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Reduced susceptibility of Listeria monocytogenes to benzalkonium chloride (BC),

a quaternary ammonium compound widely used in food processing and hospital

environments, is a growing public health and food safety concern. The minimal inhibitory

concentration of BC on 392 L. monocytogenes strains from Switzerland (CH) and Finland

(FIN) was determined. Within this strain collection, benzalkonium chloride resistance

was observed in 12.3% (24/195) of Swiss and 10.6% (21/197) of Finnish strains. In

both countries, the highest prevalence of BC-resistant strains (CH: 29.4%; FIN: 38.9%)

was detected among serotype 1/2c strains. Based on PCR analysis, genes coding for

the qacH efflux pump system were detected for most of the BC-resistant strains (CH:

62.5%; FIN: 52.4%). Some Swiss BC-resistant strains harbored genes coding for the

bcrABC (16.7%) efflux pump system, while one Finnish BC-resistant strain harbored the

emrE gene previously only described among BC-resistant L. monocytogenes strains

from Canada. Interestingly, a subset of BC-resistant strains (CH: 5/24, 20.8%; FIN:

9/21, 42.8%) lacked genes for efflux pumps currently known to confer BC resistance

in L. monocytogenes. BC resistance analysis in presence of reserpine showed that

the resistance was completely or partially efflux pump dependent in 10 out of the 14

strains lacking the known BC resistance genes. Sequence types 155 and ST403 were

over-representated among these strains suggesting that these strains might share similar

but yet unknown mechanisms of BC resistance.

Keywords: Listeria monocytogenes, benzalkonium chloride, bcrABC, qacH, emrE, MLST

INTRODUCTION

Listeria monocytogenes, the causative agent of listeriosis in humans and animals, represents a
major foodborne pathogen with serious impacts on public health and the food industry (de
Valk et al., 2005; Popovic et al., 2014; Crim et al., 2015). Listeriosis mainly, but not exclusively
affects neonates, elderly people, pregnant women, and immunosuppressed individuals and may
cause gastroenteritis, sepsis, central nervous system infections, and abortion in pregnant women
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(Maertens de et al., 2014). Listeriosis, even though relatively
rare, occurs worldwide (Maertens de et al., 2014) and is of
major public health concern due to the high case-fatality rate
in human clinical cases (15–30 deaths/100 cases; Crim et al.,
2015; de Valk et al., 2005; Popovic et al., 2014). The ubiquitous
nature of L. monocytogenes and its ability to grow at refrigeration
temperatures (Walker et al., 1990) and to tolerate very low pH
(reviewed in Smith et al., 2013) and high salt concentrations
(Bergholz et al., 2010), increases the risk of foodborne outbreaks
from strains that achieve high concentrations on products with
a long shelf life and subsequently cause human infections
upon consumption. Strains of L. monocytogenes can persist in
niches within food processing facilities for years, representing
a serious food safety issue (reviewed in Ferreira et al., 2014).
As a preventive measure, quaternary ammonium compounds
(QACs) such as benzalkonium chloride (BC), are widely used
for cleaning and disinfection of food processing environments
(McDonnell and Russell, 1999; Mereghetti et al., 2000).
Quaternary ammonium compounds function by disrupting cell
membranes of bacteria, subsequently leading to leakage of the
cytosol, and degradation of proteins as well as nucleic acids
(McDonnell and Russell, 1999). L. monocytogenes strains with
low susceptibility to BC have been regularly isolated from foods
and food processing environments. (Mereghetti et al., 2000;
Romanova et al., 2002; Mullapudi et al., 2008; Fox et al., 2011).,
Benzalkonium chloride resistant (BCr) strains have been isolated
from human listeriosis infections (Elhanafi et al., 2010), and
there is evidence of cross-protection against other antimicrobials
including gentamicin and ciprofloxacin (Rakic-Martinez et al.,
2011). In light of this, the presence of BCr strains in food and
food processing environments is concerning.

The known molecular mechanisms of BC resistance are due
to the activity of efflux pump systems encoded through the
brcABC (Elhanafi et al., 2010), qacH on the Tn6188 transposon
(Müller et al., 2013), and emrE (Gilmoure et al., 2010; Kovacevic
et al., 2015) genes that can be acquired by horizontal gene
transfer leading to BC resistance in L. monocytogenes. There is
limited knowledge of the prevalence of BC resistance among
Swiss L. monocytogenes strains; a recent study found a prevalence
of 18% among 142 Swiss strains isolated from food and the
food processing environment (Ebner et al., 2015). Virtually no
information is available on the QAC resistance profiles in strains
from Finland. The aim of this study was to analyze and compare
a large collection consisting of L. monocytogenes strains from
Switzerland and Finland for BC susceptibility and the presence of
known genes that convey resistance to QAC. The strain collection
included isolates originating from samples taken along the whole
length of the food production chain, ranging from the farm
environment (silage, feces of farm animals, birds, and veterinary
clinical cases) to food production facilities and various foods to
human clinical cases.

