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The atherogenic 7-oxysterols, 7-ketocholesterol (7-KC) and 73-hydroxycholesterol (7BOHC), can directly
impair arterial function. Inter-conversion of 7-KC and 7BOHC has recently been shown as a novel role for
the glucocorticoid-metabolizing enzyme 11B-hydroxysteroid dehydrogenase type 1 (11p-HSD1). Since
this enzyme is expressed in vascular smooth muscle cells, we addressed the hypothesis that inter-
conversion of 7-KC and 7BOHC by 113-HSD1 may contribute to regulation of arterial function.

Incubation (4—24 h) of aortic rings with either 7-KC (25 pM) or 7BOHC (20 uM) had no effect on
endothelium-dependent (acetylcholine) or -independent (sodium nitroprusside) relaxation. In contrast,
exposure to 7-KC (but not to 7BOHC) attenuated noradrenaline-induced contraction (Epax) after 4 h
(0.78 £ 0.28 vs 0.40 + 0.08 mN/mm; p < 0.05) and 24 h (2.28 + 0.34 vs 1.56 + 0.48 mN/mm; p < 0.05).
Both 7-oxysterols were detected by GCMS in the aortic wall of chow-fed C57BI6/] mice, with concen-
trations of 7-KC (1.41 £ 0.81 ng/mg) higher (p = 0.05) than 7BOHC (0.16 + 0.06 ng/mg). In isolated mouse
aortic rings 118-HSD1 was shown to act as an oxo-reductase, inter-converting 7-KC and 7BOHC. This
activity was lost in aorta from 11p3-HSD1 ~I~ mice, which had low oxysterol levels. Renal homogenates
from 11 B—HSDI’/’ mice were used to confirm that the type 2 isozyme of 11-HSD does not inter-convert
7-KC and 7BOHC.

These results demonstrate that 7-KC has greater effects than 7BOHC on vascular function, and that 11-
HSD1 can inter-convert 7-KC and 7BOHC in the arterial wall, contributing to the regulation of 7-oxysterol
levels and potentially influencing vascular function. This mechanism may be important in the car-
dioprotective effects of 113-HSD1 inhibitors.
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7B-hydroxycholesterol (7BOHC) inhibited endothelium-dependent,
acetylcholine-induced relaxation of rabbit aortic rings in vitro [2]. In
human umbilical vein endothelial cells (HUVECs), 7BOHC and 7-KC
reduced the histamine-activated release of nitric oxide [3]. This
inhibition of endothelial function by 7-oxysterols appears to be
independent of their cytotoxic effects [4], but its mechanism is
unclear. Importantly, 7-KC and 7pOHC differ in their pro-
atherogenic potential, with 7-KC implicated as the major pro-
inflammatory and cytotoxic oxysterol [5]. However, any differ-
ences between the functional effects of 7-KC and 7BOHC in the

1. Introduction

Pro-atherogenic 7-oxysterols form a large component (40%) of
oxidized LDL (oxLDL), of which 7-ketocholesterol (7-KC) contrib-
utes ~30% [1]. 7-KC is toxic to cells in the vessel wall, and can
impair arterial function ex vivo [2]. Indeed, 7-KC and its metabolite
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vasculature have not been addressed.

The balance between 7-KC and 7BOHC in tissues may be actively
modulated. Recently, a novel route of metabolism of 7-oxysterols
has been described, involving the enzyme 11B-hydroxysteroid
dehydrogenase (118-HSD) type 1. The primary role of 11p3-HSD1 is
to catalyse the pre-receptor generation of glucocorticoids, allowing
tissue-specific amplification of glucocorticoid receptor activation
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[6]. Inactivation of glucocorticoids is catalysed by the type 2
isozyme of 11B-HSD (11B-HSD2) [7]. It is becoming increasingly
apparent that 7-oxysterols are alternative substrates for 113-HSD1
[8,9], and inhibition of the enzyme can result in accumulation of 7-
KC [10]. Since both isozymes of 11B-HSD are present in the arterial
wall [11-14], where they are able to inter-convert glucocorticoids
[15], it is conceivable that inter-conversion of 7-oxysterols by these
enzymes has a role in modulating vascular function.

We used mice with targeted disruption of the 118-HSD1 gene
(Hsd11b1) to investigate the hypothesis that 113-HSD1 metabolises
7-oxysterols in the arterial wall, thus influencing 7-KC- and 7BOHC-
mediated modulation of arterial function.

