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Abstract
Purpose: This study hypothesized that insurance denial would lead to bias and loss of statistical power when evaluating the results from
an intent-to-treat (ITT), per-protocol, and as-treated analyses using a simulated randomized clinical trial comparing proton therapy to
intensity modulated radiation therapy where patients incurred increasing rates of insurance denial.
Methods and Materials: Simulations used a binary endpoint to assess differences between treatment arms after applying ITT, per-
protocol, and as-treated analyses. Two scenarios were developed: 1 with clinical success independent of age and another assuming
dependence on age. Insurance denial was assumed possible for patients <65 years. All scenarios considered an age distribution with
mean � standard deviation: 55 � 15 years, rates of insurance denial ranging from 0%-40%, and a sample of N Z 300 patients (150 per
arm). Clinical success rates were defined as 70% for proton therapy and 50% for intensity modulated radiation therapy. The average
treatment effect, bias, and power were compared after applying 5000 simulations.
Results: Increasing rates of insurance denial demonstrated inherent weaknesses among all 3 analytical approaches. With clinical success
independent of age, a per-protocol analysis demonstrated the least bias and loss of power. When clinical success was dependent on age,
the per-protocol and ITT analyses resulted in a similar trend with respect to bias and loss of power, with both outperforming the as-
treated analysis.
Conclusions: Insurance denial leads to misclassification bias in the ITT analysis, a missing data problem in the per-protocol analysis,
and covariate imbalance between treatment arms in the as-treated analysis. Moreover, insurance denial forces the critical appraisal of
patient features (eg, age) affected by the denial and potentially influencing clinical success. In the presence of insurance denial, our study
suggests cautious reporting of ITT and as-treated analyses, and placing primary emphasis on the results of the per-protocol analysis.
� 2020 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Randomized controlled trials (RCTs) provide level 1
evidence for establishing standards of care within the
National Comprehensive Cancer Network guidelines.1

Proton therapy is considered an advanced form of deliv-
ering radiation compared with conventional radiographs,
underscoring the need for evidence from RCTs. The past
2 decades have advanced the delivery of both protons (eg,
intensity modulated proton therapy) and conventional
radiographs (intensity modulated radiation therapy
[IMRT]).2,3 However, providing proton therapy is
costly,4,5 and insurance companies are reluctant to incur
higher expenses without proven clinical benefit. This has
led to insurance denials for patients randomly assigned to
proton therapy.4-6

As an example, support for treating oropharyngeal
tumors with proton therapy is increasing due to dosimetric
advantages that spare normal tissue from radiation expo-
sure.6-9 Although patients who qualify for Medicare rarely
experience insurance denial,10 younger patient pop-
ulations, such as those with oropharyngeal tumors, remain
vulnerable to the possibility of insurance denial when
randomly assigned to proton therapy.11-13 Although un-
fortunate, this situation illustrates how insurance denial
affects study features, such as age, potentially restricting
younger patients from receiving superior treatment.
Moreover, this infringes well-established analytical tech-
niques from providing valid estimates when evaluating an
RCT. Specifically, the intent-to-treat (ITT) principle,
commonly interpreted as “once randomized, always
analyzed”14,15 provides a stringent framework for
evaluating drug trials, where noncompliance and drop-
outs due to therapeutic administration are expected.
However, in radiation therapy, the prescribed dose is
normally beyond a patient’s control, making it more
likely that a patient will complete treatment rather than
exiting the study early.

The ITT approach is supported by Food and Drug
Administration and National Institutes of Health guide-
lines for the primary reporting of results from RCTs.16

The ITT principle is characterized by the following: (1)
all randomized subjects must be included in the analysis,
(2) participants are assigned to treatment groups regard-
less of whether they receive their assigned treatment, and
(3) all outcomes are observed and included, regardless of
their relationship to treatment.14-18 To visually explain
ITT, per-protocol, and as-treated principles, Pearl19 used a
diagram (Fig. 1) to outline the process from random
assignment (Z) to receipt of treatment (X), and ultimately
to the outcome observed (Y). Diagramming this sequence
from randomization to clinical outcome helps to explain
the subtleties intrinsic to each analytical approach.16

Notably, the treatment assignment (Z) through randomi-
zation does not directly affect the observed outcome (Y).
Instead, treatment assignment (Z) affects the outcome
observed (Y) through the treatment received (X). Hence,
an ITT analysis can be viewed as discounting X and
focusing directly on the assumed relationship Z / Y.

