples.

Base Culture Combination Acetaldehyde Diacetyl Acetoin Acetone 3-Methyl-Butanal Ethanol

Soy

YF-L01 2.73 ± 0.06 Ade 4.05 ± 0.17 Ab 15.38 ± 0.13 Abc 1.47 ± 0.02 Aab n/s 0.71 ± 0.09 Aa

YF-L02 2.52 ± 0.08 Ad 7.06 ± 0.48 Ac 13.51 ± 1.11 Aab 1.48 ± 0.08 Aab n/s 2.08 ± 0.04 Aab

BY-01 2.84 ± 0.01 Ae 3.54 ± 0.02 Aab 9.39 ± 1.68 Aa 1.55 ± 0.04 Ab n/s 4.1 ± 0.16 Ac

YF-L01 + LGG R© 1.19 ± 0.02 Ab 3.19 ± 0.12 Aab 19.71 ± 1.45 Ac 1.31 ± 0 Aa n/s 1.23 ± 0.2 Aa

YF-L02 + LGG R© 0.58 ± 0.02 Aa 3.89 ± 0.15 Aab 26.24 ± 0.4 Ad 1.54 Ab n/s 2.59 ± 0.02 Ab

BY-01 + LGG R© 1.77 ± 0.08 Ac 2.98 ± 0.2 Aa 18.79 ± 1.54 Ac 1.65 ± 0.08 Ab n/s 5.55 ± 0.3 Ad

Oat

YF-L01 1.08 ± Bb 4.27 ± 0.02 Ba 40.19 ± 0.7 Ba 0.3 ± 0.05 B 1.21 ± 0.04 c 92.8 ± 3.18 Bd

YF-L02 1.13 ± 0.01 Bb 39.35 ± 0.71 Be 42.44 ± 0.32 Ba 0.37 ± 0.01 B 0.19 ± 0.01 ab 17.28 ± 0.26 Bb

BY-01 2.53 ± 0.06 Bc 8.34 ± 0.09 Bb 41.89 ± 3.31 Ba 0.35 ± 0.01 B 0.1 ± 0.11 ab 8.15 ± 2.33 Ba

YF-L01 + LGG R© 0.25 Ba 16.7 ± 0.01 Bcd 97.86 ± 0.55 Bc 0.27 ± 0.03 B 0.29 ± 0.01 b 24.54 ± 0.65 Bc

YF-L02 + LGG R© 0.22 ± 0.01 Ba 17.53 ± 0.07 Bd 81.41 ± 3.05 Bb 0.32 ± 0.09 B 0.15 ab 18.28 ± 0.25 Bbc

BY-01 + LGG R© 0.29 ± 0.03 Ba 15.74 ± 0.07 Bc 87.57 ± 2.01 Bb 0.29 ± 0.02 B 0.06 a 16.8 ± 0.36 Bb

Coconut

YF-L01 3.42 ± 0.03 Ca 3.27 ± 0.05 Ca 50.5 ± 0.34 Cb 0.42 ± 0.03 C n/s 71.32 ± 1.61 C

YF-L02 3.1 ± 0.03 Cb 18.23 ± 0.09 Cd 48.19 ± 1.02 Cab 0.44 ± 0.06 C n/s 71.81 ± 0.12 C

BY-01 3.92 ± 0.03 Cc 3.56 ± 0.1 Ca 39.92 ± 5.88 Ca 0.42 ± 0.08 C n/s 71.69 ± 1.39 C

YF-L01 + LGG R© 2.01 ± 0.03 Cd 13.86 ± 0.64 Cb 67.95 ± 1.47 Cc 0.51 ± 0.05 C n/s 73.53 ± 1.71 C

YF-L02 + LGG R© 0.62 ± 0.03 Ce 15.88 ± 0.48 Cc 71.77 ± 1.04 Cc 0.55 C n/s 71.97 ± 3.14 C

BY-01 + LGG R© 0.41 ± 0.02 C f 13.41 ± 0.64 Cb 69.05 ± 0.72 Cc 0.57 ± 0.03 C n/s 72.53 ± 3.01 C

ABC Means in the same column with different uppercase superscripts indicate significant differences between
different bases (p < 0.05). abcd Means in the same column inside each base with different lowercase superscripts
indicate significant differences between different culture combinations (p < 0.05).

