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Abstract

A recent study by Tang et al. claimed that two major types of severe acute respiratory syndrome-coronavirus-2 (CoV-2) had
evolved in the ongoing CoV disease-2019 pandemic and that one of these types was more ‘aggressive’ than the other. Given
the repercussions of these claims and the intense media coverage of these types of articles, we have examined in detail the
data presented by Tang et al., and show that the major conclusions of that paper cannot be substantiated. Using examples
from other viral outbreaks, we discuss the difficulty in demonstrating the existence or nature of a functional effect of a viral
mutation, and we advise against overinterpretation of genomic data during the pandemic.
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Following the report of a pneumonia outbreak in late December
2019 (WHO 2020), the first severe acute respiratory syndrome-
coronavirus-2 (SARS-CoV-2) genome sequence was made pub-
licly available on the 10 January 2020. Real time sequencing of
viral genomes can help to understand the transmission history
of pandemics and provide insights into how the pathogen is
evolving (Gardy and Loman 2018). Additionally, dynamic no-
menclature systems, as has been proposed for CoV disease-
2019 (COVID-19; Rambaut et al. 2020), can be useful for tracking
purposes.

Up to the 12 March 2020, 396 high-quality genomes of SARS-
CoV-2 have been released, displaying in total 301 unique nonsy-
nonymous substitutions that is, mutations associated with
amino acid replacements (Fig. 1). These data have provided use-
ful epidemiological insights into the history of the pandemic,
for example, demonstrating multiple introductions into differ-
ent geographical areas (Deng et al. 2020; Gudbjartsson et al.
2020). Using these genomes, the timing of the last common an-
cestor of the outbreak is estimated to be around late November

2019 (Rambaut 2020), with an exponential growth of infections
since that date. Estimates of the virus’ evolutionary rate are
centred around 8� 10�4 substitutions per site per year (Rambaut
2020; Su et al. 2020), which is broadly in line with those esti-
mated from SARS-CoV-1 and Middle East respiratory syndrome
(MERS; Zhao et al. 2004; Dudas et al., 2018), and about a third of
that estimated for influenza B (Virk et al. 2020).

An analysis of SARS-CoV-2 genetic data was published on
the 3 March 2020 in the journal National Science Review by Tang
et al. (2020). This study made two major claims that appear to
have been reached by misinterpretation of the SARS-CoV-2 and
the paper contains additional methodological limitations. We
consider each claim in turn.

1. The first claim

The study proposes that there are two clearly definable ‘major types’
of SARS-CoV-2 in this outbreak and that they have differentiable
transmission rates. Tang et al. term these two types ‘L’ and ‘S’:
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two major types (L and S types): the S type is ancestral, and the L
type evolved from S type. Intriguingly, the S and L types can be
clearly defined by just two tightly linked SNPs at positions 8,782
(orf1ab: T8517C, synonymous) and 28,144 (ORF8: C251T, S84L).’

One nonsynonymous substitution, particularly one which has
not been assessed for functional significance, is not sufficient to
define a distinct ‘type’ nor ‘major type’. As of the 9 April 2020, there
are 2,334 nonsynonymous substitutions that have been identified
in the outbreak, catalogued in the CoV-GLUE resource at http://
cov-glue.cvr.gla.ac.uk (Singer et al. 2018). At present, there is no ev-
idence that any of these 2,334 point mutations have any signifi-
cance in the functional context of within-host infections or
transmission rates. Additionally, if one chooses to define ‘types’
purely on the basis of two mutations, it is unsurprising that these
‘types’ then differ by those two mutations.

However, Tang et al. further claim that these two types have
differing transmission rates:

Thus far, we found that, although the L type is derived from the S
type, L (�70%) is more prevalent than S (�30%) among the se-
quenced SARS-CoV-2 genomes we examined. This pattern sug-
gests that L has a higher transmission rate than the S type.

The abstract of the paper goes even further, stating outright
that: ‘the S type, which is evolutionarily older and less aggressive. . .’.
It is, however, important to appreciate that finding a majority of
samples with a particular mutation is not evidence that viruses
with that mutation transmit more readily. To make this sugges-
tion would, at the very minimum, require a comparison to be
made to expectations under a null distribution assuming equal
transmission rates. As this has not been performed by the
authors, there is insufficient evidence to make this suggestion,
and therefore it is incorrect (and, we would argue, irresponsible)
to state that there is any difference in transmission rates.
Genome sequence analysis alone is insufficient to demonstrate
a functional effect of a mutation on virus phenotype, without