Alternatively, a per-protocol analysis is considered a
subset analysis consisting of patients who were both
randomized and treated according to protocol. This im-
plies that the relationship Z / X / Y is strictly main-
tained, discarding patients who fail to receive X, despite

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 1 Graphical representation of a randomized trial.
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assignment Z. Finally, an as-treated analysis considers
patients by their received treatment, rather than their
randomized assignment. Applying an as-treated analysis
to data from a clinical trial focuses solely on the X / Y
relationship, discounting Z.19-21 Therefore, this study
hypothesized that insurance denial would lead to bias and
loss of power when evaluating the results of ITT, per-
protocol, and as-treated analyses.
Methods and Materials

Our simulation study established fixed parameters
considering a binary outcome to describe clinical success.
The following assumptions were stipulated: (1) a fixed
difference exists in the rate of clinical success between
proton therapy and IMRT and (2) proton therapy is su-
perior in outcome by 20 percentage points. Therefore, we
chose a 70% clinical success rate for proton therapy and
50% for IMRT and a total sample size of N Z 300 (150
receiving proton therapy and 150 IMRT). This study
parameterization was used intentionally to confer 94%
power with the use of a 2-sided c2 test of equal pro-
portions given an alpha-level of 5%. Overpowering was
required to establish 80% statistical power as an accept-
able threshold.

To align our simulations with reality, younger patients
(those <65 years of age) were considered prone to in-
surance denial, given that patients �65 years normally
qualify for Medicare coverage. Two scenarios were
developed: one assumed that clinical success was inde-
pendent of age and another where clinical success was
dependent on age. The same age distribution (mean �
standard deviation, 55 � 15 years) and rates of insurance
denial (range, 0%-40%) were used across all scenarios.

Clinical success rates were estimated for proton ther-
apy (Pe) and IMRT (Ps), whereas pe and ps were used to
denote population parameters. The estimated treatment
effect of 20% was computed by taking the difference
between clinical success rates of proton therapy and
IMRT (Pe ‒ Ps). Bias was computed by taking the dif-
ference between (Pe ‒ Ps) and (pe ‒ ps). The test statistic

zTSZ
ðPe�PsÞ

SE
; where

SEZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Peð1�PeÞ
NProtons

þPsð1�PsÞ
NIMRT

r

was used to derive P(Z > zTS | Ho is true), the P value
indicating the probability of observing a test statistic as
extreme as zTS under the null hypothesis of (pe - ps Z 0).22

Study sample sizes for proton therapy (NProtons) and
IMRT (NIMRT ) were scenario dependent, given the
analytical method used and the rate of insurance denial
incurred.

In applying each principle (ITT, per-protocol, and as-
treated) to the scenario of clinical success and age
dependence, the overall success rates remained consistent



Table 1 Success rates of proton therapy as a function of insurance denial and age distribution analyzed under the ITT principle

Rate of insurance Average treatment effect Average bias Average P values Statistical power

denial (2.5th and 97.5th
percentiles)

(2.5th and 97.5th
percentiles)

(2.5th and 97.5th
percenttiles)

(% P < .05)