Diacetyl, acetoin, and acetaldehyde play a key role in dairy flavor perception [95] and are
products of pyruvate degradation. Pyruvate can be metabolized through two main pathways. The first
one converts pyruvate into α-acetolactate, which is decarboxylated to diacetyl in aerobic conditions
without any enzymatic activity. Diacetyl can then be reduced to acetoin and acetoin to 2-3-butanediol.
The second one transforms pyruvate into acetaldehyde through acetyl-coenzyme A (acetyl-CoA) [96].
The effect LGG R© can cause on the levels of these pyruvate breakdown products can be relevant for
the sensory perception of fermented samples. Acetoin and diacetyl provide buttery odors that are
responsible for caramel and sweet flavors, respectively [49]. Acetoin is generally produced in higher
amounts than diacetyl through citrate metabolism, which was reflected in all three fermented bases.
Both compounds were significantly higher in fermented oat samples, followed by coconut and soy.
This could be explained by a higher fermentable carbohydrate content in oat samples. Citrate levels in
the plant bases was unknown; therefore, it was not possible to confirm that a higher citrate content
in oat base was responsible for these results. LGG R©-containing samples reflected higher acetoin
levels in all three bases in comparison to samples that were fermented with culture combinations
without LGG R©. Consequently, it could be assumed that LGG R© has a high diacetyl-reductase activity
to transform diacetyl into acetoin. Acetoin was produced in lower quantities in soy samples by
BY-01+LGG R© and YF-L01+LGG R© in comparison to YF-L02+LGG R©. LGG R© increased diacetyl levels
in oat and coconut when it was combined with YF-L01 and BY-01. In contrast, it decreased them in
combination with YF-L02 in all three bases. Kaneko et al. reported a relationship between excessive
amounts of diacetyl and unpleasant odors [96]. This suggests that YF-L02 without LGG R© would
not be an appropriate candidate to ferment oat samples due to the high diacetyl levels that were
identified in this sample. One of the main principal components of fermentation aroma in yoghurt
is acetaldehyde [96]. Samples that were fermented with LGG R©-containing culture combinations
showed significantly lower acetaldehyde content in all three bases. This could be due to a low ability
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of L. rhamnosus to produce it from carbohydrate, protein or nucleic acid sources, or due to a high
enzymatic activity to convert it into ethanol. Acetaldehyde is a product of pyruvate degradation by
acetyl-coenzyme A, but it can also be produced through other metabolic pathways from citrate by S.
thermophilus (strain present in YF-L01, YF-L02, and BY-01). Acetone content was significantly higher in
soy samples. It is a compound that confers apple and solvent flavor and has been identified in dairy
products such as kefir [93]. Previous studies reported its presence in fermented soy and considered it
another main contributor to flavor and aroma in yogurt [97]. LGG R© did not show any significant effect
on its production in any of the three bases. Ethanol levels were significantly higher in coconut samples,
but the different culture combinations did not have a significant effect on its content. In contrast,
LGG R© significantly affected its production in certain fermented oat samples, more precisely reducing
ethanol levels when it was combined with YF-L01 but increasing them when it was combined with
BY-01. Kpodo et. al. detected ethanol in their fermented matrix containing peanut and soy but not in
their dairy yogurt control [68]. They attributed its presence to glucose breakdown and amino acids
catabolism. Nevertheless, they remarked that it is not a relevant contributor to dairy flavor profiles but
probably a complementary one. Ethanol can also react with free fatty acids and be further converted
into ethyl esters, which would provide floral and fruity odors [49]. 3−methylbutanal was found in all
fermented oat samples and in non-significant amounts in the other two fermented bases. Yan Chun et al.
identified it in soy milk, although it had a low flavor dilution factor and, therefore, was not considered
a major flavor component [98]. This compound derives from an enzymatic reaction of isoleucine and
leucine [99] and has been already identified in oat samples by Salmenkallio-Marttila [100] and by
Lee et al. [101] as a product of amino acid degradation by L. paracasei. Natrella et al. characterized it as
the most relevant volatile compound in mozzarella cheese, providing nutty and fresh cheese odor [102].
Dan et al. reported higher 3-methylbutanal content when dairy milk was fermented by a mixed culture
of L. bulgaricus and S. thermophilus when the rates of the latter one were higher [103]. This supports the
results of this study, where oat samples fermented with YF-L01 without LGG R© (pure S. thermophilus)
reflected higher levels of 3-methylbutanal than the one fermented with YF-L01+LGG R©. 1-Butanol was
not identified in soy samples and only found in very low amounts in some of the fermented oat and
coconut samples, therefore it was not reported in Table 12.

