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Molecular heterogeneity of individual molecules within single cells has been recently shown to be crucial for
cell fate diversifications. However, on a global scale, the effect of molecular variability for embryonic
developmental stages is largely underexplored. Here, to understand the origins of transcriptome-wide
variability of oocytes to blastocysts in human and mouse, we examined RNA-Seq datasets. Evaluating
Pearson correlation, Shannon entropy and noise patterns (777 vs. #), our investigations reveal a phase
transition from low to saturating levels of diversity and variability of transcriptome-wide expressions
through the development stages. To probe the observed behaviour further, we utilised a stochastic
transcriptional model to simulate the global gene expressions pattern for each development stage. From the
model, we concur that transcriptome-wide regulation initially begins from 2-cell stage, and becomes
strikingly variable from 8-cell stage due to amplification and quantal transcriptional activity.

umerous studies on single cells have shown that individual molecules (genes, proteins or metabolites),

within an iso-genic and -phenotypic cell population, can display highly variable expression levels. For

example, immunofluorescence flow cytometry showed that Sca-1 expressions in multipotent murine
hematopoietic cells follow a Gaussian-like distribution’, and the monitoring of green fluorescent proteins in
Escherichia coli displayed fluctuations in their expression levels over time®.

Such heterogeneous or noisy characteristics have shown to play pivotal roles for the survival of species to
diverse environmental conditions or for cell fate decisions®>®. Notably, it was demonstrated that regulating
stochastic noise in the levels of comK in Bacillus subtilis was necessary to control cell fate decision under
nutrient-deficient conditions®. For Caenorhabditis elegans, the intestinal cell fate process from early embryonic
lineage was shown to be regulated by the variability in end-1 expression, providing the basis for incomplete
penetrance’. These studies have identified crucial single molecules that regulate heterogeneity or variability of
single cells within a population. However, little work has been performed to investigate global responses, com-
prising the entire spectrum of molecular species, within single cells. In particular, the extent of transcriptome-
wide expressions noise in the early mammalian development has yet to be determined.

In this paper, to understand global gene expression structure and noise patterns of single cells during mam-
malian developmental stages, we investigated transcriptome-wide RNA-Seq expressions of several cells during
human® and mouse® embryogenesis. A total of 7 human and 10 murine cell origins, from oocytes to blastocysts,
were analysed using high-dimensional statistical techniques, such as correlation metrics'®', Shannon
entropy'”"" and noise analyses™.

Results

Single cell transcriptome expressions scatter increases along development stages. To observe gene expression
variability between 2 single cells at each developmental stage, we plotted pair-wise distributions of single cell
transcriptomes (Figure 1). For human, we noticed global expressions scatter is tightly constrained up to 2-cell
stage, after which the scatter widened, especially for lowly expressed genes. For mouse, the scatter widened
noticeably from middle of 2-cell stage. These data suggest that transcriptome-wide expression distributions
become more variable along the developmental stages.

To better understand the variability and the effects of technical and biological noises, we performed tran-
scriptome-wide correlation (similarity) analysis'*'* by comparing the expressions of two cells from the same cell
origin. Although large expressions scatters are observed, especially for late developmental stages (Figure 1), the
global averaged Pearson correlation coefficients between single cells of the same stage, as expected®, are generally
high (Figure 2A, dotted lines). However, the correlation coefficients between cells of distinct origins, are signifi-
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Figure 1| Gene expression structures for developmental stages. Gene expression distributions, estimated from kernel density estimation (kde2d R
function) of all genes expressions (RPKM) between all possible pairs of single cells in human and mouse, from oocytes to blastocysts. m is the total number

of single cells and # is the total number of genes.

cantly lower (Figure 2A, solid lines and Supplementary Fig. S1
online). We further probed for non-linear relationships between
the transcriptomes of cells of the same stage or different stages,
and computed Spearman ranking metrics (non-linear monotonic
relationships), distance correlation (strict statistical dependence)
and maximum information coefficient'® (linear and non-linear asso-
ciations) (see Materials and Methods). Remarkably, all metrics
revealed similar trends compared with Pearson -correlations
(Supplementary Fig. S2 online). These results indicate that the global
transcriptional program of developmental cells clearly deviates along
the stages in time, with faster rate of deviation occurring for mouse
when compared with human (Figure 24, solid lines).