Clinical success independent of age (ITT scenario 1)
0% 0.200 (0.087, 0.307) 0.000 (�0.113, 0.107) .014 (.000, .150) 0.932
5% 0.193 (0.080, 0.300) 0.007 (�0.120, 0.100) .019 (.000, .188) 0.913
10% 0.185 (0.073, 0.293) 0.015 (�0.127, 0.093) .027 (.000, .240) 0.890
15% 0.179 (0.073, 0.287) 0.021 (�0.127, 0.087) .030 (.000, .248) 0.867
20% 0.171 (0.060, 0.280) 0.029 (�0.140, 0.080) .039 (.000, .344) 0.835
25% 0.163 (0.053, 0.273) 0.037 (�0.147, 0.073) .050 (.000, .412) 0.788
30% 0.155 (0.047, 0.260) 0.045 (�0.153, 0.060) .060 (.000, .478) 0.757
35% 0.148 (0.033, 0.260) 0.052 (�0.167, 0.060) .081 (.000, .643) 0.710
40% 0.141 (0.027, 0.247) 0.059 (�0.173, 0.047) .091 (.000, .725) 0.668
Clinical success dependent on age (ITT scenario 2)
0% 0.200 (0.093, 0.307) 0.000 (�0.107, 0.107) .015 (.000, .127) 0.934
5% 0.193 (0.087, 0.300) 0.007 (�0.113, 0.100) .018 (.000, .162) 0.921
10% 0.184 (0.073, 0.287) 0.016 (�0.127, 0.087) .026 (.000, .239) 0.887
15% 0.178 (0.073, 0.287) 0.022 (�0.127, 0.087) .030 (.000, .242) 0.865
20% 0.171 (0.060, 0.280) 0.029 (�0.140, 0.080) .038 (.000, .345) 0.834
25% 0.163 (0.053, 0.267) 0.037 (�0.147, 0.067) .051 (.000, .416) 0.795
30% 0.156 (0.040, 0.267) 0.044 (�0.160, 0.067) .063 (.000, .544) 0.758
35% 0.147 (0.040, 0.260) 0.053 (�0.160, 0.060) .077 (.000, .561) 0.704
40% 0.139 (0.033, 0.253) 0.061 (�0.167, 0.053) .094 (.000, .641) 0.662

Abbreviation: IMRT Z intensity modulated radiation therapy; ITT Z intent-to-treat.
Each treatment arm consisted of 150 patients (NProtons Z 150 and NIMRT Z 150). Statistical power was defined as % P value < .05. “Age
distribution” refers to a mean age of 55 � 15 years, and the 2.5th and 97.5th percentiles were derived from empirical distributions.
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with our previous definitions (70% for proton therapy vs
50% for IMRT); however, for proton therapy, the
conditional success rate characterized by the probability
of clinical success in patients <65 years, Prob(Clini-
calSuccess|Age <65), was inflated to 80%. These simu-
lations were structured to provide an advantage to
younger participants treated with proton therapy while
maintaining the marginal clinical success rate of 70% for
proton therapy. Finally, the empirical power for each
study scenario was derived using the proportion of P
values emanating from 5000 simulated RCTs, providing a
statistically significant result (ie, P < .05). The average
treatment effect, bias, and study power were compared
across different analytical approaches and between study
scenarios.

Results

The results of the simulation study for each analytical
approach (ITT, per-protocol, and as-treated) are described
in the following sections.

Intent-to-treat analysis: Misclassification bias

Applying the ITT principle to a simulated RCT
involving insurance denial revealed how misclassification
biased the treatment effect. First, the ITT principle was
applied to the simulations in which clinical success and
age were independent, so clinical success remained the
same regardless of patient age. ITT focuses on the Z/ Y
relationship, leading to misclassification in the Z / X
(ie, the randomization and treatment assignment) rela-
tionship with the occurrence of insurance denial. Because
ITT ignores treatment assignment, insurance denial of
proton therapy had no effect, post-randomization, on the
sample size per treatment arm (NProtons Z 150 and
NIMRT Z 150). After 5000 RCT simulations with in-
surance denial increasing from 0% to 40%, it became
clear that allowing patients randomized to proton therapy
to receive IMRT diluted the success rate of proton therapy
(Table 1). Results further demonstrated that once insur-
ance denial reached 25% in the proton therapy arm, the
misclassification bias introduced with an ITT analysis
reduced the treatment effect from 20% to 16.3%, and
empirical power fell from 93% to 79%.

