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Repetition suppression (RS) is a rapid decrease of stimulus-related neuronal responses
upon repeated presentation of a stimulus. Previous studies have demonstrated that neg-
ative emotional salience of stimuli enhances RS. It is, however, unclear how motivational
salience of stimuli, such as reward-predicting value, influences RS for complex visual stim-
uli, and which brain regions might show differences in RS for reward-predicting and neutral
stimuli. Here we investigated the influence of motivational salience on RS of complex
scenes using event-related functional magnetic resonance imaging. Thirty young healthy
volunteers performed a monetary incentive delay task with complex scenes (indoor vs. out-
door) serving as neutral or reward-predicting cue pictures. Each cue picture was presented
three times. In line with previous findings, reward anticipation was associated with activa-
tions in the ventral striatum, midbrain, and orbitofrontal cortex (OFC). Stimulus repetition
was associated with pronounced RS in ventral visual stream areas like the parahippocampal
place area (PPA). An interaction of reward anticipation and RS was specifically observed in
the anterior hippocampus, where a response decrease across repetitions was observed for
the reward-predicting scenes only. Functional connectivity analysis further revealed specific
activity-dependent connectivity increases of the hippocampus and the PPA and OFC. Our
results suggest that hippocampal RS is sensitive to reward-predicting properties of stimuli
and might therefore reflect a rapid, adaptive neural response mechanism for motivationally
salient information.
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INTRODUCTION
Stimulus repetition is commonly associated with an initially strong
neural response to a stimulus, followed by rapidly decreasing
responses to repeated presentation of the same stimulus, phenom-
enon known as repetition suppression (RS; Desimone, 1996; Ishai
et al., 2004) or repetition decrease (Vuilleumier et al., 2005). RS
occurs in secondary visual and stimulus-related cortical areas as
well as prefrontal association cortices. In the hippocampus and
adjacent medial temporal lobe (MTL) structures, RS is partic-
ularly pronounced, especially after short delays (Brozinsky et al.,
2005), and there is converging evidence that the hippocampus acts
as a detector of novel information (Tulving et al., 1996; Ranganath
and Rainer, 2003).

Several functional magnetic resonance imaging (fMRI) stud-
ies have demonstrated that RS can be modulated by atten-
tion, expectancy, or negative emotional salience (Ishai et al.,
2004; Vuilleumier et al., 2005; Summerfield et al., 2008). Both
attended and emotionally salient visual stimuli show stronger RS
in stimulus-related brain regions when compared to unattended or
neutral stimuli, respectively. RS can potentially arise from at least
three distinct neural mechanisms: fatigue, response sharpening,

and response facilitation (Grill-Spector et al., 2006). According to
the sharpening model (Desimone, 1996), cortical stimulus repre-
sentations become more specific by recruiting a decreasing num-
ber of neurons when a stimulus is repeated. The facilitation model
implies that RS results from more rapid processing of repeated
stimuli (James and Gauthier, 2006). A network model of corti-
cal responses (Friston, 2005) further suggests that neural response
patterns of stimulus-sensitive cortical structures code a prediction
error that is compared to previously existing stimulus representa-
tions in modulatory brain structures and decreases with increasing
stimulus familiarity. Such models are in line with the notion that
RS is particularly pronounced for salient and behaviorally relevant
stimuli.

Reward-predicting properties of stimuli are particularly salient,
and they are rapidly encoded by the reward system of the
ventral striatum (VS)/nucleus accumbens (NAcc). Unexpected
reward elicits dopamine release in the NAcc by afferences
from the substantia nigra/ventral tegmental area (SN/VTA), and
stimulus–reward association learning leads to a temporal shift of
this response to the reward-predicting stimulus (Schultz, 1997;
McClure et al., 2003). There is a close relationship between the
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mesolimbic reward system and hippocampus-dependent memory
function. Reward-predicting stimuli are more likely to be explicitly
remembered (Wittmann et al., 2005), and enhanced dopaminer-
gic activity is also elicited by stimulus novelty (Düzel et al., 2010).
Lisman and Grace (2005) suggested that hippocampal novelty sig-
nals are conveyed to the NAcc, triggering increased hippocampal
dopamine release, which in turn promotes long-term encoding.