2. Methods
2.1. Chemicals and stock solutions

All solvents were HPLC grade (Fisher, Hemel Hempstead, UK)
and were prepared containing an anti-oxidant (0.01% w/v butylated
hydroxytoluene (BHT)) to prevent oxidative degradation of the
lipids [3]. Steroids and oxysterols were from Steraloids (Newport,
Rhode Island, USA), derivatization reagents from Fluka (Buchs,
Switzerland), tissue culture reagents from Lonza (Reading, UK) and
other chemicals from Sigma-Aldrich (Poole, Dorset, UK). Deute-
rium-labelled internal standards for GCMS were obtained from
CDN Isotopes (Qmx Laboratories, Essex, UK). Stock solutions
(30 mg/ml in ethanol with 250 pg/ml BHT) of 7-KC, 7B0HC and
700HC (an optical isomer of 7B0HC) were freshly prepared as
required. All steroids were prepared in 100% ethanol. Working
solutions for tissue culture were prepared in standard Dulbecco’s
modified Eagle’s medium (DMEM). Working solutions (25 pM 7-KC;
20 uM 7BOHC) for myography were prepared by diluting the
appropriate stock solution in DMEM without 1-Arginine (Arg) or
phenol red, but containing 1% charcoal-stripped foetal calf serum.
These were the maximum concentrations of 7-oxysterols that could
be achieved without sample precipitation. The final concentration
of vehicle (ethanol with 250 pg/ml BHT) was <0.2%.

2.2. Animals

Male mice (age 8—16 weeks) homozygous for disrupted alleles
of 11B-HSD1 (Hsd11b1~/~) [16] or 11B-HSD2 (Hsd11b2~/~) [7], on
a C57BI6/] background [12] were bred in-house. Controls were age-
and sex-matched C57BI6/] mice bred in-house [7,16]. Mice were
maintained on standard chow diet and tap water ad libitum, under
a 16 h/8 h light/dark cycle at 21—24 °C. All procedures were per-
formed under UK Home Office guidelines of humane care and
[17,18] animals were culled by cervical dislocation at 10.00 h.
Plasma (1 ml) was collected from 2—3 mice in EDTA-coated (1.6 mg/
ml) vials (Sarstedt, Monovette) and separated by centrifugation
(2000x g, 4 °C, 15 min), and an aliquot of BHT was added (50 pg/
5 ul). Tissues were snap-frozen and stored at —80 °C until use.
Aortae for functional investigation were removed from mice, placed
in PBS (37 °C), cleaned of peri-adventitial fat and used for myog-
raphy. Aortae for oxysterol analysis were processed as described
below.

2.3. Functional effects of 7-oxysterols on isolated mouse aortic rings

Thoracic aortae were isolated from male C57BI6/] mice (age 8—
10 weeks, n = 12) and cut into four rings (2 mm in length). These
were either used immediately for short-term (4 h), or incubated in
a 24 well plate for extended (24 h), exposure to 7-oxysterols. For
short-term exposures, aortic rings were mounted on intra-luminal
wires in a small vessel wire myograph [19,20] containing DMEM

without L-Arg (37 °C, continuously perfused with 95%0,: 5% CO,)
[14]. After the vessels had been equilibrated at their optimum
resting force they were contracted with KCI (125 mM, 3 times) to
confirm viability and then incubated in the presence of: (1) 7-KC
(25 uM in DMEM without t-Arg), (2) 7BOHC (20 uM in DMEM
without 1-Arg) or (3) vehicle alone (ethanol, with 50 pg/ml BHT in
DMEM without 1-Arg), for 4 h (2 rings/treatment/mouse). The
incubating medium was replaced every 60 min. After 4 h cumula-
tive concentration—response curves were obtained for 5-
hydroxytryptamine (5-HT; 1 x 10~°—1 x 10~% M) and noradrena-
line (NA; 1 x 107°=1 x 10~* M). In addition, cumulative
concentration—response curves were obtained for the vasodilators,
acetylcholine (ACh: 1 x 10~°—1 x 10~ M, endothelium-dependent)
and sodium nitroprusside (SNP; 1 x 107°—1 x 107¢ M,
endothelium-independent), following contraction with a sub-
maximal concentration of 5-HT (3 x 10~7—1 x 10~% M). Contrac-
tile responses are expressed as force per unit length (mN/mm).
Relaxations were expressed as a percentage of the contraction in
response to the ECgg of 5-HT (% 5-HT).