The next simulation study explored the effect of using
an ITT analysis to evaluate the treatment effect of proton
therapy, assuming that clinical success depended on age.
Again, the sample size per treatment arm was not
affected; however, as the rate of insurance denial
increased, the clinical success rate of proton therapy
decreased due to misclassification bias (Table 1). After
5000 simulations, the average bias incurred as a function
of insurance denial was similar to the bias incurred if
clinical success and age were independent; therefore,
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Figure 2 Trends in statistical power assuming independence between age and clinical success.
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regardless of the dependency of clinical success on age,
the bias from an ITT analysis remained consistent. When
insurance denial exceeded 25%, empirical power deteri-
orated below 80% (Table 1).
Per-protocol analysis: The missing data problem

When the per-protocol principle was applied, insur-
ance denial caused a missing data problem. Adherence
to the Z / X / Y relationship required eliminating the
subset of patients who were randomized to receive
proton therapy but who were not treated accordingly due
to insurance denial. In this case, applying a per-protocol
analysis across 5000 simulations in which clinical suc-
cess and age were assumed independent resulted in a
diminishing sample size occurring in parallel with the
rate of insurance denial within the proton therapy arm.
When the rate of insurance denial reached 40%, the
average sample size was reduced to NProtons Z 90.
Notably, statistical power never fell below the 80%
threshold with the highest explored insurance denial rate
(40%; see Fig. 2). This was expected for this scenario, in
which the missing data were considered “ignorable” and
a random subset of the original study arm sample.
However, when clinical success was assumed to depend
on age, the missing data in the per-protocol analysis
became “nonignorable” because patients <65 (with a
higher propensity for clinical success) were being dis-
carded from the analysis set. As the insurance denial rate
reached 25% and 40%, the empirical power fell from
93.4% to 81.3% and 93.4% to 67%, respectively
(Table 2).
As-treated analysis: Covariate imbalance

The as-treated analysis focused strictly on the relation-
ship X / Y, ignoring Z random assignment. In the first
scenario, age and clinical success were assumed indepen-
dent. With an as-treated analysis, the total sample size (eg,
NTotal Z 300) can be maintained as long as patients are
followed to endpoint Y after breaching Z / X. Under this
assumption, the total sample size is maintained (NZ 300),
but insurance denial imbalanced the sample sizes and age
distribution of the treatment arms, as only proton therapy
patients were denied insurance and were then treated with
IMRT. As the rate of insurance denial increased, treatment
effect estimates became less precise but remained relatively
unbiased (Table 3). However, assuming dependence be-
tween age and clinical success, the imbalance in the sample
sizes and the age distribution of the treatment arms affected
participants <65 years with a higher propensity for clinical
success from proton therapy, but they were ultimately
treated with IMRT. In this scenario, as the rate of insurance
denial reached 25%, the treatment effect experienced severe
bias and empirical power fell from 93.7% to 75.4%
(Table 3).

Misclassification bias, missing data, and covariate
imbalance

Relative comparisons were made across analytical
methods using empirical power after generating 5000
simulated RCTs. In the scenario assuming independence
between age and clinical success, the change in empirical
power as a function of insurance denial is illustrated in
Figure 2. Notably, when the insurance denial rate was 0%,



Table 2 Success rates of proton therapy as a function of insurance denial and age distribution as analyzed under the per-protocol
principle

Rate of insurance Average treatment effect Average bias Average P values Statistical power

denial (2.5th and 97.5th
percentiles)

(2.5th and 97.5th
percentiles)

(2.5th and 97.5th
percentiles)

(% P < .05)