Despite well-documented interactions of reward processing
and hippocampus-dependent memory and influences of salience
on RS, the effects of reward-predicting stimulus properties on
RS are yet unclear. Here we investigated how RS is modulated
by reward-predicting stimulus features. We hypothesized that RS
might be enhanced for reward-predicting stimuli, as previously
demonstrated for emotional or attended stimuli (Ishai et al., 2004;
Vuilleumier et al., 2005). Because of recent evidence for a com-
mon adaptive coding mechanism for novelty and reward in the
hippocampus (Bunzeck et al., 2010), we further hypothesized that
the hippocampus might act as an interface linking mesolimbic
reward prediction and stimulus processing in visual association
cortices.

MATERIALS AND METHODS
PARTICIPANTS
Thirty young, healthy adults (16 women, 14 men; mean age
24.6 years, range 19–30 years) volunteered for paid participation in
the experiment. All underwent a routine clinical interview for neu-
rological or psychiatric disorders. Exclusion criteria were present
or past neurological or psychiatric disease and the use of centrally
acting drugs. Participants included 29 right-handed subjects and
one ambidextrous person. All participants gave written informed
consent to participate in the study, in accordance with the Decla-
ration of Helsinki, and the study was carried out as approved by
the local ethics committee.

PARADIGM
The experiment consisted of two sessions, each comprising a total
of 180 trials (30 trials per condition: reward vs. neutral × 1st, 2nd,

and 3rd presentation). Participants were instructed to perform
an adapted version of a monetary incentive delay (MID) task
(Wittmann et al., 2005) with photographs of indoor and outdoor
scenes serving as reward or neutral cues, respectively (counterbal-
anced across participants; Schott et al., 2008; Krebs et al., 2009a,b).
Participants were explicitly informed, which condition (indoor or
outdoor) would be rewarded. Each cue picture was presented for
1000 ms. After a variable delay, a one-digit target number was
presented for 100 ms, and participants indicated via button press
whether this number was greater or smaller than 5 (Wittmann
et al., 2005). The ensuing feedback indicated a win for a correct
and fast answer, a loss for an incorrect and/or too slow answer
or a neutral feedback for a non-rewarded trial. The feedback was
presented for 600 ms. Both the delay between the cue picture and
the target number, and the inter-stimulus interval varied from 2
to 6 s, using a pseudo-exponential jitter, to optimize estimation of
the trial-specific hemodynamic responses (Hinrichs et al., 2000).
The trial structure is depicted in Figure 1. Because RS is most reli-
ably observed when lags between repetitions are short (Brozinsky
et al., 2005), the paradigm was designed in a way that, over the
course of 18 trials, each cue picture was presented three times in a
pseudo-random order.

Before entering the MR tomograph, a learning session was per-
formed during which participants performed a short version of
the task consisting of each 10 rewarded and neutral trials (using
pictures not presented during the actual experiment), in order to
minimize effects of stimulus–reward association learning during
the scanning phase and to estimate individual reaction time (RT)
thresholds for each participant. These thresholds were then used
as response deadlines during the actual task in order to obtain a
70–80% hit rate in the rewarded condition (Wittmann et al., 2005;
Schott et al., 2007). The response deadline was about 400 ms for
most participants.

IMAGE ACQUISITION
T2∗-weighted echo-planar images (EPIs) were acquired on a 1.5-
T whole-body MRI system (GE Signa Horizon, General Electric),

FIGURE 1 |Trial structure. In these example trials, indoor scenes predict
reward or loss, and outdoor scenes predict neutral outcome (this was
counterbalanced across participants). Top: Rewarded trial. Positive feedback
(green arrow up) after a correct and fast (below the individually adjusted

threshold) response to the target number signaled a reward of 50 ct, whereas
negative feedback (red arrow down) signaled a loss of 20 ct. Bottom: Neutral
trial. The horizontal arrow signaled the absence of any gain or loss,
irrespective of response accuracy and speed in the number comparison task.
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using an eight channel circular polarized head coil. Before func-
tional image acquisition, a T1-weighted 3D fast spoiled gradient
echo (FSPGR) image was acquired to allow proper positioning of
the functional slices.

T2∗-weighted gradient echo echo-planar images (GE-EPIs)
comprising 23 slices parallel to the anterior–posterior commis-
sure line as determined from the FSPGR image were acquired
in an odd–even interleaved ascending order (TR = 2000 ms;
TE = 35 ms; matrix size = 64 × 64; slice thickness = 4 mm; inter-
slice gap = 1 mm gap; voxel size = 3.13 mm × 3.13 mm × 5 mm).
Each of the three scanning sessions comprised 540 volumes. Six
additional volumes were acquired at the beginning of each func-
tional session and subsequently discarded from the analysis to
allow for steady-state magnetization. To optimize normalization,
a co-planar proton density (PD)-weighted image was acquired in
the same session as the functional images.