MATERIALS AND METHODS

Bacterial Strains
The 392 L. monocytogenes strains used in this study were
collected between 1999 and 2013 in Switzerland and Finland

(Supplementary Table 1). The Swiss strains (n = 195)
were collected at the Swiss National Reference Centre for
Enteropathogenic Bacteria and Listeria (NENT). This strain
collection differed from that recently described in the study by
Ebner et al. (2015). Finnish strains (n = 197) were collected
through the Department of Food Hygiene and Environmental
Health of the Faculty of Veterinary Medicine at the University
of Helsinki. Unlike the Swiss strain collection, the Finnish strain
collection lacked human clinical isolates. The origin of the strains
was summarized as: dairy (strains isolated from dairy products),
meat (strains isolated from carcasses and raw meat products),
fish (strains isolated from raw fish), ready to eat (RTE) food
(strains isolated from RTE seafood, salad, sausage, ham, maize
products), vegetables (strains isolated from raw vegetables), food
animals (strains isolated from cows, goats, pigs, and sheep), birds
(strains isolated from the feces of wild birds), food production
environments (FPE; strains isolated from meat, RTE and dairy
production environments), human (strains isolated from human
listeriosis cases), others (strains isolated from quorn, rice, silage).
Bacteria were stored at −80◦C in brain heart infusion (BHI;
Oxoid, Pratteln, Switzerland) broth plus 20% glycerol (Sigma-
Aldrich, Buchs, Switzerland).

Strain Serotyping and BC Susceptibility
Testing
Strain serotypes were assigned by the slide agglutination test
using the commercial set of Listeria O-factor and H-factor
antisera from Denka Seiken (Pharma Consulting, Burgdorf,
Switzerland) according to the manufacturer’s instructions.
Susceptibility to BC was tested using the previously described
agar dilution method (Elhanafi et al., 2010). Strains were plated
on blood agar plates (Difco, Columbia blood agar base, 5%
sheep blood, Oxoid) and incubated for 18 h at 37◦C. Single
colonies were picked from each plate on the next day and
suspended in 100µl of Mueller Hinton broth (MHB; Oxoid,
Pratteln, Switzerland). Five microliters of the suspensions were
spotted in technical duplicates on Mueller Hinton Agar (MHA;
Oxoid) plates supplemented with 2% defibrinated sheep blood
(Oxoid) and various BC concentrations (0, 2.5, 5, 7.5, 10,
15, 20, 25, and 30µg ml−1; Sigma-Aldrich). Benzalkonium
chloride minimal inhibitory concentrations (MICs) were read
after incubating the plates at 37◦C for 48 h. Spots could exhibit
either no growth, growth of individual colonies, or confluent
growth over the full area of the spot. Strains were considered
resistant to a given concentration of BC if the spots showed
confluent growth, and the MIC was defined as the lowest
BC concentration preventing confluent growth of the spotted
bacteria. Strains were considered BCr if they exhibited confluent
growth at or above 20µg ml−1. This cutoff was defined after
the following considerations: we first determined the lowest
BC concentration that killed >50% of all strains (10µg ml−1).
Based on (Langsrud et al. (2003); Xu et al. (2014), we then
defined resistance at a MIC that was double this concentration
(20µg ml−1). Minimal inhibitory concentrations are indicated
as >30µg ml−1 for strains that exhibited confluent growth at 25
and 30µgml−1 BC.
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Impact of Efflux Pump Inhibition with
Reserpine On BC Susceptibility
To assess the contribution of efflux pump activity in BCr strains,
the BC MICs of such strains were also determined on MHB agar
plates containing various BC concentrations (0, 2.5, 5, 7.5, 10,
15, 20, 25, and 30µg ml−1; Sigma-Aldrich) and supplemented
with the efflux pump inhibitor reserpine (20µg ml−1; Sigma-
Aldrich; Romanova et al., 2006). The BC resistance of the
L. monocytogenes strains was classified as not efflux dependent
(no effect of reserpine on the BC MIC), partially efflux pump
dependent (addition of reserpine resulted in a decrease of the
BC MIC of <10µg ml−1), or fully efflux pump dependent
(addition of reserpine resulted in a decrease of the BC MIC of
≥10µg ml−1).