For extended exposures [14], aortic rings were placed in a 24
well plate and immersed in 1 ml DMEM (without L-Arg) containing
either 7-KC (25 uM), 7BOHC (20 uM), or vehicle (ethanol with
50 pg/ml BHT) and incubated overnight in a humidified incubator
(37 °C; 5% CO,). These vessels were then mounted in a myograph
and functional studies performed, as described above, in the
continued presence of the appropriate 7-oxysterol or vehicle.

2.4. Determination of plasma and aortic levels of 7-oxysterols and
cholesterol

Concentrations of cholesterol and 7-oxysterols in the plasma
and aortae were quantified by GCMS. Aortae from Hsd 11617~ or
C57BI6/] mice were pooled from two animals, washed in PBS con-
taining EDTA (0.5 mM), crushed under liquid nitrogen and
homogenized. Protein concentration was determined using Brad-
ford assay (Biorad, UK). Deuterium-labelled ([*H], d7) internal
standards (IS) were added (50 pl) and lipids were extracted into
chloroform/methanol (2:1, 8 ml) [21,22]. Samples were purified
using Bond Elute Diol columns (100 mg, 1 ml; Varian, UK) [23] and
hydrolysed following mild saponification [24,25]. Oxidized lipids
and cholesterol were extracted from neutralized samples (0.35 ml,
20% acetic acid) into diethyl ether (4 ml, 0.01% BHT) and evaporated
to dryness under argon. Total cholesterol and 7-oxysterol concen-
trations were measured by GCMS and corrected for aortic protein
levels.

2.5. Metabolism of 7-oxysterols by 116-HSD1 and 11(3-HSD2
in vitro

2.5.1. In the mouse aorta

Rings (2 mm long) of aortae from C57BI/]J6 and Hsd11b1 =/~ mice
(n = 8/group) were placed in a 24 well plate (1/well, in duplicate)
and immersed in 1 ml DMEM (without L-Arg) containing 7-KC
(25 uM), 7BOHC (20 uM), 7a0HC (20 uM) or vehicle (ethanol,
with 50 pg/ml BHT). Samples were incubated overnight in
a humidified incubator (37 °C; 5% CO;) then blotted dry on tissue
paper and weighed to allow calculation of conversion velocity
(pmol/mg/day). Medium was removed and deuterium-labelled
internal standards (IS; [?H], d7-7-KC (40 ng), [*H], d7-7BOHC
(10 ng) and [?H], d7-cholesterol (10 pg)) added in a single aliquot
(50 pl). [*H], d7-7BOHC was used as an internal standard for
quantitation of both 7¢OHC and 7BOHC. Argon gas was flushed
through all samples and oxysterols were extracted (8 ml, 100x g,
15 min) from media with a mixture of hexane:2-propanol (60:40)
[26]. The organic phases were combined, evaporated under
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a stream of argon and residues dissolved in chloroform:methanol
(2:1, 350 pl) before storing at —20 °C for analysis by GCMS. Results
were subsequently corrected for aortic ring weight. In all assays
appropriate positive controls were included, with aortic rings
incubated with [3H], ds-corticosterone or [°H], ds-11-
dehydrocorticosterone (30 nM) to verify the activity of 113-HSD
isozymes. Samples were processed for analysis as before [27].

2.5.2. In kidney

Murine kidneys contain both isoforms of 113-HSD. Homogenates
of kidneys from Hsd11b1~/~ mice (which lack 113-HSD1) were used
as a source of murine 113-HSD2, with kidneys from C57BI6/] mice as
controls. Kidneys were homogenized in phosphate buffer as detailed
[10]. Homogenates (400 pg/ml) were incubated with 7-oxysterols
(20 uM) and the appropriate cofactor (2 mM): NAD" or NADP™ for
dehydrogenase reactions; NADH or NADPH for reductase reactions.
In all assays conversion of dexamethasone (Dex) and 11-
dehydrodexamethasone (11-DHDex; 40 uM) was used as a positive
control for confirmation of 11B-HSD isozyme activity [28].

2.6. Chromatographic analyses

2.6.1. Analysis of 7-oxysterols by gas chromatography/mass
spectrometry (GCMS)

7-Oxysterols and cholesterol were converted to trimethylsilyl
ether derivatives using a pyridine:hexamethyldisilazan:trimethyl-
chlorosilane mixture (350 pl, 3:2:1, v/v/v) [29,30]. The derivatized
cholesterol metabolites were dissolved in 2% N,O-Bis(trimethylsilyl)
trifluoroacetamide (BSTFA) in decane (80 pl) and eluted as follows:
initial temperature 180 °C (1 min), increased by 35 °C/min until
270 °C was achieved (1 min) and then increased by 4 °C/min to
300 °C (12 min). The oven was then cooled by —10 °C/min to 250 °C
(1 min). The injection temperature was 270 °C.