DATA PROCESSING AND ANALYSIS
Data analysis was performed using Statistical Parametric Map-
ping (SPM8b; Wellcome Trust Centre for Neuroimaging, London,
UK). EPIs were corrected for acquisition delay and head motion.
Because of their superior gray–white contrast in subcortical struc-
tures such as the NAcc and the SN, PD images were chosen for
estimation of normalization parameters (D’Ardenne et al., 2008;
Schott et al., 2008). Thus, the co-planar PD image was coreg-
istered to the mean EPI, normalized into a common stereotactic
reference frame (ICBM, International Consortium for Brain Map-
ping, http://www.loni.ucla.edu/ICBM/) and segmented using the
segmentation algorithm implemented in SPM8b. Spatial normal-
ization of EPIs was performed using the normalization parameters
determined from segmentation. Images were re-sampled to a voxel
size of 3 mm × 3 mm × 3 mm and spatially smoothed using an
isotropic Gaussian kernel with (8 mm full-width at half maxi-
mum). The resulting voxel time series were high-pass filtered with
a cut-off frequency of 128 s. Serial correlations from aliased cardio-
logical and respiratory effects were accounted for using a 1st-order
autoregressive model.

Statistical analysis was performed in a two-stage mixed-effects
model. In the first stage, neural activity was modeled by a delta
function at stimulus onset. The ensuing hemodynamic response
was modeled by convolving these delta functions with the canoni-
cal hemodynamic response function (HRF) provided by SPM. The
resulting time courses were down-sampled for each scan to form
regressors in a general linear model (GLM).

The GLM contained separate regressors for each condition of
interest (1st, 2nd, and 3rd presentation × reward vs. neutral cues;
positive, negative, and neutral feedback; target numbers), covari-
ates of no interest for the six rigid-body-movement parameters
determined from motion correction (to capture signal fluctua-
tions related to the movement × susceptibility interaction), and
a single constant representing the mean over scans. The model
was fitted to the data using the restricted maximum likelihood
algorithm as implemented in SPM.

At the second stage of statistical analysis, contrasts of the
parameter estimates for the conditions of interest were sub-
mitted to second level random effects analyses. The two-way
ANOVA for repeated measures included the within-subject factors

REPETITON (1st, 2nd, and 3rd) and REWARD (rewarded or
non-rewarded). Within this model, T-contrasts of interest were
computed (1st vs. 3rd repetition, rewarded vs. non-rewarded cues,
positive interaction of rewarded vs. non-rewarded × 1st vs. 3rd
repetition). A statistical threshold of p = 0.001, uncorrected was
adopted for all comparisons, with a minimum cluster size of
10 adjacent voxels (270 mm3). Small-volume corrections were
performed using anatomically defined or literature-based proba-
bilistic regions of interest [ROIs, hippocampus, parahippocampal
place area (PPA), VS; see below].

REGION OF INTEREST ANALYSES
For detailed ROI analysis of medial temporal RS, ROIs delineating
the left and right MTL structures (hippocampus, amygdala, and
parahippocampal cortex) were obtained from the WFU Pickatlas
toolbox for SPM (http://fmri.wfubmc.edu/software/PickAtlas). As
a first step of the ROI analyses in MTL, we computed the positive
interaction of repetition and reward (i.e., larger RS for rewarded
as compared to neutral pictures), thresholded at p < 0.005, uncor-
rected. We then computed significance levels and cluster sizes
within ROIs of the bilateral hippocampus, parahippocampal cor-
tex, and amygdala. Only MTL activations surviving a small-
volume correction for family wise error (FWE) for the volume
of the respective ROIs were considered reliable.