Figure 1. A visualization of the genetic variation observed in the SARS-CoV-2 pandemic sequences up until the 12 March 2020. Nonsynonymous (pink) and synony-

mous (green) substitutions (with respect to Wuhan-Hu-1, GenBank accession number MN908947) are represented in colour in each row, with rows labelled with the ge-

nome position and corresponding ORF on the side. The mutations are plotted in a grid format where each column is a sample and each row is a unique mutation at a

given genome position; mutations have been filtered to only display those observed in more than one sample (seventy-four nonsynonymous and forty-one synony-

mous). The genome positions of some of the most common mutations have been labelled directly on the plot. The plot was created using the d3heatmap package in R,

and the sample columns are clustered using Ward’s method.
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assessing the probable impact of the amino acid replacement,
and careful experimentation assessing any functional effect.
Differences in the observed numbers of samples with and with-
out this mutation are far more likely to be due to stochastic epi-
demiological effects and biased virus genome sampling among
locations.

During a pandemic, as the virus spreads to new areas and
countries that were previously uninfected, founder effects will
have significant impacts on mutation frequencies. As a small
number of virus copies spread into a local epidemic, any muta-
tions present in the initial viral infections will rapidly become
very common, even if they were rare in the particular geograph-
ical area which seeded the transmission. This is particularly
likely to be the case in an outbreak caused by a novel virus such
as SARS-CoV-2, as there are a large number of susceptible hosts
for the virus, and numerous epidemics are being established
around the world at different timepoints. These founder effects
have also been observed in previous viral outbreaks for exam-
ple, in chikungunya virus and multiple local HIV epidemics
(Rambaut et al. 2001; Foley et al. 2000; Bhattacharya et al. 2007;
Rai et al. 2010; Tsetsarkin et al. 2011).

Basic evolutionary theory predicts that selectively neutral
mutations change in frequency over time through the process
of genetic drift (Wright 1942). In a viral outbreak, each transmis-
sion event from one infected person to another is a random
probabilistic event, with some infected individuals transmitting
more or less often than others. Some infections may transmit at
higher rates than others for a variety of reasons. These ‘super
spreaders’ may have higher social contact rates or shed more vi-
rus for a longer period of time. These small-scale epidemiologi-
cal phenomena add up over time to create substantial variation
in the frequencies of mutations during an outbreak. It is also
important to appreciate that the fewer infected hosts there are,
the more these small-scale variations are likely to affect the fre-
quency of mutations in the viral population. Given that the two
mutations in question appear to have occurred very early on in
the outbreak, when fewer individuals were infected, their fre-
quency will very likely have been particularly influenced by ge-
netic drift.

Any analysis of allele frequencies must also consider that
the viral genomes which are sequenced are not a random sam-
ple of the global population, and are likely to be biased. In the
SARS-CoV-2 pandemic, the sampling bias arises in two ways.
First of all, the sampling of infections for sequencing is greatly
biased by the country they occur in. For example, 80 per cent of
confirmed COVID-19 cases up until 9 March 2020 came from
China, but only 40 per cent of the SARS-CoV-2 full genome
sequences derived from China. Second, as contact tracing is a
significant driver of case detection, there will be a correlation
between detected and sequenced samples, as they are often ep-
idemiologically linked. This lack of independence between sam-
pled genomes, in effect generates pseudoreplication of observed
haplotypes. These factors combine to cause oversampling of
particular genotypes and mutations, adding variance to the ob-
served frequencies of mutations. This is likely to further exag-
gerate the variation in mutation frequencies driven by
epidemiology, causing observed changes in mutation frequen-
cies through time without any action of natural selection.

Examples from two previous viral outbreaks demonstrate
these factors. A small number of mutations were observed to
rise to high frequencies in both the Ebola and SARS-CoV-1 out-
breaks. For both viruses, clearly demonstrating a functional ef-
fect of the mutations proved difficult, with some
counterintuitive observations.

The A82V amino acid replacement in the GP protein from
the 2013–16 Ebola outbreak illustrates the difficulty in demon-
strating a functional effect of a mutation. Three new amino
acid replacements in the Ebola outbreak rose in frequency to
be found in >90 per cent of all sequenced genomes: R111C in
the NP gene, A82V in the GP gene, and D759G in the L gene.
The A82V replacement was of particular interest as it was lo-
cated on the receptor binding interface. However, this rise in
frequency alone was insufficient to make firm conclusions
about the functional significance of this mutation. To demon-
strate the significance of the A82V replacement, Diehl et al.
(2016) performed numerous additional analyses. These in-
cluded: predicting the structural impact of the change on the
protein in silico; modelling the effect of the mutation on case
fatality rate, controlling for viral loads, geographic location
and access to healthcare; and in vitro experimental infection
of three different human, and nine different nonhuman cell
lines using viruses with and without this mutation. Despite
finding significant evidence that virus infections with the
A82V replacement showed higher mortality rates, and that
the mutation enhanced infectivity of human and primate cell
lines, the authors were not able to conclude that this muta-
tion contributed to greater transmission and severity of the
outbreak:

It is difficult to draw any conclusion about this hypothesis,
though, since the frequency increase can also be attributed to sto-
chastic effects, including founder effects as EBOV moved from
Guinea into Sierra Leone and multiple re-introductions of GP-
A82V back into Guinea.