Clinical success independent of age (per-protocol scenario 1)
0% 0.199 (0.087, 0.307) 0.001 (�0.113, 0.107) .015 (.000, .153) 0.930
5% 0.200 (0.089, 0.311) 0.000 (�0.111, 0.111) .016 (.000, .150) 0.931
10% 0.199 (0.086, 0.309) 0.001 (�0.114, 0.109) .017 (.000, .165) 0.919
15% 0.199 (0.090, 0.307) 0.001 (�0.110, 0.107) .017 (.000, .152) 0.915
20% 0.199 (0.088, 0.309) 0.001 (�0.112, 0.109) .019 (.000, .172) 0.911
25% 0.200 (0.085, 0.313) 0.000 (�0.115, 0.113) .021 (.000, .193) 0.904
30% 0.201 (0.086, 0.316) 0.001 (�0.114, 0.116) .023 (.000, .200) 0.885
40% 0.202 (0.081, 0.319) 0.002 (�0.119, 0.119) .028 (.000, .246) 0.877
Clinical success dependent on age (per-protocol scenario 2)
0% 0.201 (0.093, 0.307) 0.001 (�0.107, 0.107) .014 (.000, .124) 0.934
5% 0.196 (0.087, 0.307) 0.004 (�0.113, 0.107) .019 (.000, .160) 0.916
10% 0.192 (0.079, 0.305) 0.008 (�0.121, 0.105) .023 (.000, .210) 0.895
15% 0.188 (0.079, 0.295) 0.012 (�0.121, 0.095) .025 (.000, .219) 0.879
20% 0.182 (0.070, 0.291) 0.018 (�0.130, 0.091) .034 (.000, .286) 0.840
25% 0.177 (0.063, 0.292) 0.023 (�0.137, 0.092) .042 (.000, .355) 0.813
30% 0.171 (0.054, 0.286) 0.029 (�0.146, 0.086) .056 (.000, .448) 0.766
35% 0.165 (0.043, 0.282) 0.035 (�0.157, 0.082) .069 (.000, .569) 0.728
40% 0.158 (0.036, 0.274) 0.042 (�0.164, 0.074) .087 (.000, .648) 0.670

Abbreviation: IMRT Z intensity modulated radiation therapy.
Each treatment arm initially consisted of 150 patients (NProtons Z 150 and NIMRT Z 150); however, when the rate of insurance denial reached
40%, the mean number in the proton therapy arm was reduced to 90 patients.
Statistical power was defined as % P value < .05.
“Age distribution” refers to a mean age of 55 � 15 years, and the 2.5th and 97.5th percentiles were derived from empirical distributions.
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all of the analytical methods remained powered at
approximately 94%, as confirmed by a power analysis
with standard statistical software (nQuery Advisor v7),
which was used to provide sample size justification. Once
insurance denial reached 25%, the separation between
trends illustrating loss of power was evident. However,
because the study had been overpowered to detect a 20
percentage point increase in clinical success for proton
therapy, an insurance denial rate of 25% maintained a
viable threshold with respect to empirical power (>80%).

In another scenario, relative comparisons assuming
dependence of age and clinical success revealed that all of
the analytical approaches were deficient in providing
unbiased estimates of the treatment effect as the rate of
insurance denial increased (Fig. 3). When the rate reached
25%, only the per-protocol analysis maintained adequate
empirical power. The as-treated analysis had, as expected,
the most severe deterioration in power, reinforcing the
need to use appropriate methods to adjust for the treat-
ment effect.
Discussion

Our simulation study provided insight into the conse-
quences of using ITT, per-protocol, and as-treated
analyses when evaluating an RCT to investigate the
treatment effect of proton therapy versus IMRT in the
presence of increasing rates of insurance denial. Specif-
ically, insurance denial led to misclassification bias in the
ITT analysis, a missing data problem in the per-protocol
analysis, and covariate imbalance between treatment arms
in the as-treated analysis. Scenarios introducing inde-
pendence of clinical success from age and dependence of
clinical success on age further exposed the need to
explore baseline patient characteristics for their associa-
tion with both insurance denial and clinical success.