For the PPA and the VS, probabilistic literature-based ROIs
were created using a previously described algorithm (Schubert
et al., 2008). To this end, we selected the coordinates of PPA and
VS activation maxima observed in recent studies (PPA: Peelen
and Downing, 2005; Epstein and Higgins, 2007; Epstein et al.,
2007; Henson and Mouchlianitis, 2007; Park et al., 2007, 2009; Xu
et al., 2007; Henderson et al., 2008; Horner and Andrews, 2009;
VS: Knutson et al., 2001a,b; O’Doherty et al., 2004; Wittmann
et al., 2005; Abler et al., 2006, 2007; Hariri et al., 2006; Juckel et al.,
2006; Scheres et al., 2007; Schott et al., 2007, 2008; Camara et al.,
2010). The coordinates of all local maxima of activation reported
by the authors were pooled and, if necessary, transformed from
Talairach to MNI space, using the affine algorithm proposed by
Brett et al. (2001). Based on this data set, we created the ROIs
using the following steps:

(1) The probability that a voxel at a given position lay within
the area of interest was estimated by calculating a 3D normal
(Gaussian) distribution G(x, y, z) as follows (Turkeltaub et al.,
2002):

G(x , y , z) = 1

2π
√|Det(C)| exp

⎛
⎝−1

2

[
x − x̃ y − ȳ z − z̄

]
C−1

⎡
⎣

x − x̃
y − ȳ
z − z̄

⎤
⎦

⎞
⎠

where C was the covariance matrix for all coordinate triples x,
y, z from the underlying literature and x̄ , ȳ , z̄ were the mean
values of the x, y, and z coordinates, respectively (Nielsen and
Hansen, 2002).

(2) Because the resulting distribution also contained voxels
located in white matter and extracerebral space, we restricted
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the 3D distribution only to those voxels that belong to
gray matter with a probability of at least 50%. To this end
we used the gray matter probability map as provided by
SPM8.

(3) The outer limits of the finally used ROI were defined
by a threshold of n SD of the resulting 3D distribution.
Finally a binary mask including all surviving voxels was
formed.

(4) For the VS, the binary mask was further masked inclusively
with the anatomical ROI of the striatum obtained from the
WFU Pickatlas.

[Note: The script for generating the probabilistic ROIs (written in
Matlab by author Torsten Wüstenberg) and the full lists of coor-
dinates used for ROI generation can be obtained from the authors
upon request].

FUNCTIONAL CONNECTIVITY ANALYSIS
To assess possible changes in functional connectivity due to modu-
lation by motivational salience we calculated an additional analysis
to uncover psycho-physiological interactions (PPI; Friston et al.,
1997; Gitelman et al., 2003; Das et al., 2005). PPI analysis cap-
tures the functional coupling between different brain regions in
relation to a psychological variable (in the present study: repeated
presentation of cue pictures in the rewarded and neutral con-
ditions). Based on the observed RS by reward interaction, we
used the right anterior hippocampus as seed region. To extract
the individual BOLD data from this region, a binary mask image
containing right cornu ammonis (CA) and subiculum was cre-
ated according the maximum probability map (MPM) approach
described by Eickhoff et al. (2006) and as implemented in the
probabilistic cyto-architectonical brain atlas for SPM version 1.7
(Eickhoff et al., 2005). Within this mask for each subject, a sphere
with a radius of 6 mm was centered on the voxel with the highest
variance explanation for the applied model and first eigenvariate
time series (adjusted for experimental effects of interest) from this
sphere were extracted and deconvolved with the canonical HRF.
The resulting time course was convolved with the psychological
functions P reward and Pneutral of time t (in scans), which was set to
3 for the first, 2 for the second, and 1 for the third presentation of
the neutral and cue pictures, respectively, and 0 in all other cases.
Reconvolution of the resulting function with the HRF yielded the
vectors X reward and X neutral, which formed the primary covariates
of interest in the design matrix of a new GLM. P reward and Pneutral

were also convolved with the HRF to form further covariates. The
fifth covariate was the original BOLD eigenvariate. The six rigid-
body-movement parameters determined from motion correction
and a constant representing the mean over scans were included
in the design matrix as covariates of no interest. Model estima-
tion was performed as described above. At second level, a two-way
ANOVA for repeated measures was conducted to compare the
psycho-physiological interaction contrasts for rewarded and neu-
tral pictures. The significance level of the connectivity analysis was
set to p = 0.001, uncorrected, with a minimum cluster size of 10
adjacent voxels (270 mm3). A small-volume FWE-corrected sig-
nificance level of 0.05 was applied to the PPA using a probabilistic
literature-based ROI as described above.