3.5.2. Characteristic VOCs of Soy, Oat, and Coconut

A total of 54 untargeted volatile compounds were identified by GC-MS in all three fermented bases.
They comprised ketones, esters, acids, aldehydes, alcohol, furans, sulfurs, lactones, terpenes, benzenes,
and aromatic compounds. 12 of them (ethyl acetate, 2,3-pentanedione, hexanal, ethyl decanoate,
α-pinene, benzaldehyde, 3-carene, acetoin, δ-decalactone, γ-octalactone, dimethyl disulfide,
and 2-heptanone) were present in the three fermented bases. Some compounds, such as acetone and
diacetyl, were identified by FID and also detected by GC-MS, two methods based on different detection
principles. Previous studies were taken as references for predominant volatiles of soy [98,104,105],
oat [40,101], and coconut [106,107]. The identification of compounds in this study was compared
to their results. Two compounds were present in all three fermented samples, namely hexanal and
benzaldehyde. Hexanal is mainly produced through linoleic acid oxidation and it can be further
oxidized to hexanoic acid and reduced to 1-hexanol by dehydrogenase enzymes during fermentation
processes [101]. Since linoleic acid is the primary fatty acid in oat [101] and soybeans [92], detection of
hexanal in fermented soy and oat samples was expected in this study. Hexanal content was significantly
higher in these two fermented bases in comparison to fermented coconut samples, where it was found
in very low quantities, as previous studies suggested [107]. No significant effect of the different culture
combinations was found in any of the bases, which indicates that LGG R© did not have any effect on its
production. Achouri et al. detected its presence in soy milk and in soy blends and observed changes in
its levels during storage, attributing them to further lipid oxidation [104]. Hexanal is associated with
green and beany odors [105], but also related to rancidity [41]. Nevertheless, Sides et al. stated that,
since hexanal is present in oat samples with acceptable flavors, perception of rancidity is not directly
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linked to the presence of hexanal but to its concentration [108]. Regarding benzaldehyde, a compound
found in Camembert cheese [109], it was significantly higher in fermented oat samples, followed
by coconut and soy samples. Achouri et al. and Kaczmarska et al. reported its presence in soy
milk products and in germinated soy, but stated its minor contribution to soybean aroma [104,105].
Salmenkallio [100], McGorrin [40], and Lee [101] detected the presence of benzaldehyde in uncooked
and cooked oatmeal and attributed it to an almond odor. Its presence could be associated with reducing
sugars and amino acids interactions [108]. Wang et al. identified benzaldehyde in coconut milk [110],
and fermented coconut samples in this study were the only ones showing significantly different
benzaldehyde content between the different culture combinations (Table 12). However, LGG R© had no
significant effect on benzaldehyde production.