In the context of drug trials, the ITT principle forces
patients dropping out from negative treatment effects to
remain analyzable. Retaining only patients who tolerate,
comply, and complete their prescribed study regimen
while eliminating patients experiencing poor outcomes
increases the likelihood that a treatment arm would appear
more beneficial. The ITT principle protects against this
type of bias by assigning all randomized patients an
outcome. The advantage of treating study dropouts as
failures, for example, is that it penalizes a treatment arm
for losing patient information while maintaining the
study’s original sample size.10,18,21

Although the ITT analysis seems appealing, we
demonstrated how it can also be problematic. The
increasing rates of insurance denial proportionately



Table 3 Success rates of proton therapy as a function of insurance denial and age distribution as analyzed under the as-treated
principle

Rate of insurance Average treatment effect Average bias Average P values Statistical power

denial (2.5th and 97.5th
percentiles)

(2.5th and 97.5th
percentiles)

(2.5th and 97.5th
percentiles)

(% P < .05)

Clinical success independent of age (as-treated scenario 1)
0% 0.200 (0.093, 0.307) 0.000 (e0.107, 0.107) .014 (.000, .133) 0.935
5% 0.199 (0.091, 0.308) 0.001 (e0.109, 0.108) .015 (.000, .133) 0.932
10% 0.201 (0.094, 0.308) 0.001 (e0.106, 0.108) .014 (.000, .122) 0.935
15% 0.199 (0.092, 0.303) 0.001 (e0.108, 0.103) .016 (.000, .138) 0.927
20% 0.201 (0.092, 0.308) 0.001 (e0.108, 0.108) .016 (.000, .139) 0.927
25% 0.200 (0.090, 0.305) 0.000 (e0.110, 0.105) .016 (.000, .155) 0.927
30% 0.200 (0.088, 0.312) 0.000 (e0.112, 0.112) .019 (.000, .169) 0.92
35% 0.198 (0.086, 0.309) 0.002 (e0.114, 0.109) .020 (.000, .181) 0.906
40% 0.199 (0.086, 0.309) 0.001 (e0.114, 0.109) .021 (.000, .193) 0.912
Clinical success dependent on age (as-treated scenario 2)
0% 0.200 (0.093, 0.307) 0.000 (e0.107, 0.107) .014 (.000, .126) 0.937
5% 0.193 (0.080, 0.303) 0.007 (e0.120, 0.103) .021 (.000, .197) 0.913
10% 0.185 (0.077, 0.295) 0.015 (e0.123, 0.095) .024 (.000, .212) 0.89
15% 0.177 (0.064, 0.281) 0.023 (e0.136, 0.081) .033 (.000, .312) 0.856
20% 0.169 (0.056, 0.279) 0.031 (e0.144, 0.079) .044 (.000, .396) 0.812
25% 0.160 (0.044, 0.272) 0.040 (e0.156, 0.072) .060 (.000, .517) 0.754
30% 0.153 (0.042, 0.264) 0.047 (e0.158, 0.064) .072 (.000, .548) 0.711
35% 0.144 (0.033, 0.258) 0.056 (e0.167, 0.058) .093 (.000, .640) 0.646
40% 0.135 (0.017, 0.248) 0.065 (e0.183, 0.048) .125 (.000, .810) 0.568

Abbreviation: IMRT Z intensity modulated radiation therapy.
Each treatment arm initially consisted of 150 patients (NProtons Z 150 and NIMRT Z 150); however, when clinical success was assumed inde-
pendent of age, the treatment effect became less precise while remaining relatively unbiased as the rate of insurance denial increased. When clinical
success was assumed to be dependent on age and once the insurance denial rate reached 25%, the treatment effect became severely biased and
statistical power fell to below 80%. Statistical power was defined as % P value < .05.
“Age distribution” refers to a mean age of 55 � 15 years, and the 2.5th and 97.5th percentiles were derived from empirical distributions.
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Figure 3 Trends in statistical power assuming dependence between age and clinical success.
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increased the number of patients who were assigned to
protons but actually received IMRT (ie, misclassified
patients). Deliberately including misclassified patients in
the analysis hampered the treatment benefit of protons
while it augmented the treatment benefit of IMRT. With
increasing rates of insurance denial, the minimum
detectable difference between treatment arms was less-
ened. This consequently diminished the study’s power to
declare a result statistically significant. The extent of
misclassification bias introduced by the ITT analysis
relative to per-protocol and as-treated analyses was most
apparent in the scenario where clinical success was in-
dependent of age.