RESULTS
BEHAVIORAL RESULTS
All participants responded to the target numbers with high accu-
racy. RTs were longer for neutral relative to rewarded items, leading
to lower successful response rates (i.e., correct target responses
within the individually adjusted time limit) in the neutral rel-
ative to the rewarded condition (Table 1). Furthermore, repe-
tition (1st to 3rd presentation of cue pictures) was associated
with a higher successful response rate. A two-way ANOVA for
repeated measures on the successful target responses revealed
significant main effects of reward (F 1,29 = 65.84, p < 0.0001)
and repetition (F 1.86,54.0 = 4.31; p = 0.020; Greenhouse–Geisser-
correction for non-sphericity applied). RTs showed a signifi-
cant effect of reward (F 1,29 = 71.79; p < 0.0001; two-way ANOVA
for repeated measures), and there was a significant reward by
repetition interaction (F 1.73,50.04 = 5.27; p = 0.011; Greenhouse–
Geisser-corrected), reflecting RT decreases from the 1st to 3rd
presentation in the rewarded, but not in the neutral condition.
Repetition alone showed only a trendwise effect on RTs (p = 0.086,
Greenhouse–Geisser-corrected; p = 0.073, uncorrected).

FUNCTIONAL MRI RESULTS
Effects of reward anticipation
Irrespective of repetition and in line with previous studies (Knut-
son et al., 2001a,b; Wittmann et al., 2005; Schott et al., 2008;
Krebs et al., 2009a,b) reward-predicting cues elicited activa-
tions of the mesolimbic reward system, particularly the VS/NAcc
(Figure 2) and the SN/VTA at an uncorrected threshold of
p < 0.001 (Table 2). Activations in the NAcc survived a small-
volume correction for a combined anatomical and probabilis-
tic ROI of the VS (p < 0.05, FWE-corrected; see Materials and
Methods for details on ROI generation).

Effects of feedback
When compared to neutral feedback, positive reward feedback was
associated with activation of a cluster encompassing portions of
the rostral anterior cingulate (rACC) and orbitofrontal cortex. No
feedback-related NAcc activation was observed even at p < 0.05,

Table 1 | Behavioral results.

1st presentation 2nd presentation 3rd presentation

NEUTRAL

% Hits 62.6 ± 14.92 63.8 ± 16.11 65.4 ± 12.61

RT 387 ± 34.8 384 ± 33.5 389 ± 36.1

REWARD

% Hits 81.0 ± 9.48 83.1 ± 9.89 83.7 ± 8.57

RT 371 ± 33.0 369 ± 32.5 368 ± 30.4

Percentages and mean reaction times of successful target responses (hits,

i.e., correct responses in the number comparison task within the individually

adjusted time limit) are given, separated by condition (neutral vs. reward) and cue

repetition (1st, 2nd, 3rd presentation). Group means ± SE are shown. Despite

the nominally small RT decrease from 1st to 3rd presentation, there was a

significant interaction of reward and cue repetition (F1.73,50.04 = 5.27; p = 0.011;

Greenhouse–Geisser-corrected).
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FIGURE 2 | Effects of reward anticipation. Reward cues compared
to neutral cues were associated with bilateral activation of the ventral
striatum/nucleus accumbens (p < 0.05, small-volume FWE-corrected).

Plots depict fitted and adjusted responses to cue pictures (1st, 2nd,
and 3rd presentation, separated by rewarded and neutral
condition) ± SE.

Table 2 | Main effect of reward anticipation.

Brain structure x y z SPM{T}

Left ventral striatum −15 14 −2 4.29*

Right ventral striatum 24 11 4 4.05*

15 11 −2 3.71*

−21 2 −2 3.38

Right dorsal striatum 18 8 10 3.33

Midbrain/substantia nigra/subthalamic nucleus 6 −28 −11 4.28

Right anterior cingulate, BA 32 12 32 −5 4.24

Left thalamus −3 −22 1 3.85

Right thalamus 9 −16 −2 3.87

T-contrast comparing reward-predicting to neutral images, irrespective of repetition. Local maxima at p < 0.001, uncorrected, are shown. ∗These activations in the

ventral striatum survived small-volume FWE correction for literature-based ROIs of the ventral striatum. BA, Brodmann area. All coordinates are given in MNI space

(Montreal Neurological Institute).

uncorrected, a finding in line with previous results using simi-
lar tasks in young, healthy participants (Knutson et al., 2001a,b;
Schott et al., 2007). Due to the low number of events, no analyses
of fMRI responses to negative feedback are reported.