Next, we assessed the diversity of single cell transcriptomes using
Shannon entropy, which measures the disorder of a high-dimen-
sional system, where higher values indicate increasing disconnection
between variables and zero value indicates order'’** (Materials and
Methods). For both human and mouse, Shannon entropies remained
low in early stages but gradually increased from 2-cell (human) or 4-
cell (mouse) stage, to reach high values for morula and blastocyst

(Figure 2B). This result, therefore, shows the disconnection or
diversity of transcriptome-wide expressions increases during mam-
malian development.

Transcriptome-wide noise increases during development stages.
To further understand the effects of increasing entropy and diversity
in single cell transcriptomes during embryogenesis, we quantified
single cells’ expressions scatter by computing transcriptome-wide
average noise (renamed as total noise), 712,, i.e. summing the squared
coefficient of variation®, defined as the variance (¢°) of expression
divided by the square mean expression (4°), for all genes (i) between
all possible pairs of single cells (Materials and Methods). We observed
that 72, is low during initial embryonic cell differentiation, but
increases at later stages with significant increase from 2- to 4-cell
stage onwards (Figure 3A). We also compared total noise for
embryonic stem, normal somatic and cancer cells, and found
similar values as obtained for later stage development cells
(Supplementary Fig. S3 online). These data indicate that total noise
stabilises at ~0.7 and may not increase further.
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Figure 2 | Phase transition in single cell transcriptomes. (A) Pearson correlation, R, between transcriptomes of cells of the same development stage
(dotted lines) and or between transcriptomes of zygote and other stages (solid lines) for human and mouse. (B) Shannon entropy (H) of single cell

transcriptomes (average for m cells, error bars indicate 1 s.d.).

So far, we have analysed the entire transcriptome without setting
any expression cut-off. It is known that lowly expressed genes in
single cells are dominated by stochastic and/or technical noises,
which reduce their between cells correlation values, while highly
expressed genes show more deterministic expressions®. Thus, we
delineated total noise to investigate average noise for every group
of 500 genes, between pairs of single cells, as a function of mean
expressions (u) starting from the lowest expressions.

As expected, we noticed noise is relatively high for the lowly
expressed portion of the transcriptome (7*(u) ~ 2 for p < 0.1 for
all cell types) (Figure 3B). This portion of transcriptome is usually
discarded due to low signal-to-noise ratios. Considering noise pat-
terns above this threshold (i = 0.1), we observed all patterns fol-
lowed the relationship, #*() = o/ + f, where o and f are
proportionality constant and asymptotic value, respectively
(Supplementary Fig. S4 online). That is, noise scales with the inverse
of mean values reaching asymptotic values at higher expressions for
all cell types and species, including other embryonic stem cells, so-
matic cells and human cancer cells” (Supplementary Fig. S3 online).
Notably, this relationship was also previously observed for other
high-throughput datasets®**.

Fitting the noise pattern of each cell type and species, we observed
o and f increase during the human development process; oocyte,
zygote and 2-cells stages show similar patterns, 4-cell stage shows
transitional values, while 8-cell, morula and blastocyst stages reach
higher values. Similar trends were also found for mouse, neverthe-
less, the transition between low and high values occurred earlier at
middle of 2-cell stage (Figure 3C). These results show that transcrip-

tome-wide noise increased along the developing stages and stabilises
from 8-cell stage. Note that other grouping sizes, e.g. 50, 100, 1000
genes (Supplementary Fig. S5 online), did not affect the overall
increase in transcriptome-wide noise along the developing stages.

Deciphering the origins of noise patterns using a stochastic
transcriptional model. To understand the transcriptional mech-
anisms governing increasing noise patterns along the development
process, we utilised a single cell transcriptional model based on
Gillespie stochastic algorithm. We simulated transcriptome data
constituting 20,000 gene ‘units’, where each gene dynamics
is governed by 3 ordinary differential equations with 5 kinetic
parameters®>®; transcription rate (s), degradation rate (J),
promoter activation (k,,) and deactivation (k.y) rate constants,
where both continuous gene promoter activation (ks = 0) and
quantal (bursty) dynamics (k,g > 0) can be simulated (Figure 4A).
The transcriptional amplification process”’, ie. number of
transcripts produced per activation event, is controlled by ¢.