A capillary gas chromatograph (Trace GC, Thermo) was coupled
to an ion-trap, Polaris Q (Thermo, Hemel Hempstead, UK) mass
spectrometer (MS) and equipped with a BPX5 capillary column
(25 m, 0.32 mm internal diameter and 0.25 pm film thickness; SGE,
Alva, UK) and operated in SIM mode with electron impact (70 eV),
ion source, transfer line and interface temperatures of 200 °C, 220 °C
and 250 °C respectively. Derivatives of 7-oxysterols and cholesterol
were quantified by monitoring the following ions (m/z): 7-KC (472,
16.5 min), 7a/BOH (456, 12.3 & 14.1 min), d7-7-KC (479, 16.35 min),
d7-7POHC (463, 13.8 min) and d;-cholesterol (375, 12.9 min). Limits
of detection were assigned as 3:1 signal to noise ratio. Compounds
were quantified by the ratio of area under peak of interest to area
under peak of internal standard against a standard curve.

2.6.2. Quantitation of steroids by high pressure liquid
chromatography

Radio-labelled glucocorticoids were separated by reverse phase
HPLC (Symmetry C8 column maintained at 35 °C; column length,
15 cm, internal diameter 4.6 mm, pore size 5 um, Waters, Edinburgh,
UK) and quantified by on-line liquid scintillation counting (2 ml/
min; GoldFlow, Meridian, Surrey, UK). Total run time was 35 min
(elution times of epi-cortisol, 11-dehydrocorticosterone and corti-
costerone were typically 12 min, 21 min and 31 min, respectively,
with mobile phase of water:acetonitrile:methanol (60:15:25) at
1 ml/min). Dex and 11-DHDex were separated using a mobile phase
of water:acetonitrile:methanol (55:20:25) at 1 ml/min with typical
retention times for epi-cortisol (10 min), 11-DHDex (12 min) and Dex
(16 min). UV detection of all steroids was achieved at 240 nm and
epi-cortisol was used as an internal standard. Steroids were quan-
tified by the ratio of area under peak of interest to area under peak of
internal standard against a standard curve.

2.7. Statistical analysis

All data are mean = standard error of the mean (SEM) where n
indicates the number of different animals. Values were compared
using unpaired Student’s t-tests or 1-way ANOVA with Dunnett’s
multiple comparison post-tests, as appropriate. All analyses were
performed using Graph Pad Prism v5.0 (GraphPad Software Inc. San
Diego, USA). Statistical significance was assumed when p < 0.05.

3. Results
3.1. 7-KC, but not 7B0HC, alters vascular function in vitro

Short-term exposure (4 h) of aortae from C57BI6/] mice to 7-KC
(25 pM), but not 7BOHC (20 uM), produced a small reduction
(p =0.049) in NA-induced maximum contraction (Epyax), but had no
effect on the sensitivity (pD2) of this response (Fig. 1A, B; Table 1A).
5-HT-mediated contraction was unaltered by exposure to either
oxysterol (Table 1A). Pre-treatment of vessels with either 7-KC or
7B0HC did not alter endothelium-dependent relaxation to ACh
(Fig. 1C, D). An apparent increase in maximal response to
endothelium-independent, SNP-mediated vasorelaxation after
incubation with either 7-KC (p = 0.05) or 7B0HC (p = 0.08) was of
borderline statistical significance (Fig. 1E, F).

Long-term (24 h; Fig. 2) exposure of aortae from C57BI6/] mice
to 7-KC (25 uM), but not 7BOHC (20 uM), produced a reduced
maximum contraction (Emax, p = 0.049), but no change in sensi-
tivity (pD) to NA (Fig. 2A, B; Table 1 B). Prolonged incubation with
either 7-oxysterol had no effect on 5-HT-mediated contraction or
endothelium-dependent (Fig. 2C, D) or -independent (Fig. 2E, F)
relaxation (Table 1 B).