Genetic Analysis of All BCr Strains
TheDNA templates were extracted from L. monocytogenes strains
that were grown overnight in BHI broth (37◦C and 125 rpm),
using the DNeasy blood and tissue kit (Qiagen). Genotyping
by multilocus sequence typing (MLST) was performed as
previously described (Ragon et al., 2008). Polymerase chain
reactions (PCRs) to amplify seven housekeeping genes were
performed using the HotStartTaq Master Mix (Qiagen) and
50 ng of genomic DNA template from each analyzed strain.
The PCR products were sequenced at Microsynth (Balgach).
The MLST types and genetic lineages were assigned using
the L. monocytogenes MLST database website (http://bigsdb.
web.pasteur.fr). The PCR analysis for the presence of bcrABC,
Tn6188, and emrE genes was performed as previously described
using primers shown in Table 1. The emrE primers were
designed based on L. monocytogenes strain sequence 05–5578
described by Gilmoure et al. (2010). The R56 and R159
L. monocytogenes strains (Ebner et al., 2015) were used as bcrABC
and Tn6188 positive controls, respectively whereas the LR39-
1 strain (Kovacevic et al., 2012) was used as a positive control
for emrE.

Statistical Analysis
Statistical analysis was performed using the JMP program
(Version 11.0.0, SAS Institute Inc., NC, USA). Fisher’s exact test
was used in a series of individual pairwise comparisons using
2 × 2 tables to compare proportions of BCr and BCs within the

TABLE 1 | Primers used in this study.

Primer Genetic

target

Sequence (5′-3′) References

p1 bcrABC CAT TAG AAG CAG TCG CAA AGC A Elhanafi et al.,

2010

p2 GTT TTC GTG TCA GCA GAT CTT TGA

radC fwd Tn6188 CTT GCC AAT GAT AAT ATC ATC Müller et al.,

2013

radC rev GTG GTC TGA ATG CTC CAT CG

EmrE fw emrE GAC CAA CAC CAC CTA AGT This study

EmrE rv GTC TGA TGG ACT TAC AAA GCT

serotypes and the sources per country. P < 0.05 were considered
to be statistically significant.

RESULTS

Serotypes and Origins of Swiss and Finnish
L. monocytogenes Strains
A panel of 195 Swiss (CH) and 197 Finnish (FIN)
L. monocytogenes strains that were isolated from diverse
sources including foods, food production environments, food
animals, wild birds, and human listeriosis cases was serotyped.
Table 2 presents an overview of the distribution of these strains
based on serotypes and isolation sources. Strains examined from
these two countries belonged to serotypes 1/2a (CH: 105/195,
53.8%, and FIN: 134/197, 68.0%), 4b (CH: 47/195, 24.1%; FIN:
23/197, 11.7%), 1/2b (CH: 26/195, 13.3%; FIN: 18/197, 9.1%),

TABLE 2 | Distribution of the Swiss (CH) and Finnish (FIN)