Using the model, we simulated gene expressions for various condi-
tions by controlling the 5 kinetic parameters. Firstly, simulations were
performed by choosing the transcription (s) and degradation (J) rate
parameters for each gene from statistical distributions found in experi-
mental data®** (Supplementary Fig. S6 online). The three other para-
meters were kept at default constant values (¢ = 1, ko = 0 and k,, =
0.5). In this theoretical setting, generated noise is entirely intrinsic
(and Poisson), and decreased with mean expressions with o constant
and f = 0 for the whole range of gene expressions (Figure 4B, panel
1). It is conceivable that none of the development stages follow this
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Figure 3 | Transcriptome-wide noise patterns. (A) Total noise (1%,) of single cells for each development stage (average for m cells, error bars indicate 1
s.d.). (B) Noise (1*) vs. mean (u) expression patterns for each development stage. (C) Plots of o and f against cell stage. The insert illustrates how o and f§

are determined.

idealised condition, which does not contain noise due to extrinsic or
other non-Poisson factors, such as technical noise*'.

To consider expression-independent noise in our simulations,
such as technical and environmental variability, we included additive
and multiplicative random white noise’*** to our simulated expres-
sions. As a result, we observed an increase of f§, while o remained
unchanged (Figure 4B, panel 2). This is because the white noises do
not interfere with the transcriptional regulation.

Although none of the development stages fitted this pattern, we
observed the expression-independent noise values at higher express-
ion levels of early stages could be achieved by setting a certain thresh-
old of random white noise, such as § = 0.03 for human and 0.02 for
mouse (Supplementary Fig. S4 online). We, therefore, set these
values as the level of extrinsic noise for all the subsequent simula-
tions, assuming it remains unchanged across each cell type for a
particular species.

Next, we increased the number of transcripts produced per activa-
tion event, which resulted in amplification of the scatter in expressions

(Supplementary Fig. S7 online), with corresponding increase in noise
structure (Figure 4B, panel 3). Since ¢ controls transcriptional amp-
lification, it is conceivable that increasing ¢ will proportionally
increase o. However, § was not affected.

For human, the simulated noise structures matched experimental
patterns of oocyte, zygote, and 2-cell stages for low ¢ and 4-cell stages
for high ¢ (Figure 4C). For later stages, although higher values of ¢
improved the simulation results, as noted earlier, f could not be
increased to fit the experimental patterns (Figure 4B, panel 4). For
mouse, the trend of increasing over developmental stages is also
observed (Figure 3B), however, the values are generally higher for
early stages (Figure 4C and Supplementary Fig. S8 online). Like
human data, the mouse simulations also did not match for the values
of B (Supplementary Fig. S8 online).

To improve the simulation results, that is to specifically increase §
values, we next explored the parameters governing bursty transcrip-
tional dynamics: k,, and kg Previous experiments in mouse ES
cells** suggest 0.1 =< k,, = 2.5 h™' (median, 0.5 h™') and 3 = k.4
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= 200 h™' (median, 14 h™"). To obtain f values that fit the human
experimental patterns of later development stages, we initially set k,,,
= 0.5 and increased ko4 to 5. However, the value for f3 obtained from
simulations was still too low, and further increase of kg did not
produce major increase in . We, therefore, reduced the value of
ko, such that k,, = 0.3 to obtain a good fit (Figure 4B, panel 5).
For mouse, k,, = 0.5 and k. > 0.5 were required to fit the experi-
mental f§ values. Again, further increases of k. did not significantly
increase f§ (Supplementary Fig. S8 online).

Overall, from these simulations, we concur that distinct transcrip-
tional mechanisms govern transcriptome-wide expressions during
embryonic development. Notably, we showed that « is governed
solely by transcriptional amplification whereas f is controlled by
both extrinsic noise and quantal transcriptional activation.

Discussion

Recent studies on single cells have shown that individual molecules
(genes, proteins or metabolites), within a homogenous cell popu-
lation, can display highly variable expression values“*%”*>%*. This
variability has been linked to biological noise or the stochastic nature
of molecular network regulations®*°. However, there is a general
lack in the investigation of global regulatory mechanisms at an
omics-wide scale for single cell behaviour. Studying global properties
has been instrumental in interpreting collective mechanisms of living
organisms, for example, the innate immune response to invading
pathogens' or the attractor states of cell differentiation process®.
Here, to understand the global noise patterns of single developmental
cells, we investigated RNA-seq transcriptome-wide expressions of
oocytes to blastocysts in human and mouse.

Firstly, by studying the distribution of gene expressions between
single cells, we observed the expression scatter increased from 2-cell
to 4-cell stage onwards in both human and mouse (Figure 1). Next,
we examined the Pearson correlation and Shannon entropy for each
developmental stage. Again, we observed that expressions become
more variable from the 2-cell stage (Figure 2). Subsequently, the
global noise character of single cells was investigated by quantifying
the squared coefficient of expression variations over mean express-
ion values. Here, we observed clear transition of noise patterns occur-
ring between 2-cell and 8-cell stage (Figure 3).