3.2. 7-Oxysterols are present in the mouse aortic wall and altered
by deletion of 113-HSD1

7-KC (3.52 + 2.85 nmol/g tissue) and 7BOHC (0.40 + 0.15 nmol/
g) were both detected in the mouse thoracic aortae with levels of 7-
KC significantly higher than 7B0OHC (p = 0.05; n = 12). In aortae
from Hsd11b1~/~ mice, 7-KC was only present in levels above the
limit of detection in 3 (of 8) samples and 7B0OHC was also low
(012 + 0.02 nmol/mg). Plasma levels of 7-oxysterols were not
different in Hsd11b1~/~ mice compared with C57BI/6] mice (7-KC;
0.133 4+ 0.016 versus 0.091 + 0.022 uM; 7BOHC 0.024 + 0.002
versus 0.023 £ 0.005 pM, respectively) although total plasma
cholesterol was lower (0.45 + 0.14 versus 1.03 & 0.19 uM, p < 0.05).

3.3. 7-Oxysterols are metabolized by 113-HSD1 but not by
118-HSD2

As expected [15], glucocorticoids were inter-converted by
incubation with intact mouse aortic rings. The velocity of reduction
of 11-dehydrocorticosterone to corticosterone (Fig. 3A) proceeded
considerably (~10x) faster than the dehydrogenation of cortico-
sterone to 11-dehydrocorticosterone. Reduction of 11-
dehydrocorticosterone was attenuated in mice lacking 11p-HSD1,
whereas deletion of this enzyme produced only a small (though
significant) increase in the dehydrogenation of corticosterone (to
11-dehydrocorticosterone) (Fig. 3A). The oxysterols 7-KC and
7BOHC were also inter-converted by incubation with intact mouse
aortic rings. In contrast to glucocorticoids, however, the velocities
of reduction of 7-KC (to 7BOHC) and of dehydrogenation of 7B0OHC
(to 7-KC) were similar following incubation with mouse aortic rings
(Fig. 3B). Genetic disruption of Hsd11b1 significantly reduced the
velocity of conversion of both 7-KC and 7B0HC (Fig. 3B), with
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Fig. 1. Short-term (4 h) exposure to 7-ketocholesterol induces agonist-specific functional changes in isolated mouse aorta. Endothelium-intact aortic rings from C57BI6/] mice were
incubated (4 h) with 7-ketocholesterol (7-KC, 25 pM open squares) or 7f-hydroxycholesterol (7BOHC, 20 uM, open squares) and compared with vehicle (ethanol containing 50 pg/
ml butylated hydroxytoluene)-treated control (filled squares). Incubation with 7-KC (A), but not 7BOHC (B), produced a small reduction of noradrenaline (NA)-mediated contraction
(p = 0.04). Incubations had no effect on acetylcholine (ACh)-mediated relaxation (C, D) whereas 7-KC (E) (but not 7BOHC (F)), produced a trend towards increased sodium
nitroprusside (SNP)-mediated relaxation (p = 0.054). Relaxations were expressed on a scale where the response to 5-HT represented 100% and return to baseline was expressed as
0%. All points represent mean + SEM, compared by 1-way ANOVA with Tukey’s post hoc test, n = 6—8.

96 + 6% of added substrates being recovered. 7-KC was not inter-
converted with 7aOHC in aortic rings (data not shown).
Hsd11b1~/~ mouse kidney homogenates (a rich source of 11p-
HSD2; [31]) were used to determine whether 7-oxysterols are
metabolised by this isozyme. As with the aortic rings, conversion of
glucocorticoids was used as a positive control for activity of 11f-
HSD2 [14,27]. As anticipated, glucocorticoids were metabolized by
mouse renal homogenates with preferential generation of 11-
DHDex from Dex (oxidation; not shown). In contrast, renal

homogenates did not inter-convert any of the 7-oxysterols (7aOHC,
7BOHC or 7-KC). Unrecovered substrate was ~ 3% or lower for each
compound (7a¢0HC, 1.9 & 0.7%; 7BOHC, 3.2 & 0.3%; KC, 2.1 & 0.3%).

4. Discussion
This study shows for the first time that 113-HSD1, but not 118-

HSD?2, catalyses the conversion of 7-oxysterols in the vascular wall.
Previous work has shown that murine and human 118-HSD1
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Table 1
Exposure to 7-oxysterols caused an agonist-selective inhibition of contraction, but
had no effect on relaxation, of mouse aortic rings in vitro.