L. monocytogenes strains based on serotypes and sources.

Source Number of L. monocytogenes strains within each serotype

1/2a 1/2b 1/2c 3a 4b Total

FOOD-ASSOCIATED ENVIRONMENT

CH 9 1 1 0 4 15

FIN 14 8 7 0 2 31

DAIRY PRODUCTS

CH 10 3 0 0 3 16

FIN 7 0 0 1 0 8

RAW VEGETABLES

CH 1 0 0 0 0 1

FIN 4 5 0 1 1 11

RTE FOODS

CH 11 4 0 0 2 17

FIN 2 0 1 0 0 3

MEAT

CH 29 6 10 0 14 59

FIN 54 3 9 0 3 69

FISH

CH 1 1 0 0 0 2

FIN 23 0 0 2 2 27

FOOD ANIMALS

CH 1 0 0 0 0 1

FIN 14 1 0 0 4 19

BIRDS

CH 0 0 0 0 0 0

FIN 13 1 1 0 10 25

HUMAN LISTERIOSIS

CH 41 11 4 0 24 80

FIN 0 0 0 0 0 0

OTHERS

CH 2 0 1 1 0 4

FIN 3 0 0 0 1 4

Total (%) 239 (61%) 44 (11.2%) 34 (8.7%) 5 (1.3%) 70 (17.9%) 392 (100%)
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1/2c (CH: 17/195, 8.7%; FIN: 18/197, 9.1%), and 3a (CH: 1/195,
0.5%; FIN: 4/197, 2.0%). In terms of isolation sources, the Swiss
strains came from human listeriosis (80/195, 41.0%), meat
(59/195, 30.3%), RTE food (17/195; 8.7%), dairy (14/195, 7.2%),
FPE (17/195, 8.7%), fish (2/195, 1.0%), food animals (1/195,
0.5%), vegetables (1/195, 0.5%), and other sources (4/195, 2.1%).
Finnish strains originated frommeat (69/197, 35%), FPE (31/197,
15.7%), fish (27/197, 13.7%), birds (25/197, 12.7%), food animals
(19/197, 9.6%), raw vegetables (11/197, 5.6%), dairy (8/197,
4.0%), RTE food (3/197, 1.5%), and other sources (4/197, 2.0%).

BC Susceptibility of the Swiss and Finnish
L. monocytogenes Strains
The BC susceptibility profiles of the Swiss and Finnish
L. monocytogenes strains were assessed. Benzalkonium chloride
MICs ranging from 7.5 to >30µg ml−1 were found (Figure 1;
Table 2). Strains with BC MICs ≥20µg ml−1 were classified as
BCr; strains with BC MICs <20µg ml−1 were classified as BCs.

By this definition, the majority (348 out of 392) of strains
from both countries were BCs. There were however 24 (12.3%)
Swiss and 21 (10.6%) Finnish strains classified as BCr, with BC
MICs ranging from 20 to> 30µg ml−1. The largest group within
the Swiss strains (104/195; 53.3%) had BC MICs of 10µg ml−1

whereas the largest group within the Finnish strains (96/197;
48.7%) had BC MICs of 7.5µg ml−1.

Prevalence of BCr Strains with Respect to
Isolation Sources and Serotypes
None of the dairy, food animal and other category strains
from either Switzerland or Finland from this strain collection
exhibited a BCr phenotype. In both countries strains exhibiting
BCr phenotypes were recovered from the FPE, raw meat and
RTE food categories. Swiss BCr strains also included isolates from
human listeriosis cases, whereas the Finnish BCr strains included
isolates from raw fish, vegetables, and wild birds. The prevalence
of BCr strains in both countries also varied with regard to the
isolation sources (Figure 2A).

FIGURE 1 | Distribution of the BCr Swiss (CH) and Finnish (FIN)

L. monocytogenes strains based on BC MICs.

The overall frequency of a BCr phenotype in the Swiss
strains was 12.3% and sources included, in descending order
of relative frequency: FPE (5/17, 29.4%), meat (12/59, 20.3%),
human isolates (6/80, 7.5%), and RTE food (1/17, 5.9%). The
overall frequency of a BCr phenotype in the Finnish strains was
10.2% and the sources included RTE (2/3, 66.7%), vegetables
(3/11, 27.3%), the FPE (5/31, 16.1%), fish (3/27, 11.1%), and meat
(4/69, 5.8%). Statistical analysis detected significant differences
between the prevalence of a BCr phenotype in Swiss vs. Finnish
strains that were isolated from meat (CH > FIN) and RTE
(CH < FIN) food products (p > 0.05). It is possible that such
differences might have been biased due to discrepancies in the
number of tested strains since there were only three Finnish
RTE food strains compared to 17 Swiss strains examined in this
category. No significant (p > 0.05) differences were detected in
BCr prevalence between the FPE, vegetables and raw fish strain
categories in the two countries. BCr strain prevalence in human
listeriosis (6/80; 7.5%) and bird (3/24; 12.5%) categories in the
two countries could however not be compared as they were not
represented in both locations.