To understand the noise patterns, we developed a stochastic tran-
scriptional model and estimated the parameter values to match each
developmental cell pattern (Figure 4). From the model, we concur
that the early developmental stages are mainly dominated by low
transcriptional activity. For these stages, the number of transcripts
produced per activation event, ¢, is low. The lower overall transcrip-
tion in oocytes and early zygote is consistent with i) transcriptional
silencing and ii) stochastic degradation of maternal RNA that has
been observed from oocytes to 4-cell stage in humans**.
Transcriptional silencing is likely due to chromatin condensation
state that prevents transcriptional machinery from reaching gene
promoters**>*,

To track the gene expression profiles of common maternal***® and
zygotic genes*, we plotted their relative expressions (Supplementary
Fig. S9 online), and found 2 and 3 major temporal clusters, respect-
ively, for 137 maternal and 116 zygotic highly expressed genes
(Figure 5 and Table S1 online). Notably, the maternal genes (e.g.
Cdh3, Dppa5, Mos, Npm2, Zp1, Zp2) showed dominant decay pro-
files of RNA expressions, indicating lack of transcription process
(Figure 5A). However, the zygotic genes and genes expressed in
embryonic stem cells*** (e.g. Kif4, Lin28a, Myc, Nanog, Pou5fI,
Sox2) showed transcriptional process significantly increasing after
the 4-cell stage (Figure 5B). The high transcriptions can be due to
instructive signaling pathways, or multiple rounds of transcription
reinitiation by RNA polymerase***>*. The observation of high tran-
scriptome-wide noise for the middle stage developmental cells indi-
cates the generation of heterogeneity in gene expressions between

individual cells. Such heterogeneity has been shown to be necessary
for cell fate diversifications"*.

For the later stage developmental cells, on top of high transcrip-
tional process, the cells possess quantal activation of most transcrip-
tion factors, or are subject to more extrinsic variability such as
phenotypic diversity among individual cells. These factors increase
the general expression scatter and noise levels. However, investi-
gating expression-independent random noise in our single cell tran-
scriptional model simulations suggest that the levels of extrinsic and/
or technical noise in our RNA-Seq data for all cells are relatively low
(%, ~ 0.25). That is, the relatively high levels of noise for later stages
stem from quantal activation rather than technical biases, or in cer-
tain cases, such as blastocyst cells, may result from phenotypic vari-
ability, as blastocysts consist of different cellular subtypes.
Conversely, since phenotypic variability among more homogenous
8-cell stage is similar to blastocyst (Figure 1), we believe that quantal
promoter activation is crucial for the increase of noise scatter along
development stages. Notably, such quantal promoter activation has
been noted to occur for single cell organisms such as E. coli®, and has
been shown to be important for the cell fate decision of B. subtilis®.

Opverall, our investigations on the transcriptome-wide expressions
of the early mammalian developmental stages reveal increasing vari-
ability and noise patterns across the mammalian development pro-
cess. These data suggest different stages of the cell differentiation
process can be better understood by investigating the transcrip-
tome-wide noise patterns. In conclusion, our systemic approach
provides novel insights into the transcriptome-wide expression
and noise patterns for development cells, and the underlying nature
of the transcriptional mechanisms.

Methods

Single cell datasets. Single cell RNA-Seq datasets were downloaded from Gene
Expression Omnibus (GEO) database from previously published data for 7 human®
(GSE36552) and 10 mouse’ (GSE45719) developmental stages. All datasets were
obtained through Illumina sequencing systems. Each dataset contains the RPKM
values (Reads Per Kilobase Mapped) for # ~ 20,000 genomic features, which is
proportional to the number of transcripts of coding and non-coding genes (and
splicing variants).

Correlation analyses. To quantify transcriptome variability we utilised correlation
metrics, which are widely employed to compare global relationships between high-
throughput datasets'*"*.

The Pearson correlation between two transcriptomes, X and Y, containing # gene
expressions, is obtained by R(X,Y) = ZTI—1 (xi — px) (i — py)/(ox0y ), where x;
and y; are the i observation in the vectors X and Y respectively, iy and iy, the
average values of each transcriptome, and oy and oy, the corresponding standard
deviations. The Spearman correlation coefficient between transcriptomes X and Y'is

6
defined by p(X,Y)=1— mz

ranks of the i observations x; and y;, in vectors X and Y respectively. Both correla-
tions were computed using the cor function of R stats package (http://www.r-project.
org/).