A) Short (4 h) incubation
(i) 7-Ketocholesterol (7-KC)

Agonist Emax (MN/mm or % relaxation) pD2/—loglCso

Vehicle 7-KC Vehicle 7-KC
NA 0.79 + 0.28 0.40 + 0.08* 6.70 + 0.34 7.92 + 0.48
5-HT 3.01 £ 0.37 247 +£0.26 6.36 + 0.08 6.55 + 0.06
ACh 463 £5.3 471 +£7.0 6.32 + 0.09 6.48 + 0.09
SNP 104.8 + 3.8 122.0 £ 8.3 7.53 +£0.22 7.56 + 0.12

(ii) 7B-Hydroxycholesterol (7BOHC)

Agonist Emax (MN/mm or % relaxation) pD2/—loglCso

Vehicle 7BOHC Vehicle 7BOHC
NA 1.60 + 0.36 1.80 + 0.61 6.90 + 0.17 6.80 + 0.22
5-HT 2.80 + 0.28 3.30 +£0.32 6.40 + 0.04 6.50 + 0.05
ACh 47.7 £ 6.2 59.1 + 4.8 7.30 + 0.32 7.10 £ 0.16
SNP 116.7 + 10.3 121.7 £ 12.0 7.90 £+ 0.11 8.20 + 0.11
B) Extended (24 h) Incubation
(i) 7-Ketocholesterol (7-KC)
Agonist Emax(mN/mm or % relaxation) pD,/—loglCsg

Vehicle 7-KC Vehicle 7-KC
NA 228 +0.34 1.56 + 0.48* 7.79 £ 0.16 7.94 +0.33
5-HT 4.03 +0.24 3.63 +£0.33 6.61 + 0.05 6.60 + 0.12
ACh 66.9 + 4.5 754 + 6.4 7.47 £ 0.13 7.35 £ 0.21
SNP 108.6 & 5.0 106.0 + 1.5 7.04 £ 0.17 6.95 + 0.19
(ii) 7p-Hydroxycholesterol (7BOHC)
Agonist Emax (mMN/mm or % relaxation) pD2/—loglCso

Vehicle 7B0OHC Vehicle 7BOHC
NA 1.21 £ 0.14 1.16 +£ 0.12 6.55 4+ 0.06 6.24 4+ 0.03
5-HT 243 +0.14 2.88 +£0.15 6.51 + 0.15 6.90 + 0.32
ACh 464 £ 5.6 60.3 £5.2 7.17 £ 0.15 6.97 + 0.31
SNP 104.6 + 3.46 109.5 + 1.94 6.84 + 0.16 6.72 + 0.19

All values represent mean -+ SEM, compared by unpaired Student’s t-test (vehicle vs
7-oxysterol), n = 4—8, *p < 0.05. NA, noradrenaline; 5-HT, 5-hydroxytryptamine;
ACh, acetylcholine; SNP, sodium nitroprusside.

Bold represents significant differences in the data.

converts 7-KC to 7BOHC in the liver and in cultured adipocytes
[8,9]. We provide evidence that murine 113-HSD1 reduces 7-KC to
7BOHC in the vessel wall but, furthermore, that it also oxidizes
7BOHC to 7-KC. Use of Hsd11b1~/~ mice confirmed that 118-HSD1
was the sole enzyme responsible for metabolism of 7-KC and
7B0HC in the aortic wall and that deletion of 113-HSD1 alters
vascular 7-oxysterol concentrations. Functional investigations
showed differential effects of 7-KC and 7BOHC on vascular function,
suggesting that this 11p-HSD1-mediated inter-conversion of 7-
oxysterols may influence 7-KC-mediated inhibition of arterial
contraction.

7-KC and 7BOHC have both been shown previously to inhibit
endothelium-dependent vasorelaxation [32], cause endothelial cell
death, and induce production of radical oxygen species [17,33]. This
is consistent with the ability of oxidized lipids to impair the
endothelium-dependent relaxation of aortic segments from
hyperlipidaemic mice [34]. The lack of impact of exposure to oxy-
sterols on endothelium-dependent relaxation was surprising given
the previous indications that both 7-KC and 7BOHC inhibit endo-
thelial function [2,3,32] ex vivo. One possible explanation for lack of
effect on vasorelaxation is the use of a low concentration of 7-
oxysterol (20—25 pM) compared with previous studies (180—
270 pM; [2,3,32]). The concentrations used for our investigations
were the highest we could achieve without precipitation and are
consistent with that used (25 pM) to show 7-oxysterol-mediated
smooth muscle apoptosis in vitro [35]. Furthermore, a recent
investigation using high concentrations of 7-KC (205 pM) found no
effect of ex vivo incubation on ACh-mediated relaxation of mouse
aorta [36].