Prevalence of the BCr strains also varied in each country with
regard to the different L. monocytogenes serotypes. As expected
given the composition of our strain collection, the majority of
BCr strains detected in both countries belonged to serotypes
1/2a (28/45, 62.2%) and 1/2c (12/45, 26.7%), although BCr

serotype 4b (3/45, 6.7%), and 1/2b (2/45, 4.4%) strains were
also found. Interestingly, the highest prevalence of BC resistance
was detected in serotype 1/2c strains from both countries (CH
4/16, 25%; FIN 7/18, 38.9%; Figure 2B). The second highest BCr

prevalence in Swiss strains was found in serotype 1/2a strains
(19/105, 18.1%), and in Finnish strains among serotype 4b strains
(3/23, 13%; Figure 2B). Low prevalence of BC resistance was
found in serotype 1/2b isolates from both countries (CH: 1/26,
3.8%; FIN: 1/18, 5.5%), and no BCr phenotypes were detected in
Swiss serotype 4b (n = 47), as well as serotype 3a (n = 5) strains
from both countries. Statistical comparison revealed significantly
higher BCr prevalence among the Swiss (19/105, 18.1% vs.
10/134, 7.5%; p < 0.05) serotype 1/2a strains compared to their
Finnish counterparts. On the other hand the Swiss serotype
4b strains displayed significantly lower BCr prevalence (0 vs.
13%; p < 0.05) compared to those from Finland. No significant
differences were observed in BCr prevalence associated with
serotype 1/2c and 1/2b strains from the two countries. We are
however aware that our observations could be biased due to
overall differences in the examined sample sizes between some
of the serotype categories in the two countries.

Genotypes Associated with Swiss and
Finnish BCr Strains
Molecular genotypes associated with the Swiss and Finnish BCr

strains were assessed based on MLST genotyping. The 45 BCr

strains from the two countries were assigned to 14 sequence
types (ST), which included two newly described sequence types
(ST25, ST28; Table 3). BCr strains in both countries belonged
predominantly to sequence types ST121 (14/45; 31.1%) and
ST9 (11/45; 24.4%) although there were some country specific
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TABLE 3 | Overview of the Swiss (CH) and Finnish (FIN) BCr strains detected in this study.