The main contributors to soy flavor (in addition to hexanal and benzaldehyde) are nonanal,
heptanal, octanal, acetic acid, 1-hexanol, 1-pentanol, 1-octen-3-ol, heptanol, 2-pentyl furan,
2-ethyl furan, 1-octen-3-one [98,104,105]. From this list, only hexanal and benzaldehyde were identified
in fermented soy samples in this study, and none of the different culture combinations had an effect
on their quantity. Nevertheless, other volatile compounds were found in fermented soy samples,
and those whose production was affected by LGG R© are shown in Table 13. 2-heptanone is a product
of octanoic acid metabolism and it was detected in low amounts in fermented soy samples, which is
aligned with the results from Ahmad et al. [111]. They found this compound in soy cheese and also in
Cheddar cheese. Vazquez et al. associated it with milk off-flavor [112], but literature highlights its main
role in blue cheeses [113]. 2,3-Pentanedione is considered a dairy yogurt flavor contributor [91] and
was detected in high levels in fermented soy samples, in line with the findings of Kaneko et al. [96] and
Ahmad et al. [111]. Ethyl octanoate and ethyl decanoate were detected in all fermented soy samples.
Ahmad et al. found both compounds in cheddar cheese but only the former in soy cheese [111].
They also identified lactones in dairy cheese but not in soy cheese. In contrast, fermented soy samples
in this study contained δ-decalactone and δ-octalactone in different quantities. This would be a positive
aspect of soy fermentation with the culture combinations used in this study for dairy alternatives.
When LGG R© was combined with YF-L02, the content of 2-heptanone, ethyl octanoate, ethyl decanoate,
limonene, δ-decalactone, 2-methyl-butan, and 2-pentyl-furan significantly decreased. When it was
combined with B1-01, 2-heptanone, 2-3-pentanedione, ethyl octanoate, ethyl decanoate, 2-methyl
butanal, δ-decalactone, and δ-octalactone levels significantly decreased. When LGG R© was combined
with YF-L01, limonene content decreased, but 2-pentyl-furan content increased.

Table 13. Untargeted VOCs in fermented soy samples in which different culture combinations had
an effect.

Culture Combination Ketones Esters Terpene Aldehyde Lactones Furan

2-Heptanone 2,3-Pentanedione EthylOctanoate EthylDecanoate Limonene 2-MethylButanal δ-Decalactone δ-Octalactone 2-Pentyl-Furan

YF-L01 1.5 ± 2.1 a 8467.5 ± 5478 ab 14 a 27.5 ± 23.3 a 246 ± 11.3 b 6 ± 4.2 a 60.5 ± 78.5 a 38 ± 45.3 a 7613 ± 7905.5 a

YF-L02 22 ± 2.8 b 11,280.5 ± 68.6 ab 1621 ± 380.4 b 972.5 ± 293.4 b 241.5 ± 41.7 b 29 ± 2.8 b 450.5 ± 160.5 b 307.5 ± 177.5 ab 46,420.5 ± 4297.1 b

BY-01 2.5 ± 3.5 a 4012 ± 2547 a 4.5 a 13.5 ± 3.5 a 54.5 ± 36.1 a 1.5 ± 0.7 a 4.5 ± 2.1 a 4 ± 2.8 a 22,223 ± 16,525.1 ab

YF-L01 + LGG R© 6 a 5439 ± 753.8 ab 12.5 ± 2.1 a 14.5 ± 6.4 a 112.5 ± 13.4 a 1.5 ± 0.7 a 27 ± 29.7 a 6 ± 4.2 a 46,280.5 ± 6639 b

YF-L02 + LGG R© 0 a 11,269.5 ± 67.2 ab 13.5 ± 0.7 a 21.5 ± 0.7 a 48.5 ± 7.8 a 8 ± 1.4 a 2 ± 1.4 a 9 ± 2.8 a 4886.5 ± 437.7 a

BY-01 + LGG R© 15.5 ± 2.1 b 14,537 ± 1619.3 b 1045.5 ± 227 b 832.5 ± 160.5 b 79 ± 1.4 a 22.5 ± 3.5 b 623.5 ± 142.1 b 605.5 ± 234.1 b 25,638 ± 4307.7 ab

ab Means in the same column with different lowercase superscripts indicate significant differences between
different culture combinations (p < 0.05).