Intriguingly at the concentrations used in this investigation,
there was an inhibition of smooth muscle cell contraction by 7-KC

that was not observed with 7BOHC. The mechanism involved is
unclear but the effect was selective for noradrenaline, suggesting
an impairment in the oq-adrenoceptor signalling pathway.
Impaired contractility is consistent with 7-KC at this concentration
having detrimental effects on vascular smooth muscle cells [35].
These results suggest, therefore, that the balance of 7-KC and
7BOHC may have functional and structural implications in the
arterial wall.

The concentrations of 7-oxysterols in the vessels of C57BI6/]
mice are consistent with those reported previously in human
plasma and vessels [1,24]. Since circulating 7-oxysterols can be
sequestered by cells in the vessel wall [37], we assessed the
potential of vascular 113-HSD1 to inter-convert 7-oxysterols in this
tissue. Plasma 7-oxysterol levels were not altered in Hsd11b1~/~
mice although total plasma cholesterol was substantially lower.
Consistent with previous reports of reduced intra-vascular
cholesterol accumulation with inhibition of 113-HSD1 [38], we
found lower levels of all 7-oxysterols in the aortae of Hsd11b1~/~
mice. It was, therefore, difficult to assess intra-vascular 7-
KC:7BOHC ratios, since 7-KC levels in particular were near to the
detection limit, but the data suggest that 7-KC levels are dispro-
portionately reduced in Hsd11b1~/~ mice, consistent with the
enzyme acting predominantly as an oxidase (converting 7B0HC to
7-KC) in vivo.

The ex vivo incubation of aortic rings described here has not
previously been used to assess inter-conversion of 7-oxysterols.
This approach confirmed that the stability of 7-oxysterols can be
preserved during incubation, as both 7-KC and 7BOHC were
successfully recovered from DMEM. It had been postulated that 7-
oxysterols may be taken up by the vessels during incubation but the
percentage recovery of 7-oxysterols from reaction mixtures did not
support this. Preparation of concentrated stock solutions of the 7-
oxyserols proved unexpectedly difficult, despite using published
methodology [3], with oxysterols precipitating at high concentra-
tions. Based on our own experiences and advice from other groups
7-oxysterol solutions were prepared in DMEM containing FCS
containing an antioxidant (BHT; to prevent oxidative degradation
of the lipids [3]). It is unlikely that BHT would have a detrimental
effect on vascular function as it did not alter histamine-induced NO
production in cultured HUVECs [32].

Ex vivo assays clearly demonstrated that incubation of 7-
oxysterols with mouse aortic rings results in the conversion of
7BOHC to 7-KC and 7-KC to 7POHC, but not inter-conversion of
700HC and 7-KC. This is consistent with results generated in rats
[9,10] and humans [39] but contrasts with the demonstration that
11B-HSD1 in hamsters can inter-convert 700HC and 7-KC [40]. The
ability of 11-HSD1 to inter-convert 7-oxysterols explains why
carbenoxolone, a non-selective 11B-HSD inhibitor, attenuates
7-oxysterol metabolism in rat hepatic microsomes [10]. Interest-
ingly, in contrast to the predominant reductase direction
(11-dehydrocorticosterone to corticosterone) shown for metabo-
lism of glucocorticoids, murine vascular 113-HSD1 showed similar
activity as both reductase (7pOHC to 7-KC) and dehydrogenase
(7-KC to 7BOHC) for inter-conversion of oxysterols, consistent with
previous reports in liver [9,39]. Under these assay conditions, the
reaction velocity for inter-conversion of oxysterols was consider-
ably (approximately 10-fold) higher than for reduction of 11-
dehydrocorticosterone. This contrasts with the demonstration of
similar reaction velocities observed in other studies [9,40] and is
likely to be a consequence of study design as substrate concentra-
tions were higher (~800x) for the oxysterols than for the
glucocorticoids.

Residual metabolism of glucocorticoids in aortae from
Hsd11b1~/~ mice is consistent with vascular 113-HSD2 expression
[14,20]. Virtually no residual inter-conversion of 7BOHC and 7-KC
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Fig. 2. Long-term (24 h) exposure to 7-ketocholesterol induces agonist selective functional changes in isolated mouse aorta. Endothelium-intact aortic rings from C57Bl6/] mice
were incubated (24 h) with 7-ketocholesterol (7-KC, 25 uM open squares) or 7p-hydroxycholesterol (7B0OHC, 20 uM, open squares) and compared with vehicle (ethanol containing
50 pg/ml butylated hydroxytoluene)-treated control (filled squares). Incubation with 7-KC (A), but not 7B0OHC (B), produced a small reduction of noradrenaline (NA)-mediated
contraction (p = 0.05). Incubations had no effect on acetylcholine (ACh)-mediated (C, D) or sodium nitroprusside (SNP)-mediated (E, F) relaxation. All points represent mean + SEM,

compared by 1-way ANOVA with Tukey’s post hoc test, n = 6—8.