Strain ID Strain origin Serotype MLST genotypesa BC MIC µgml−1 Efflux pump

dependencyb
BCr genec

Country Source CC ST Lineage BC alone BC plus reserpine

LM116 FIN Vegetable 1/2b CC5 ST5 1 25 30 No Unknown

N12-2082 CH Human 1/2a CC8 ST8 2 25 30 No Unknown

LT25E FIN Vegetable 4b CC1 ST515 1 30 30 No Unknown

LL17/3 FIN Wild bird, feces 4b CC1 ST1 1 >30 30 Partial Unknown

LT30E FIN Vegetable 1/2a CC8 ST8 2 25 20 Partial Unknown

TT107E FIN Fish 1/2a CC155 ST155 2 20 15 Partial Unknown

N13-0094 CH Human 1/2a CC403 ST403 2 25 20 Partial Unknown

N12-1667 CH FPE 1/2a CC403 ST403 2 25 20 Partial Unknown

N11-1547 CH Human 1/2a CC403 ST403 2 25 20 Partial Unknown

N12-0935 CH Human 1/2a CC403 ST403 2 25 20 Partial Unknown

TT82E FIN Fish 1/2a CC155 ST155 2 25 15 Yes Unknown

HT45E FIN Meat 1/2a CC155 ST155 2 20 10 Yes Unknown

LL66/3 FIN Wild bird, feces 1/2a CC101 ST101 2 20 7.5 Yes Unknown

LL1/3 FIN Wild bird, feces 4b CC315 ST194 2 20 5 Yes Unknown

LM84 FIN RTE food 1/2a CC8 ST120 2 25 30 No emrE

LK60/1 FIN Fish 1/2a CC121 ST121 2 25 30 No qacH

N11-1905 CH Meat 1/2a CC121 ST121 2 25 30 No qacH

HL6E FIN FPE 1/2c untypable untypable ND 20 20 No qacH

HE152E FIN FPE 1/2c CC9 ST9 2 20 20 No qacH

HT93E/1 FIN RTE food 1/2c CC9 ST9 2 20 20 No qacH

HT100E/1 FIN Meat 1/2c CC9 ST9 2 20 20 No qacH

L34-s FIN Meat 1/2a CC121 ST121 2 30 30 No qacH

MJL14 FIN FPE 1/2a CC121 ST121 2 30 30 No qacH

HT65E/1 FIN Meat 1/2a CC121 ST121 2 30 30 No qacH

N13-0119 CH Human 1/2a CC121 ST121 2 30 30 No qacH

N12-0367 CH Human 1/2a CC121 ST121 2 30 30 No qacH

Lm 760 CH Meat 1/2c CC9 ST9 2 20 20 No qacH

N11-2543 CH FPE 1/2a CC121 ST121 2 30 30 No qacH

N12-0571 CH Meat 1/2a CC121 ST121 2 30 30 No qacH

Lm S1 CH FPE 1/2a CC121 ST121 2 30 30 No qacH

N11-1218 CH Meat 1/2a CC121 ST25 2 >30 30 Partial qacH

HT69E FIN Meat 1/2c CC9 ST9 2 20 15 Partial qacH

HE28E FIN FPE 1/2c CC9 ST9 2 25 20 Partial qacH

Lm 217 CH Meat 1/2a CC9 ST9 2 25 20 Partial qacH

Lm 25/9 CH Meat 1/2c CC9 ST9 2 20 15 Partial qacH

Lm 89 FIN FPE 1/2c CC9 ST9 2 25 20 Partial qacH

N12-0494 CH Meat 1/2a CC121 ST121 2 25 20 Partial qacH

N12-2229 CH RTE food 1/2a CC121 ST121 2 25 30 No brcABC

N12-0644 CH Meat 1/2c CC9 ST9 2 >30 >30 No brcABC

N12-2271 CH Meat 1/2c CC9 ST9 2 >30 >30 No brcABC

N12-2118 CH Meat 1/2a CC121 ST121 2 30 30 No brcABC

N13-0288 CH Meat 1/2a CC121 ST28 2 30 30 No brcABC

N13-0369 CH Meat 1/2a CC121 ST121 2 30 30 No brcABC

Lm S9 CH FPE 1/2a CC204 ST204 2 >30 >30 No brcABC

Lm S2 CH FPE 1/2b CC5 ST5 1 >30 30 No brcABC

aMLST types and genetic lineages were assigned based on the L. monocytogenes MLST database website (http://bigsdb.web.pasteur.fr).
bEfflux pump dependency: yes: BC MIC decreases by ≥10µg ml−1 in the presence of the efflux pump inhibitor reserpine. Partial: BC MIC decreases by <10µg ml−1 in presence of

reserpine. No: BC MIC was not affected by the presence of reserpine.
cBCr gene presence determined by PCR.
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FIGURE 2 | Bar charts depicting the prevalence (including 95% CIs) and distribution of BCr among Swiss and Finnish L. monocytogenes strains based

on (A) isolation sources and (B) serotypes.

differences. Sequence type 121 (50 vs. 19%) predominated among
the Swiss BCr strains while ST9 (28.6 vs. 20.8%) was predominant
in Finnish BCr strains. Sequence types ST403 (n = 4), ST204
(n = 1), ST25 (n = 1), and ST 28 (n = 1) were exclusive to Swiss
BCr strains whereas ST155 (n = 3), ST1 (n = 1), ST101 (n = 1),
ST120 (n = 1), ST194 (n = 1), and ST515 (n = 1) were exclusive
to the Finnish BCr strains. Strains were grouped into 10 MLST
clonal complexes based on their sequence types showing that
BCr in this strain collection is mainly associated with serotype
1/2a, CC121 (16/45; 35.6%) and serotype 1/2c, CC9 (11/45,
24.4%). Overall, most BCr strains belonged to evolutionary
genetic lineage II (39/45; 86.7%). There were only five (11.1%)
genetic lineage I BCr strains observed, one of which was isolated
in Switzerland and four were from Finland. One serotype 1/2c
strain that originated from a FPE in Finland was untypable
using the current MLST scheme. In this strain, primers for one
(bglA) out of the seven MLST genes amplified a PCR product
bearing a sequence that is unrelated to the L. monocytogenes bglA
gene.

Prevalence of BC Resistance Genes in
Swiss and Finnish BCr Strains
Benzalkonium chloride resistant strains were also examined
for the distribution of genes encoding the three efflux pump
systems (brcABC, qacH, and emrE) currently known to confer
BC resistance in L. monocytogenes (Table 3). The PCR-based
analysis detected genes associated with such efflux pump systems
in 79% (19/24) Swiss and 57% (12/21) Finnish BCr strains,
respectively. Swiss strains harbored both qacH (11/24; 45.8%)
and brcABC (8/24, 33.3%) associated genes, and no strains
harboring emrE were found. A majority of the BCr strains from
Finland harbored qacH genes (11/21; 52.4%), no bcrABC genes
were found, and in one BCr strain, an emrE gene was detected.
With respect to associated serotypes and MLST genotypes, the
qacH genes were detected in serotype 1/2a, CC121 (ST121
and ST28), serotype 1/2a, CC204 (ST204), and serotype 1/2c,
CC9 (ST9) strains. The brcABC genes were associated with
serotype 1/2a, CC121 (ST121 and ST25), serotype 1/2b, CC5,