Pearson and Spearman correlations respectively measure linear and non-linear
monotonic relationships between two vectors, where R = 1 (respectively p = 1) if the
two vectors are identical, and R = 0 (respectively p = 0) if there is no linear or
monotonic relationships between the vectors. However, both metrics do not detect
other non-linear relationships, therefore null correlation values do no imply statistical
independence. To obtain a more stringent measure of statistical dependence between
transcriptomes X and Y, we used Distance Correlation'* (dCor), where dCor(X, Y) =
0 if and only if the two vectors are statistically independent. Maximum Information
Coefficient'® (MIC) can also be used to detect other types of non-linear associations
between the transcriptomes, by calculating mutual information of the vectors using
an automated non-parametric approach for binning. The computation of Distance
Correlation values was performed using the dcor function of the R energy package,
and the computation of Maximum Information Coefficient with the mine function of
the R minerva package, with default parameters.

n

2
o (rxi—ryi)", where r,; and r,,; are the

Entropy analysis. To assess the diversity of single cell transcriptomes, we used
Shannon entropy'’~"°. Shannon entropy measures the disorder of a high-dimensional
system, where higher values indicate increasing disorder. Entropy of each single cell

:1:1 p(x;) log,p(x;), where p(x;)
represents the probability of gene expression value x = x;. Entropy values were
obtained through binning approach and the number of bins, b = 26, was determined

transcriptome, X, is defined as H(X) = —
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(B) zygotic (3 clusters) genes during human embryo development. Clusters were obtained using k-means clustering. From the initial lists of genes
obtained from Xue et al.** (Table S1), we retained maternal genes with expression values reaching peak before 4-cell stages and zygotic genes with
expression values reaching peak from 8-cell stage onwards. Right panels show the expression values in all development stages of individual maternal genes
(Cdh3, Dppa5, Mos, Npm2, Zp1 and Zp2; obtained from Kocabas et al.*°) expressed in oocytes, and zygotic genes involved in later embryonic stages and
stem cells (Myc, KIf4, Pou5f1 (Oct4), Sox2, Lin28a and Nanog; obtained from Takahashi et al.*” and Yu et al.*®).

from the data using Doane’s rule®, such as b(X) =1+log,n+log, (1+|gx|/a,),
where gy is the skewness of the expression distribution of each sample, and

0, =1/6(n—2)/(n+1)(n+3). The computation of entropy values was performed
using the maximum likelihood implementation (entropy.empirical) of the R entropy
package.

Transcriptome-wide average noise. To quantify between single cells’ expressions
scatter, we computed Transcriptome-wide average noise for each cell type, defined as

1
n, = . E :':1 1%, where 7 is the number of genes and 7 is the pairwise noise of the i
2 m—1 m
bl 2_ 2
gene (variability between any two cells), defined as n; = mm=1) E i1 E Y

where m is the number of cells and nfjk is the expression noise of the i gene, defined
by the variance divided by the squared mean expression'® in the pair of cells (jk),

ith

such as r]fjk = ﬂfjk / ,ufjk, where w = (x;; + xi)/2 is the average value of the i gene in

. . . 2 . . .
the pair of single cells (j,k), and afjk = (xij —xik) / 2, is the corresponding variance.
Transcriptome-wide noise patterns. To elucidate transcriptome-wide noise

patterns, we sorted the transcriptome into groups of w = 500 genes from low to high
expression values for each pair of cells (j,k). We formed G = n/w groups, and obtained

. . 1
the average gene expression of each group for each pair of cells, 11 (¢) = ” ZieG Hio
and the average gene expression noise of all genes contained in the group,

1
;ﬁk (g)=— ZieG nfjk, for each pair of cells. We finally obtained characteristic whole
w
) . 2 m—1 m
transcriptome noise patterns pu(g) = mszI Zk:jH Hix(g) and

()= m Z]m:_ll Z:‘:jﬂ 13.(g) by averaging the patterns of all pairs of
cells.

For simplicity, we used u = ui(g) and 1> = 1*(g) in the main and following texts. Asa
result, the reported curve for each stage is the average pattern of all single cells pairs.
We fitted noise as function of mean expressions, 1> = f(u),

172={ 2’ /A<O{/(2*ﬁ)
af/u+p, p=o/(2—p)

using nonlinear least squares piecewise curve fitting with the nils R function, to obtain
the values of « and f8 for each pair of cells in all development stages.