Effect of repetition
Irrespective of reward-predicting properties of the cue pictures,
repeated presentation was associated with a widespread response
decrease (i.e., RS) from 1st to 3rd presentation. RS could be
observed in secondary visual areas, in ventral visual stream struc-
tures (including fusiform and parahippocampal cortex) as well
in MTL regions, including anterior and posterior hippocampus
(Figure 3A, middle row) as well as portions of the amygdala
(Figure 3A, bottom row). Furthermore, RS was also present in
prefrontal cortical structures (Table 3). As previously reported for
complex scene stimuli (Bunzeck et al., 2006), the local maximum

of the RS contrast within the VS was observed in the PPA, as
identified using a literature-based probabilistic ROI (Figure 3B;
see Materials and Methods for details on ROI generation).

Interaction of reward anticipation and repetition
A T-contrast testing increased RS for reward-predicting cues
(reward vs. neutral × 1st vs. 3rd repetition; p < 0.001, uncor-
rected) revealed the right anterior MTL as the only brain region,
where repetition-related activation decreases were significantly
stronger for rewarded than for neutral cues. To assess in detail
which MTL regions showed an interaction of repetition and
reward anticipation, we performed a detailed ROI analysis using
ROIs from the WFU Pickatlas (Wake Forest University). The inter-
action contrast was thresholded at p < 0.005, uncorrected, and
significance levels and cluster sizes were computed for the hip-
pocampus, the amygdala, and the parahippocampal cortex. In
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FIGURE 3 | Effect of repetition. (A) Scene stimuli were associated with
response decreases from 1st to 2nd and from 2nd to 3rd presentation in an
extensive network including secondary visual areas (top row) and in the
medial temporal cortices, including the parahippocampal cortex and
hippocampus (middle row), extending into the amygdala (bottom row). (B)

Pronounced RS was observed in the posterior parahippocampal gyrus.
Plots depict the fitted and adjusted responses to cue pictures (±SE),
separated by reward vs. neutral condition and repetition.

the right MTL, the local maximum and the largest portion of
the cluster were located in the anterior hippocampus, and the
activation survived a small-volume correction (FWE-corrected
p = 0.001) for the ROI (Figure 4; Table 4). A smaller portion of
the cluster extended into the amygdala, where the activation also
survived small-volume FWE correction, but showed no distinct
local maximum. There was also a significant interaction of repeti-
tion and reward anticipation in the left anterior hippocampus ([x
y z] = [−24 −13 −14]; p = 0.026, small-volume FWE-corrected;
Figure 4). No significant FWE-correctable voxels were found in
the left amygdala or in the parahippocampal cortex of either
hemisphere.

Functional connectivity results
To assess potential modulations of stimulus-dependent func-
tional connectivity between the hippocampus and other brain

regions involved in stimulus perception and reward processing,
we computed a PPI analysis of the repetition effects for reward-
predicting and neutral cues, with the right anterior hippocampus
as seed region. In a voxel-wise linear contrast (PPI reward vs. PPI
neutral), we observed specifically higher repetition-related func-
tional coupling between the right anterior hippocampus and the
posterior parahippocampal cortex and the medial OFC for reward-
predicting cue pictures when compared to neutral cue pictures
(Figure 5). The cluster in the parahippocampal cortex largely
overlapped a literature-based probabilistic ROI of the PPA (see
above).

DISCUSSION
The present study demonstrates that reward anticipation specif-
ically modulates hippocampal repetition responses, with greater
RS for reward-predicting as compared to neutral stimuli. Further-
more, functional connectivity analysis suggests that the hippocam-
pus might indeed act as an interface linking secondary stimulus-
reactive brain structures, such as the PPA and motivation-related
structures, such as the OFC, during processing of repeatedly
presented reward-predicting stimuli.

INTERACTION OF REPETITION AND REWARD ANTICIPATION IN THE
HIPPOCAMPUS
As demonstrated previously, reward-predicting cues were associ-
ated with increased activation of the VS/NAcc (Knutson et al.,
2001a,b; O’Doherty et al., 2002; Wittmann et al., 2005; Schott
et al., 2007, 2008; for a review see Knutson and Cooper, 2005).
Repetition-related response decreases were observed in secondary
visual areas, including the PPA, in prefrontal cortical structures,
and in the bilateral MTL. There was, on the other hand, no RS
in the NAcc, where both novel and repeated reward cues were
associated with comparable activation levels.