was observed in aortae from mice lacking 11B-HSD1. Lack of 7-
oxysterol metabolism by 113-HSD2 was confirmed using kidney
homogenates (since the kidney is rich in 118-HSD2 [15]; using
kidneys from Hsd11b1~/~ mice ensured that there was no inter-
ference from this isozyme). This finding is consistent with the
previous attribution of 7-oxysterol metabolism solely to the action
of 11B-HSD1 in hamster [40], rat [9,10], guinea pig [9,41] and
human [39]. There was, however, a notable loss of substrate in the
reaction mixtures; suggesting incomplete recovery of substrate,
non-enzymatic degradation, or formation of alternative products
[42]. There was no loss of substrate in blank samples (containing
buffer but no tissue homogenate), confirming chemical stability of
7-oxysterols during the incubation.

Direct action on the cells of the arterial wall may not present the
only mechanisms through which oxysterols can influence regula-
tion of arterial function and structure. Previous work in our group
[43] has indicated that the ability of oxysterols to act as substrates
for 11B8-HSD1 also makes them potential competitive inhibitors of
glucocorticoid metabolism. This presents the possibility that
endogenous 7-oxysterols contribute to regulation of 118-HSD1-
dependent glucocorticoid generation. Glucocorticoids can interact
directly with the arterial wall to enhance vasoconstriction [44],
impair endothelium-dependent relaxation [45], inhibit angiogen-
esis [27] and reduce vascular lesion formation. There is increasing
evidence that these interactions are regulated by the activity of
11B-HSD1 [27,38]. However, it is notable that no systematic
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Fig. 3. 11B-HSD1 catalyses reduction of 7-Ketocholesterol (7-KC) and dehydrogenation of 78-Hydroxycholesterol (7BOHC) in isolated mouse aorta. Incubation with mouse aortic
rings (24 h; 37 °C; 5% CO,) resulted in (A) metabolism of glucocorticoids (n = 10); reduction of 11-dehydrocorticosterone (11DHC; 30 nM) to form corticosterone (Cort) was reduced,
but not abolished, in aortae from 11p-HSD1~/~ mice. Low levels of dehydrogenation of Cort (30 nM; to form 11DHC) were detected in mouse aorta. Surprisingly this was slightly (but
significantly) increased in the absence of 118-HSD1. (B) Both 7-oxysterols (1 M) were metabolized following exposure to mouse aortic rings (n = 6) but, in contrast to gluco-
corticoids, both dehydrogenation (conversion of 7BOHC to 7-KC) and reduction (7-KC to 7BOHC) reactions were virtually abolished in arteries lacking 118-HSD1 (11-HSD1~/~). Data
are mean =+ SEM, and were compared using unpaired Student’s t-test, **p < 0.01, ***p < 0.001 vs velocity of the same reaction in tissues from C57Bl/6 mice.

difference in vascular function has been observed in vessels from
Hsd11b1~/~ mice [20], so whether alterations in either 7-oxysterol
or glucocorticoids influences physiological vascular function
remains uncertain. Perhaps interactions of oxysterols with 118-
HSD1 are more important in pathology. In healthy individuals, the
maximum concentrations of 7-oxysterols [46,47] are lower than
those in patients with atherosclerosis who may have levels of 7-
oxysterols in the micromolar range [1]. It is plausible that inhibi-
tion of 11B-HSD1-mediated glucocorticoid generation in conditions
of 7-oxysterol excess may have an indirect impact on arterial
function and remodelling.

Metabolism of 7-oxysterols by 113-HSD1 may also have impli-
cations for the development of new therapies. Selective 113-HSD1
inhibition prevents atherosclerosis [38] and is being developed for
treatment of cardiovascular risk factors [48], but the mechanisms
responsible for this atheroprotective effect have not been demon-
strated. It is conceivable that the beneficial effects of 113-HSD1
inhibition are a consequence of prevention of 7-oxysterol inter-
conversion as well as glucocorticoid metabolism.

5. Conclusions

11B-HSD1 influences 7-oxysterol concentrations within the
arterial wall. By altering the balance of 7-ketocholesterol and 7§-
hydroxycholesterol, 113-HSD1 may modulate their specific effects
on vascular function, especially in disease states in which oxysterol
levels are increased.
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