According to McGorrin [40] and Lee et al. [101], the key volatile compounds of oat flavor
are hexanal, nonanal, benzaldehyde, 3- methyl-butanal, octanal, 1-hexanol, 1-pentanol, 1-octen-3-ol,
3-methyl-1-butanol, 2-ethylfuran, 2- heptanone, 3-hydroxy-2-butanone, and 3,5-octadien-2-one.
However, only hexanal, benzaldehyde, 3-methyl-butanal, octanal, 2-ethyl-furan, and 1-hexanol were
found in fermented oat samples of this study. Previous literature reported variations in volatile
compounds with fermentation time in oats [101]. Initial fermentation stages were associated with
aldehydes and later stages with acids, alcohols, ketones, and furans. Table 14 shows VOCs in whose
content LGG R© had a significant effect. 2-3-Pentanedione was previously identified in oats [114] and
it is one of the main flavor components of fermented dairy milk [19]. Its presence in fermented oat
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samples in higher levels than in fermented soy and coconut samples may suggest oat’s potential
for fermented dairy alternatives. However, 2-3-Pentanedione levels decreased when the culture
combination contained LGG R©. Although previous studies did not find ethyl acetate in dairy yogurt,
Beshkova et. al detected its presence in kefir [93] and it was also found in the fermented oat samples in
this study. Lee et al. identified nonanal, hexanal, 2-pentylfuran, 1-octen-3-ol, and 2-nonenal as lipid
degradation products [101]. They observed that hexanal content decreased during fermentation of oats
while 1-hexanol levels increased. This could explain the presence of the latter compound in fermented
oat samples. Toluene, ethanol, acetone, and 2-propanol were the VOCs that were found in higher
amounts in fermented oat. Toluene did not vary among culture combinations and, therefore, was
not reported in the table, but it has been found in dairy yogurts [91] and also in fermented oat [115].
Acetone levels, previously identified by FID, drastically decreased when YF-L01 was combined with
LGG R©, as well as the content of 2-propanol and ethanol. When YF-L02 was supplemented with LGG R©,
2-3-pentanedione and limonene levels decreased. The combination of BY-01 with LGG R© increased the
content of 2-methyl-3-thiolanone and ethyl acetate, but decreased the amount of 2-3-pentanedione
and furfural.

Table 14. Untargeted VOCs in fermented oat samples in which different culture combinations had
an effect.

Culture Combination Ketones Ester Terpene Aldehyde Alcohol
2,3-Pentanedione 2-Methyl-3-Thiolanone Acetone Ethyl Acetate Limonene Furfural 1-Hexanol 2-Propanol

YF-L01 54,062.5 ± 3853 d 6 ± 1.4 a 1150.5 ± 160.5 b 1498 ± 424.3 ab 17.5 ± 0.7 a 10 ± 2.8 ab 59 ± 53.7 ab 724 ± 73.5 b

YF-L02 11,712 b 18 a 350 a 1095 a 41 b 12 ab 120 b 115 a

BY-01 43,894.5 ± 386.8 c 15 ± 1.4 a 178.5 ± 98.3 a 408.5 ± 272.2 a 24 ± 1.4 a 19 ± 1.4 b 47 ± 22.6 ab 6 ± 1.4 a

YF-L01 + LGG R© 430 ± 29.7 a 8 ± 1.4 a 265 ± 100.4 a 447.5 ± 0.7 a 17 ± 4.2 a 12.5 ± 2.1 ab 14.5 ± 2.1 a 122.5 ± 46 a

YF-L02 + LGG R© 154 ± 24 a 43 ± 18.4 ab 30 ± 11.3 a 751.5 ± 101.1 a 24.5 ± 7.8 a 9.5 ± 3.5 ab 21.5 ± 7.8 ab 8.5 ± 3.5 a

BY-01 + LGG R© 210.5 ± 64.3 a 96.5 ± 40.3 b 104.5 ± 118.1 a 2204.5 ± 439.1 b 20.5 ± 2.1 a 8.5 ± 3.5 a 44 ± 19.8 ab 14 ± 18.4 a

abcd Means in the same column with different lowercase superscripts indicate significant differences between
different culture combinations (p < 0.05).