With insurance denial and age inextricably linked,
examining baseline covariates of an RCT is required to
determine whether imbalances in patient characteristics
exist due to insurance denial. Analytical remedies for
addressing covariate imbalance in RCTs have been pro-
posed by Lee et al.23, who discussed the shortcomings
arising from the disruption of the randomization process
that led to reduced sample sizes, biased estimates, and
invalid statistical tests. They cautioned against ignoring
the randomization process and the use of an as-treated
analysis. Ultimately, the authors considered the ITT
analysis as the primary analysis to be reported.

The idea that an ITT analysis has the potential to yield
biased estimates is not new. Sheiner and Rubin17 drew
this conclusion in their critique of the ITT analysis. After
making a theoretical comparison with per-protocol and
as-treated analyses, they suggested the use of model-
based methods to acquire statistically valid estimates of
the treatment effect. Hernan and Hernandez-Diaz20

compared ITT, per-protocol, and as-treated analyses,
and ultimately advocated using all 3. The ITT analysis
was considered the primary analysis to be reported, fol-
lowed by the per-protocol analysis, and finally the as-
treated analysis with appropriate adjustment for
confounding.

An as-treated analysis considers patients by the actual
treatment received rather than assigned via randomization.
In the scenario where clinical success was dependent on
age, the ITT and per-protocol analyses performed simi-
larly, and both slightly outperformed the as-treated anal-
ysis. An as-treated analysis disrupts the randomization
process, requiring investigators to monitor for imbalances
in baseline patient characteristics. Balance in baseline
covariates between treatment arms can be attained using
post-randomization techniques such as matching,
weighting, or implementing regression modeling strate-
gies, all well-described in the literature.24-29 Although
these methods enhance the reliability of study results,
Sheiner and Rubin17 warned against using regression
models without appropriately diagnosing joint distribu-
tions where substantial confounding may be present. As
an example, consider a situation where all patients
younger than 65 years of age are denied insurance. This
would be detrimental for any analysis due to insufficient
overlap between treatment arms on a key patient charac-
teristic (eg, age). Moreover, this situation would impede
regression models from using age as a covariate to adjust
the treatment effect. Applying an as-treated analysis to
data from a clinical trial has pitfalls.23-26 Sample sizes
between treatment arms become imbalanced and the po-
tential for confounding increases.27-30 Thus, results from
as-treated analyses should only be reported after using
covariate adjustment, as described by Lee et al.23,28-30

The ITT, per-protocol, and as-treated approaches all
have inherent weaknesses in the presence of insurance
denial. However, a per-protocol analysis may be the only
reliable alternative to an ITT or as-treated analysis, with
the caveat that a missing data problem arises. The per-
protocol analysis includes only patients randomized and
treated as described by a clinical protocol. In our simu-
lation study, this analytical approach excluded patients
randomized to proton therapy who received IMRT due to
insurance denial. Excluding these patients not only
reduced the sample size in the proton therapy arm, it also
eliminated more patients >65 years. If the missing data
arising from a per-protocol analysis is considered random,
then the remaining patient information is simply a random
sample of the original study’s sample size. Although the
reduction in sample size diminishes statistical power and
estimation precision, the treatment effect remains unbi-
ased. With increasing rates of insurance denial, the per-
protocol analysis outperformed the ITT analysis in the
scenario where clinical success was independent of age,
and it outperformed the as-treated analysis in the scenario
where clinical success was dependent on age. Therefore,
our study suggests cautious reporting of ITT and as-
treated analyses in the presence of insurance denial and
placing primary emphasis on the results of the per-
protocol analysis.
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