At the same time, Urbanowicz et al. (2016) also found that
A82V increased infectivity of human cell lines and decreased
infectivity of bat cell lines ‘supporting the hypothesis that A82V
is a fitness adaptation’. However, a follow-up study failed to
find evidence of the mutation conferring higher viral titres or
shedding rates in experimental infection of macaques (Marzi
et al. 2018). The reason for this discrepancy between live ani-
mal models and cell lines is not yet understood, which means
the functional significance of the A82V replacement remains
unresolved.

A similar example can be found in the SARS-CoV-1 outbreak.
In the initial phases of the outbreak, a 29 nucleotide (nt) dele-
tion within open reading frame 8 (ORF8; the same ORF as the
S84L replacement that was used to define S and L types in
SARS-CoV-2) was identified, and viruses with this deletion sub-
sequently became dominant within the outbreak (The Chinese
SARS Molecular Epidemiology Consortium 2004). This mutation
caused the splitting of ORF8 into two ORFs: ORF8a and ORF8b. It
was hypothesized that this deletion was either neutral, with
ORF8 being functionally unimportant (The Chinese SARS
Molecular Epidemiology Consortium 2004), or that that it was
adaptive, facilitating the spread of SARS-CoV-1 in humans (e.g.
Chen et al. 2007; Wong et al. 2018). However, experimental in-
fection of one bat and two human cell lines showed that the 29
nt deletion significantly reduced the replicative capability of
SARS-CoV-1 (Muth et al. 2018). Additionally, deletion of the full
ORF8 gene caused an even greater reduction in replicative capa-
bility. The spread of this apparently strongly deleterious muta-
tion was hypothesized to be the result of a founder effect in the
early period of the epidemic (Muth et al. 2018).

Combined, these factors and examples demonstrate that the
frequency of a particular mutation in and of itself is not demon-
strative of any functional significance.
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2. The second claim

Tang et al. (2020) compare the frequencies of nonsynonymous
and synonymous substitutions in the data, claiming that there
is significant evidence of selection suppressing the frequency of
nonsynonymous substitutions in the outbreak. This analysis is
flawed on three grounds:

First, the numbers in this figure do not make sense.
According to the presented data, seven (synonymous) substitu-
tions have a derived frequency of >50 per cent, and four of these
mutations have derived frequencies >95 per cent in the popula-
tion. A cursory glance at the tree in Fig. 2 shows that this cannot
be true. ‘Derived’ in this context should mean a sequence change
away from the genome of the last common ancestor of the out-
break. For four mutations to have derived frequencies >95 per
cent, there would need to be a small number of samples which
branch as a sister lineage to the rest of the outbreak tree.
However, this is not the case.

The only way Tang et al. can get the results they present is
by defining the ancestral state not as the last common ancestor
of the outbreak, but as the most recent common ancestor of the
outbreak and the nearest bat sarbecovirus RaTG13. The most re-
cent common ancestor of SARS-CoV-2 and RaTG13 existed
many decades ago (Boni et al. 2020). As such, many mutations
separate these two inferred ancestral states, especially at syn-
onymous sites (Fig. 3).

Tang et al. estimate the ancestral state for each mutation in-
dependently, ignoring the very informative phylogenetic tree of
the current outbreak, and the temporal information associated
with each sample. This method only makes sense when using a
much more closely related outgroup species to infer the ances-
tral states of mutations in a freely recombinant species with un-
linked mutations with independent ancestry. Additionally, such
methods should incorporate the inherent uncertainty in infer-
ring the ancestral state (e.g. est-sfs; Keightley and Jackson 2018),
which the implementation in Tang et al. does not.

Implementing this flawed method of inferring ancestral
states in a viral outbreak context, where we assume there is no
recombination, means that ‘high-frequency derived mutations’ are
actually just new mutations in the outbreak that have mutated
back to the inferred ancestral state. This generates an evolu-
tionarily meaningless definition of ‘derived’ mutations.

Tang et al. claim seven synonymous and one nonsynony-
mous substitutions have a derived frequency >0.5. However, be-
cause synonymous sites are twenty times more diverged than
nonsynonymous sites to the most closely related bat sequence
RaTG13 (Figure 3), the difference between these two ancestral
states is much larger in synonymous sites. Therefore, synony-
mous substitutions are much more likely to be mispolarized
than nonsynonymous ones. This is because new synonymous
substitutions in the outbreak are much more likely to mutate
back to this deeper ancestral state in the tree than new nonsy-
nonymous substitutions. Therefore, using this flawed definition
of ‘derived’, an artefactual excess of high-frequency synony-
mous substitutions resembling purifying selection will be ob-
served, without any such selection having occurred.