An interaction of reward-related motivational salience and
repetition was observed reliably and specifically in the anterior
hippocampus, particularly on the right side. In this region, only
pictures signaling an upcoming reward were associated with robust
RS. This response pattern is at odds with neural models of
RS as a passive phenomenon like habituation, but favors mod-
els that consider RS an active learning mechanism that can be
contextually modulated. Our results are well in line with the
notion that stimulus responses might represent a prediction error,
i.e., the difference between incoming excitatory bottom-up input
(“evidence”) and top-down modulatory signals reflecting previ-
ous information (“prediction”; Friston, 2005; Summerfield et al.,
2008). With stimulus repetition, bottom-up and top-down infor-
mation become increasingly congruent, resulting in an overall
response decrease. It is conceivable that top-down modulatory
input can be shaped as a function of previous information, such
as stimulus salience, which, in our study, was defined upon the
stimulus category. Indeed, Lisman and Grace (2005) have previ-
ously suggested that motivation-related hippocampal dopamine
release might be a mechanism by which novel stimuli detected by
the hippocampus are subsequently encoded.

Our observations are in good agreement with previ-
ously reported reward-related enhancement of hippocampus-
dependent long-term memory (Wittmann et al., 2005; Adcock

Frontiers in Human Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 144 | 6

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Zweynert et al. Reward and hippocampal repetition suppression

Table 3 | Main effect of repetition (1st–3rd presentation).

Brain structure x y z SPM{T}

Left superior frontal gyrus, BA 9 −15 53 31 6.96

Left middle frontal gyrus, BA 8 −27 20 40 5.54

−24 32 43 5.51

Left inferior frontal gyrus, BA 44, 47 −30 29 −17 7.31

−45 32 4 7.23

−48 11 25 5.64

Right inferior frontal gyrus, BA 46, 47 27 32 −14 7.75

48 35 13 6.53

Left medial frontal gyrus, BA 10 0 59 −8 7.58

Left anterior cingulate, BA 32 −3 44 10 5.60

Left cingulate, BA 31, 32 −3 −37 40 6.68

−15 −43 37 5.97

0 20 34 6.31

0 17 46 5.10

Left posterior cingulate, BA 30 −9 −55 7 11.93

Right posterior cingulate, BA 30 9 −52 7 10.69

Left parahippocampal gyrus/hippocampus, BA 36 −24 −43 −14 10.69

Right parahippocampal gyrus/hippocampus, BA 28, 36 30 −37 −14 10.49

24 −19 −20 8.35

Left middle temporal gyrus, BA 37, 39 −45 −76 16 10.07

−57 −55 −11 8.07

Right middle temporal gyrus, BA 39 42 −76 22 11.12

Left fusiform gyrus, BA 19 −48 −70 −14 8.60

Right fusiform gyrus, BA 37 48 −61 −14 7.95

Left insula, BA 13 −39 −4 13 5.52

Right insula 39 −4 7 6.10

Right postcentral gyrus, BA 2 51 −25 49 5.39

Right precuneus, BA 7 21 −79 43 8.31

Left superior occipital gyrus, BA 19 −33 −82 28 8.47

Local maxima are displayed at p < 0.05, whole-brain FWE-corrected. All coordinates are given in MNI space (Montreal Neurological Institute).

et al., 2006; Krebs et al., 2009a) and reward cues show particularly
enhanced recollection, which is, unlike familiarity thought to
be critically dependent on the hippocampus (Düzel et al., 2001;
Yonelinas et al., 2002). A recent study has demonstrated that
neuronal populations in hippocampus and in adjacent cortical
structures can adaptively code both reward magnitude and stimu-
lus novelty as a function of contextual predictions (Bunzeck et al.,
2010). The present study extends this finding by demonstrating
that hippocampal coding of novelty can also be modulated by
salience of a stimulus as indexed by its reward-predicting property.

Unlike the hippocampus, the NAcc showed no clear inter-
action between reward anticipation and repetition, with novel
and repeated reward cues eliciting similarly strong reward antic-
ipation responses. In the framework of the hippocampal-VTA
loop (Lisman and Grace, 2005), this might suggest that, once
the hippocampus has transmitted information regarding a novel
salient stimulus to the NAcc, hippocampus-independent mech-
anisms might subsequently trigger a NAcc response to reward
on subsequent presentations of the stimulus. Alternatively, and
perhaps more likely, a reduced but more specific signal from the
hippocampus might be as effective in eliciting a NAcc response as
the initial response to the novel stimulus.

It should be noted that repetition lags were short, with all three
presentations of each stimulus occurring within 18 trials. Because
such short repetition lags are associated with stronger RS than
longer lags (Brozinsky et al., 2005), we cannot generalize our find-
ings to reward-predicting stimuli repeated after longer delays. A
recent study, however, suggests that novelty/familiarity interac-
tions in the hippocampus can also be observed after longer delays
(Bunzeck et al., 2010).