and serotype 1/2c, CC9 strains. The emrE gene was associated
with a serotype 1/2a, CC8 (ST120) strain. In terms of origins,
the qacH-encoding strains came from FPE, raw meat, fish
RTE food, and human listeriosis cases. The brcABC harboring
strains were from FPE and raw meat, and the emrE strain
originated from an RTE food product. None of the three known
BC resistance determinants were detected in 21% (5/24) and
43% (9/21) of the Swiss and Finnish BCr strains, respectively
(Table 3). This group included serotype 4b, CC1 (ST1 and
ST515), serotype 1/2a, CC8 (ST8), CC101 (ST101), CC155
(ST155), and serotype 1/2b, CC5 (ST5) strains, which were
isolated from diverse sources. At this stage, sequence alterations
affecting PCR primer binding sites across different strains cannot
be completely ruled out as a possible reason for false negative
results in some of the BCr strains found to lack the known
BCr genes.

Role of Efflux Pump Activity in Swiss and
Finnish BCr Strains
A screen with reserpine showed that the BC resistance in 4 out of
45 strains depended on reserpine sensitive efflux pump systems.
The BC resistance in an additional 14 strains was classified as
partially efflux pump dependent while the addition of reserpine
had no effect on the BC MIC in 27 strains. As mentioned above,
a subset of 14 BCr strains lacked known BC resistance genes.
Reserpine addition had no impact on BC MICs in four of those
strains. The BC resistance in an additional three strains was
classified as efflux pump dependent, and in seven strains as
partially efflux dependent. (Table 3).

DISCUSSION

In this study 392 L. monocytogenes strains recovered from human
clinical listeriosis, food products and production environments,
food animals, and wild birds in Switzerland and Finland were
analyzed with respect to BC resistance. The strain collections
could not be exactly matched or balanced with respect to
origin, due to country specific differences in the type of food
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typically produced and limited availability of isolates. Although
it remains unclear how well the strain collection represents the
true distribution of strains in these two geographical locations,
the large number of strains included in this study is likely
to balance some of the potential bias. The vast majority of
analyzed strains belonged to serotype 1/2a, 1/2b, 1/2c, and 4b,
which are typical L. monocytogenes serotypes found in food,
the food processing environment and human clinical cases
(Orsi et al., 2011).

The prevalence of BCr strains of 11.4% amongst our strains
is at the lower end of what other authors have found. In
comparison, prevalences of BC-resistant strains determined
in other studies range from ∼10% in strains isolated from
fish and poultry factories (Aase et al., 2000), human clinical
cases and food (Mereghetti et al., 2000; Ratani et al., 2012);
18–26% in strains isolated from food in Switzerland (Ebner
et al., 2015) and China (Xu et al., 2014; Jiang et al., 2016)
to 61% in strains originating from fish processing (Soumet
et al., 2005) and the human clinical, food, and food production
environment (Mullapudi et al., 2008; Dutta et al., 2013). These
differences are partially due to the different methods used as
well as differences in the definition of resistance across studies.
The range of cutoffs for BC-resistance from 4 to 16µg ml−1

in these studies (Aase et al., 2000; Mereghetti et al., 2000;
Soumet et al., 2005; Mullapudi et al., 2008; Dutta et al., 2013;
Xu et al., 2014; Ebner et al., 2015; Jiang et al., 2016) is a
consequence of the commonly used method to determine BC-
resistance relative to the MIC that inhibits a majority of strains.
Working concentrations of BC in commercial products used in
the food processing environment typically range from 500 to
1,000µg ml−1 (Hegstad et al., 2010). However, L. monocytogenes
preferably survives in niches with low accessibility for cleaning
where the actual concentration of disinfectants is hard to
predict. Defining relative cutoffs for BC-resistance is therefore
a reasonable approach to focus on the strains that are most
likely to have a selective advantage during repeated disinfection
procedures.

There was no clear correlation between resistance to BC and
country of origin. In our study, serotype 1/2a comprised the
largest number of BCr strains although the relative prevalence of
BCr was highest among the serotype 1/2c strains. Other authors
have found varying fractions of BCr serotype 1/2a, 1/2b, 1/2c,
and 4b strains of L. monocytogenes (ranging from 7 to 60% for
serotype 1/2a; from 0 to 51% for serotype 1/2b; from 22 to 75%
for serotype 1/2c and from 0 to 100% for serotype 4b; Mereghetti
et al., 2000; Romanova et al., 2002; Soumet et al., 2005; Mullapudi
et al., 2008; Ratani et al., 2012; Xu et al., 2014; Jiang et al., 2016).
This wide range is to be expected, given the often relatively small
sample sizes and the low discriminatory power of serotyping
(Datta et al., 2013).