Borse et al. and Santos et al. highlighted hexanal, 2-heptanone, nonanal, acetic acid,
2-ethylfuran, 2-pentanone, ethyl lactate, ethyl acetate, δ-octalactone, δ-decalactone, dodecanoic acid,
octanoic acid, 1-hexanol, phenyl ethyl alcohol, 2-methyl tetrahydrofuran, tetradecanone, hexadecanone,
ethyl octanoate, ethyl acetate, ethyl decanoate, as predominant compounds of coconut flavor [106,107].
From all of them, only the first ten compounds were identified in coconut samples in this study.
Although the different culture combinations did not have any significant effect on its production,
GC-MS results revealed the presence of ethyl acetate in fermented coconut samples, in higher amounts
than in the other two fermented bases. Santos et al. had previously attributed its presence to a
nutty aroma [107]. Ethyl lactate, previously characterized as the main flavor component in coconut
variety neera [106], was detected in all samples. Furthermore, phenylacetaldehyde was also found
in all samples in low levels. It is a derivative compound from phenyl ethyl alcohol, another key
aroma contributor in coconut [106], which would explain its presence. δ-octalactone and δ-decalactone
were also present in all fermented coconut samples, together with butyrolactone. This was expected
since they are major contributors to coconut flavor derived from hydroxy acids [116]. Table 15
shows the untargeted VOCs in fermented coconut samples whose content was affected by LGG R©.
LGG R© increased the content of 2-pentanone and decreased the content of 2-3-pentanedione when
it was combined with YF-L01. In combination with YF-L02, LGG R© increased 2-pentanone and
α-pinene production, but decreased that of 2-3-pentanedione. When BY-01 was supplemented
with LGG R©, 2-pentanone, diacetyl, γ-nonalactone, butyrolactone, and 1-butanol contents increased
while 2-3-pentanedione levels decreased. In relation to diacetyl levels detected by FID, culture
combinations produced significantly different amounts according to the results obtained by GC-MS.
When BY-01 was supplemented with LGG R©, diacetyl content was higher than when it was on its own.
These results concur with the findings of De Souza-Oliveira et al. They reported a synergy between
S. thermophilus and L. rhamnosus, where diacetyl production was higher in co-culture fermentation
than with the pure cultures [117].
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Table 15. Untargeted VOCs in fermented coconut samples in which different culture combinations had
an effect.

Culture Combination Ketone Terpene Lactone Alcohol
2-Pentanone 2-3-Pentanedione Diacetyl α-Pinene γ-Nonalactone Butyrolactone 1-Butanol

YF-L01 10.5 ± 0.7 a 89 ± 9.9 c 11,375.5 ± 675.3 a 77.5 ± 12 bc 2153 ± 144.2 ab 12.5 ± 2.1 ab 45.5 ± 7.8 ab

YF-L02 8.5 ± 0.7 a 65.5 ± 3.5 b 49,102 ± 5395.2 b 64 ± 2.8 ab 1883.5 ± 156.3 ab 12 ± 2.8 ab 43.5 ± 2.1 ab

BY-01 8 a 55 b 9851 a 54 a 1381 a 8 a 32 a

YF-L01+LGG R© 26.5 ± 4.9 b 23.5 ± 4.9 a 32,402.5 ± 5052.3 ab 69.5 ± 2.1 abc 2211.5 ± 266.6 b 18 ± 2.8 bc 45.5 ± 5.7 ab

YF-L02+LGG R© 28.5 ± 11.3 bc 17.5 ± 1.4 a 47,037.5 ± 1850.5 b 86.5 ± 16.3 c 2403.5 ± 84.9 b 22 ± 4.9 c 55 ± 7.8 b

BY-01+LGG R© 39 ± 2.8 c 15 ± 1.4 a 39,865 ± 1390.2 b 66 ± 1.4 abc 2153 ± 257.4 ab 13.5 ± 0.7 ab 39.5 ± 0.7 ab

abc Means in the same column with different lowercase superscripts indicate significantl differences between
culture combinations (p < 0.05).

3.6. Sensory Perception of Fermented Soy, Oat, and Coconut Samples

The trained panel identified and evaluated different sensory attributes for each of the
fermented soy, oat, and coconut samples. The sensory scores for each fermented base are presented
in three spider diagrams (Figure 5). Each diagram enables to observe the effect of each culture
combination on the perception of each attribute.