In addition, the way these data are presented in Tang et al.’s
Fig. 2 will falsely suggest that purifying selection is acting, even
if their methodology was sensible, and there were no such se-
lection. The height of the bars in their figure compares the raw
numbers of mutations at each frequency without scaling the
heights of the bars for the number of each class of mutation.
Because there is a greater number of nonsynonymous substitu-
tions than synonymous substitutions in the population, and as

most substitutions are expected to be at low frequency in a pop-
ulation regardless of the action of natural selection (Fay and Wu
2000), this presentation will always make it look like there’s pro-
portionately more low-frequency nonsynonymous
substitutions.

When interpreting their results, Tang et al. do not con-
sider that sequencing error could be a driver of a relative ex-
cess of singleton nonsynonymous substitutions. This
possibility is important because sequencing errors will be at
low frequency as they are rare and cannot be transmitted,
but real mutations can be at any frequency because they can
be transmitted. Additionally, purifying selection can only act
on real mutations, and not sequencing errors, so strongly
deleterious/lethal nonsynonymous substitutions which can-
not be observed as real mutations may appear as sequencing
errors. Therefore, it is very possible that sequencing error
mutations will have a higher nonsynonymous to synony-
mous ratio, and these mutations will be at low frequency.
This pattern will mimic the action of purifying selection on
circulating variation, suppressing the frequency of nonsynon-
ymous substitutions.

On a more technical point, Tang et al. used the software
PAML (Yang 2007) to estimate selection parameters and look for
evidence of positive selection in the divergence between SARS-
CoV-2 and other related CoVs. PAML does not allow for synony-
mous rate variation, but they explicitly state in the paper they
believe there are mutational hotspots. Recent work has shown
that false positive rates of positive selection inference are unac-
ceptably high when such synonymous rate variation occurs
(Wisotsky et al. 2020). Therefore, if there truly is synonymous
rate variation, to reliably identify signatures of positive selec-
tion within the phylogeny of SARS-CoV-2, methods which
model mutation rate variation must be used (e.g. provided by
many of the models from the Hyphy package- Pond and Muse
2005).

Given the flaws described above, we believe that Tang
et al.’s claims are clearly unsubstantiated. The widespread
media interest in this article (186 articles at last count), and
many comments on social media, suggests that the claim of
increased aggressiveness in SARS-CoV-2 has already caused
unnecessary concern and confusion at a crucial time in the
pandemic.

A recent paper has proposed three ‘types’ of SARS-CoV-2
(Forster et al. 2020) and has also received substantial attention
in the media. Although that paper does not make any claims of
any functional differences among these ‘types’, many of the
issues discussed above apply again to this work. The network
Forster et al. produce uses the RaTG13 bat sarebecovirus sample
to infer the ancestral state of the outbreak. By ignoring the tem-
poral information given by the viral tree and the decades of evo-
lution separating RaTG13 and SARS-CoV-2, the inferred
ancestor of the outbreak in this network is likely to be incorrect.
The choice of which and how many clusters in the network
were named was made on the basis of the number of samples
belonging to, and surrounding, each node. This methodology
means that the sampling biases described earlier are very likely
to be driving this classification.

Although rapid publication is critical for unfolding disease
outbreaks, thorough and independent peer review should not
be bypassed to get results published quickly. The current inten-
sity of media interest in virology is unprecedented, and whilst
rapid open-access research is paramount, researchers must be
cautious of overinterpretation of data and the language used to
describe results.
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Figure 2. A phylogenetic tree of the SARS-CoV-2 outbreak data as of 2 March 2020. The tree was generated by the CoV-GLUE resource which uses the RAXML software

(Stamatakis 2014). Branches and tips coloured blue have a serine at Codon 84 in ORF8, red tips and branches have a leucine.

Figure 3. Schematic phylogenetic trees, not drawn to scale, inferred from nonsynonymous (left) and synonymous sites (right) using the estimated divergence values

per site from Table 1 of Tang et al. (2020), assuming clock-like mutation rates. The last common ancestor (LCA) of the SARS-CoV-2 outbreak is much closer to that of

the LCA shared with the bat-infecting RaTG13 sample in nonsynonymous sites than in synonymous sites. Accession numbers from GISAID for the RaTG13 and

Guandong (GD) Pangolin-CoV samples are EPI_ISL_402131 and EPI_ISL_410721, respectively.
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