In contrast, analysis by MLST revealed that CC121 and
CC9 are overrepresented among BCr strains carrying brcABC
and qacH genes, which confirms the results of an earlier
Swiss study (Ebner et al., 2015). Both of these clonal
complexes are commonly found worldwide in association with
food and clinical cases (Chenal-Francisque et al., 2011). A
large study analyzing the population biology of 1696 strains

of L. monocytogenes by core genome MLST indicated a
broad range of strains carrying brcABC and qacH genes
(including a cluster of CC121 strains) while emrE seems to
be limited to sublineage 8 strains (comprising CC8, ST120;
Moura et al., 2016). Incidentally, the only strain in our
panel carrying the emrE gene also belongs to CC8, ST120.
None of the BCr strains lacking brcABC, emrE, and qacH
belonged to CC121 or CC9. Instead, these strains belong
to a more diverse set of seven sequence types including a
cluster of four CC403 strains, a clonal complex that seems
to be relatively rare and largely found in Europe with only
five entries in the MLST database of the Institute Pasteur
(http://bigsdb.web.pasteur.fr).

Our dataset provides several lines of evidence for mechanisms
of BC resistance other than the known efflux pumps that
may work either alone or in conjunction with the products of
the bcrABC, qacH, and emrE genes. (i) Fourteen BCr strains
carried none of the known BC efflux pumps as determined
by PCR. (ii) In eleven of these strains, reserpine screening
indicated that efflux pumps other than those coded by emrE,
bcrABC, and qacH play at least a partial role in conferring
resistance to BC. (iii) Out of the 31 BCr strains carrying genes
encoding for known efflux pumps, 24 showed no reduction of
the BC MIC in the presence of reserpine. This may indicate
the presence of additional, yet unknown genes that confer BC
resistance via a mechanism other than efflux pumps in these
strains. Alternatively, reserpine may not be equally effective
against all efflux pumps. In fact, other authors (Ortiz et al.,
2015) found no difference in BC MIC after the addition of
reserpine in a strain carrying the Tn6188 transposon (coding for
qacH Müller et al., 2013), and a study analyzing efflux pumps
conferring multidrug resistance to Staphylococcus aureus showed
that reserpine failed to identify their presence in a considerable
number (72/128, 61%) of strains (Frempong-Manso et al., 2009).
While the addition of reserpine might not be a reliable method
to exclude the presence of efflux pumps, in instances where
it does exert an effect on the MIC of a given antimicrobial
the presence of efflux pumps can be assumed (Godreuil et al.,
2003; Soumet et al., 2005; Romanova et al., 2006; Xu et al.,
2014).

Further, analysis of the BCr strains in our panel that do
not code for bcrABC, qacH, and emrE genes might help
identify these additional factors involved in BC resistance. For
instance, increased transcription of the multidrug resistance
transporter lde has been reported in response to BC (Rakic-
Martinez et al., 2011). Other than the activity of efflux
pumps, modifications of the cell wall may potentially increase
tolerance of BC by L. monocytogenes (McDonnell and Russell,
1999). This is supported by evidence from several studies:
Mereghetti et al. (2000) observed an association between
BC resistance and failure of phage-based subtyping methods,
which may indicate modifications in the wall teichoic acids.
In addition, transcriptional analysis of the response to QAC
revealed upregulation of peptidoglycan synthesis pathways (Fox
et al., 2011), and To et al. (2002) found a shift in fatty acid
composition in one BC-adapted strain compared to the parent
strain.

Frontiers in Microbiology | www.frontiersin.org 7 March 2017 | Volume 8 | Article 397

http://bigsdb.web.pasteur.fr
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Meier et al. Benzalkonium Chloride Resistance of L. monocytogenes

In conclusion, BCr strains of L. monocytogenes are present and
should be monitored in the Swiss and Finnish food production
environment with a special focus on strains that belong to CC9
and CC121. One strain from Finland carried the emrE gene,
which to our knowledge is the first time the emrE gene has been
described in a strain of L. monocytogenes originating outside of
Canada. Additionally, we found BC resistance in strains lacking
all of the known BC resistance genes, indicating the presence of
yet unknown mechanisms of BC resistance.
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