Figure 5. Perception of sensory attributes in (A) soy, (B) oat, and (C) coconut samples fermented with
different culture combinations.

Certain attributes were evaluated in all three bases and therefore its perception was compared
across them. Gel firmness was strongly perceived in oat samples, which could be attributed to a
stronger structure formed by gelatinized oat starch and other non-starch polysaccharides. This result is
supported by the rheology data reported above. Notwithstanding the unidentified effect of LGG R© on
flow properties of the samples, its presence affected sensorial perception of certain textural attributes.
The astringency perception was higher in fermented soy and oat samples in comparison to fermented
coconut samples. This attribute is related to dryer and rougher raw materials, such as the former ones.
Different perception of astringency is attributed to the fat content in coconut samples, which may
have smoothened the mouthfeel in comparison to the other two materials. Additionally, polyphenols
present in soy and oat could enhance astringency perception. Sweet, lemon, and sour taste were
identified in all three bases, but no significant difference was reported between them. Food materials
prone to coalescence enhance the perception of fat in mouth [118], which is supported by the obtained
results in this study. Coconut samples scored higher in fatty perception than soy, due to their high
fat content. The presence of homogenized fat globules contributes to mouth coating and thickness
perception [83]. In fermented soy samples, significant differences across samples were observed in the
perception of gel firmness, astringency, sourness, lemon taste, and cardboard. The results suggested
a potential effect of LGG R© in the perception of some attributes. Nevertheless, the base contributed
to a great extent to the flavor perception, not only in fermented soy, but also in fermented oat and
coconut. When it was combined with BY-01, LGG R© increased sourness perception and decreased gel
firmness perception in fermented soy samples. In combination with YF-L02, astringency, sourness and
lemon taste increased. In fermented oat samples, gel firmness, astringency, sweetness, sourness, lemon,
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fruity, vinegar, oat/cereal, caramel, vanilla flavor, as well as shininess, smoothness, and mouth coating
showed significant differences in their perception across samples. Differences in sensory perception
in samples fermented with and without LGG R© were appreciated. Gel firmness, astringency, vinegar,
lemon taste, fruity taste, and sourness perception was higher in samples fermented with LGG R© in
the culture combination. This correlates to the results observed in previous experiments. Oat samples
that were fermented with culture combinations containing LGG R© were the ones that acidified the
most and these enhanced attributes are linked to acid foods. Mouth coating, smoothness, shininess,
sweetness, oat/cereal, vanilla, and caramel taste perception were lower in these samples. Thus, it can
be suggested that the presence of LGG R© further acidified the samples. Although the acid content of
LGG R©-containing oat samples could not be used for the statistical analyses, the results of the titratable
acidity experiment indicated that these samples contained higher lactic acid content, which supports
this hypothesis. In coconut samples, perception of gel firmness, mouth coating, mouth thickness,
sweetness, and fatness showed significant differences across samples. All samples containing LGG R©

were perceived as firmer in comparison to the ones fermented without LGG R©. In combination with
YF-L01, LGG R© increased mouth thickness and mouth coating. Perfume odor was specifically evaluated
in coconut samples. Esterification of free fatty acids in coconut with ethanol, which was higher than in
soy and oat samples, may have generated ethyl esters with floral odors [49]. However, no significant
difference was found in its perception across the different samples.

3.7. Correlation of Instrumental Measurements with Flavor Perception

PCA was conducted to reduce the dimensionality of the data and identify patterns based on the
correlation between VOCs and the perception of flavor attributes in each fermented sample (Figure 6).

Figure 6. Effect of different culture combinations and the VOCs they produced on the sensory
perception of flavor attributes. PCA bi-plot of the first two principal components (PCs) in fermented
(A) soy, (B) oat, and (C) coconut samples labeled by culture combinations.