(1)

Transcriptome simulations. Each transcriptome model consists of a set of 20,000
genes, and each gene’s expression is obtained from the stochastic simulation® of a
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telegraph process®, such as the system of rate equations that governs gene expression
x; of the i gene is

B — Fegn () — Kogr i Ai(8)
% = k"ff.iAi(t> - kOVLiIi(t)

i )
B0 — prsiAi() — dixi(1)
where the promoter activation of each gene is defined by a 2-state model, active (A;)
and inactive (I;) states, and the transition rates between states are defined by two
parameters, K,,,,; and k. s; is the transcription rate when the promoter is active, ¢; is
the transcription amplification factor and 0; is the degradation rate constant. The
distribution of RNA degradation rate constants, J,, was obtained from transcriptome-
wide RNA half-lives data in differentiating mouse ES cells* and human B cells®, and
fitted to a lognormal distribution with mean (log scale) and standard deviation
parameters, 4 = —2.24 and ¢ = 0.61 for mouse and u = —1.58 and ¢ = 0.73 for
human (Supplementary Fig. S6 online).

RNA transcription rates, s;, were estimated from the same data***’, such as s; = x;0;
(Kon,i + kogi)! (dikon,i), where x; is the gene expression value (read counts) of the i
gene, taken from a Zipf’s law distribution with exponent r = 0.8 to fit the expression
range in our data (Supplementary Fig. S6 online, inserts). As a result, we fitted the
estimated values using a lognormal distribution for x;;, with parameters 4 = 0.17 and
¢ = 2.67 for mouse and u = 0.73 and ¢ = 2.53 for human (Supplementary Fig. S6
online). Since the model simulates integer read counts expressions, to obtain cor-
responding RPKM values, we multiplied our simulated values by a normalization
constant, I, defined as the average ratio between RPKM values of all genes and
corresponding number of reads (/" = 0.03 for the human dataset, and 0.12 for
mouse).

To generate transcriptome-wide expressions, we assigned different values for
degradation rate constant, J;, and transcription rate, s; for each gene, and set the
values of ¢, k., and ko, identical for all genes. To test variable values of @i, kon;and
ko for each gene, we generated transcriptome-wide expressions using a Poisson
distribution for ¢; with parameter 4 = ¢,. Our result showed no noticeable difference
in the patterns between fixed value or Poisson distributed ¢,.

Similarly we simulated transcriptomes with promoter activation kinetics that vary
between genes. We estimated the distributions of k,,,; and k; from previously
observed experimental distributions of promoter ‘on’ and ‘off” time intervals* (t,,,;
and 7,4;). From the data, we observed the distributions of ,,,; and 7,4; could be
approximated by an exponential distribution with parameter A = 10, and alognormal
distribution with parameters u = 0.69 and ¢ = 1 respectively. Since k,,,; = 1/7,;and
kogri = 1/70p,°, we found median k,,,; = 0.5 h™ (0.1 ~ 2.5 h™* range) and median
kogi = 14 h™' (3 ~ 200 h™"). We then compared the simulations using fixed k,,,,; =
0.5 and k,g; = 14 or variable k,,,; and k.z; and found no significant change in the
patterns.

To account for non-intrinsic variations, we introduced different levels of additive
and multiplicative white (Gaussian) noise to the simulated data®?*. Additive noise is
achieved by adding a different random value to each gene in each cell, and mul-
tiplicative noise, by multiplying all gene expressions in the same cell by a random
number such as, log xj; = ; (log x;j + ), where xj; is the expression of i gene in the

28,29

j" cell including non-intrinsic noise, &; represents additive noise for the and i" gene in
the j* cell, and ; is the multiplicative noise that affects the j* cell. ¢; is chosen from a
normal distribution (&; € N(0,¢ logx;;)) with mean and standard deviation para-
meters, 4 = 0and o = ¢ logx;;, where ¢ represents the level of additive noise. w; is log-
normal distributed, such as w; € N(0,logw) with parameters y = 0 and ¢ = @
respectively, and w is the level of multiplicative noise. We used ¢ = 0.08 and w = 0.1
to simulate non-intrinsic noise of human dataset (equivalent to f ~ 0.03), and ¢ =
0.06 and » = 0.1 for mouse ( ~ 0.02).
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