HIPPOCAMPAL–CORTICAL FUNCTIONAL CONNECTIVITY
Because the hippocampus was the only structure to show reliable
RS specifically for reward-predicting pictures, we had hypoth-
esized that enhanced activity-dependent modulation functional
connectivity between the hippocampus and both stimulus-related
and reward-related brain structures might provide a mechanism
for hippocampus-dependent linking of reward signals and higher-
level stimulus perception. In line with this hypothesis, our PPI
revealed a stronger functional connectivity of the hippocampus
with the PPA and the OFC during repetition of reward cues, but
not neutral cues (Figure 5).

Previous studies of reward-related functional connectivity have
largely focused on the NAcc (Menon and Levitin, 2005; Schott
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FIGURE 4 | Interaction of reward anticipation and cue repetition in the

anterior hippocampus. In the right anterior hippocampus, repetition
suppression was primarily observed for reward cues relative to neutral cues

(p < 0.05, small-volume FWE-corrected). Plots depict fitted and adjusted
responses to cue pictures (1st, 2nd, and 3rd presentation, separated by
rewarded and neutral condition) ± SE.

Table 4 | Interaction of repetition and reward in the MTL.

Cluster size (mm3) x y z Max. SPM{T} p (FWE-corrected)

HIPPOCAMPUS

Left 297 −24 −13 −14 3.70 0.026*

Right 972 24 −10 −17 4.61 0.001*

PARAHIPPOCAMPAL CORTEX

Left 0 n/a n/a n/a

Right 81 21 −10 −23 3.05 0.180

AMYGDALA

Left 0 n/a n/a n/a

Right 189 24 −7 −17 4.24 0.001*

Results from ROI-based analyses are shown. ∗p < 0.05, small-volume FWE-corrected for ROIs derived from the WFU Pickatlas.

et al., 2007; Camara et al., 2008; Schmack et al., 2008), which
shows extensive reward-related functional connectivity with dis-
tant brain regions, including the midbrain, the rACC/MPFC, the
hippocampus, and the amygdala. While the hippocampus has rel-
atively consistently been found to functionally interact with the
midbrain and NAcc (Adcock et al., 2006; Callan and Schweighofer,

2008; Camara et al., 2008), it has thus far rarely been the focus
of studies investigating reward-related functional connectivity. A
recent study investigating memory encoding of faces, however, has
demonstrated that functional connectivity of the OFC correlates
with hippocampal activity during encoding of attractive, but not
unattractive faces (Tsukiura and Cabeza, 2011), and processing of
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FIGURE 5 | Stimulus-dependent functional connectivity of the

hippocampus during repetition of reward cues relative to neutral cues.

Left panel: Representative seed region in the right anterior hippocampus.
Middle panel: The right hippocampus showed increased functional
connectivity with the right parahippocampal place area (PPA) and with the

medial orbitofrontal cortex (OFC). Right panel: Representative coronal
sections depicting the extent of the functional connectivity increases in the
medial OFC (top) and in the PPA (bottom). The blue ellipsoid denotes the
extent of a literature-based ROI of the PPA (see Materials and Methods for
details). p < 0.001, uncorrected; minimum cluster size = 10 adjacent voxels.

attractive faces has been demonstrated to engage the mesolim-
bic reward system (Bray and O’Doherty, 2007). The study by
Tsukiura and Cabeza reported subsequent memory effects in the
fusiform face area (FFA), but did not investigate potential activity-
dependent connectivity changes of the FFA and hippocampus. It
should be noted here that our PPI analysis, while providing infor-
mation about activity-dependent functional connectivity, does not
allow to make inferences about the directionality of the functional
interactions, and we ca therefore not conclude whether the hip-
pocampus primarily modulates activity in the OFC or PPA or
vice versa. In the light of our current results, however, we do
suggest that the hippocampus might act as an interface linking
brain regions involved in higher-level stimulus perception to those
primarily engaged in motivational processing.

CONCLUSION
Our results demonstrate that the reward-predicting properties
of complex scene stimuli selectively modulate hippocampal rep-
etition responses, with a RS primarily for reward-predicting
stimuli. Functional connectivity analysis further suggests that
the hippocampus might act as an interface linking stimulus-
responsive brain structures with those related to motivational
processing.
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