PCA of fermented soy samples explains 85.4% of the total variance, comprising 51.8% of the first
PC and 33.6% of the second PC. The presence of acetoin correlated positively with the perception of
lemon taste, astringency and sourness (R = 0.9). This was attributed to samples that were fermented
with YF-L02+LGG R©, which is supported by the FID results reported above. Samples that were
fermented with YF-L02 were located in an opposite area of the graph to YF-L02+LGG R© along PC1
axis. Therefore, an effect of LGG R© when combined with YF-L02 on the perception of these flavor
attributes was indicated by this analysis. In contrast, acetaldehyde, 2-pentylfuran, and 2-heptanone
were positively correlated (R = 0.9) with each other but negatively correlated with the three flavor
attributes mentioned above (R = −0.9). This would suggest that the presence of these volatiles was
responsible for a less acidic taste. Samples fermented with YF-L01, BY-01, and YF-L01+LGG R©

clustered together around these components. This would suggest that LGG R© did not have an effect
on fermented soy flavor when combined with YF-L01, which is supported by the sensory results.
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PCA of fermented oat samples explained 91.4% of the total variance, comprising 67% of the first PC
and 24.4% of the second PC. All culture combinations containing LGG R© clustered together far from
their respective cultures without LGG R©, which indicated that LGG R© had an effect on fermented oat
flavor. They were close to the attributes sourness, astringency, lemon and fruity flavors. A positive
correlation between them and the presence of diacetyl, acetoin and 3-methyl-thiolanone (R = 0.9–1) was
found. The sweetness and oat/cereal flavor were related with the presence of acetaldehyde (R = 0.7)
and acetone (R = 0.4–0.5), although the association was not significantly strong. Samples that were
fermented with YF-L02 and BY-01 were located close to these components. YF-L01 was found close
to ethanol and propanol and these compounds were negatively correlated to diacetyl and acetoin
(R = −1), which is supported by the results obtained by FID. PCA of fermented coconut samples
explained 99.9% of the total variance, comprising 57.8% of the first PC and 42.1% of the second PC.
Lemon taste and sweetness were positively correlated (R = 0.9) and also with ethanol (R = 0.9) and
diacetyl (R = 1). Acetoin, γ-nonalactone, α-pinene, and 2-pentanone were also positively correlated
(R = 1) and located close to the previously mentioned components. The sample fermented with
YF-L02 clustered with all culture combinations containing LGG R© around the previously mentioned
attributes. This indicates that LGG R© did not have any effect on fermented coconut flavor when added
to YF-L02. Nevertheless, an effect of LGG R© in the perception of fermented coconut flavor when
combined with YF-L01 and BY-01 was observed. The sample fermented with BY-01 was associated
with acetaldehyde, which is supported by the results obtained by FID. It was negatively correlated with
all components except from sweetness, although the correlation was not significant. The presence of
2,3-pentanedione was negatively correlated with the perception of sweetness and lemon taste (R = 0.9)
and associated with YF-L01. This sample was the one that scored lower in lemon taste perception in
the sensory evaluation.

4. Conclusions

The use of culture combinations containing LGG R© showed significant effects in fermented
plant bases. Acidification time was improved with its presence in fermented soy and oat samples and
also post-acidification and TA increased in the latter. LGG R© and BB-12 R© were able to grow in all three
fermented bases above 107 CFU/g, which indicates that soy, oat, and coconut are suitable substrates for
their proliferation. LGG R© did not have any significant effect on the rheological behavior of any of the
fermented bases. However, it was shown that each raw material reacted significantly differently to the
same shear rate and frequency. This reflects an important role of the base on the texture, since protein,
fiber, and starch enable the formation of firmer structures. Supplementation with LGG R© resulted
in higher acetoin levels and lower acetaldehyde levels in all three bases. Diacetyl content was also
enhanced in oat and coconut samples when LGG R© was combined with YF-L01 and BY-01. Regarding
sensory perception of fermented samples, major effects of LGG R© were observed in oat samples. LGG R©

increased perception of acid-related flavor attributes and decreased sweetness and oat/cereal taste
when inoculated in oat samples in combination of all initial cultures. LGG R© increased the gel firmness
perception in all fermented coconut samples. On this basis, the results of this study encourage future
research on the potential of probiotic LAB for the improvement of physicochemical properties in
plant-based products.
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