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Accurate forecasting of lithium-ion battery performance is essential for easing
consumer concerns about the safety and reliability of electric vehicles. Most

research on battery health prognostics focuses on the research and develop-
ment setting where cells are subjected to the same usage patterns. However, in
practical operation, there is great variability in use across cells and cycles, thus
making forecasting challenging. To address this challenge, here we propose a
combination of electrochemical impedance spectroscopy measurements with
probabilistic machine learning methods. Making use of a dataset of 88 com-

mercial lithium-ion coin cells generated via multistage charging and dischar-

ging (with currents randomly changed between cycles), we show that future

discharge capacities can be predicted with calibrated uncertainties, given the
future cycling protocol and a single electrochemical impedance spectroscopy
measurement made immediately before charging, and without any knowledge
of usage history. The results are robust to cell manufacturer, the distribution of
cycling protocols, and temperature. The research outcome also suggests that
battery health is better quantified by a multidimensional vector rather than a

scalar state of health.

Electrification of the transportation industry is now taking place at an
increasingly rapid pace, enabling significant strides towards a carbon
neutral future. Fundamental to this transition has been the develop-
ment of the lithium-ion battery, which powers the majority of electric
vehicles (EVs) on the road today. Notwithstanding the environmental
benefits of this transition, reliance on the lithium-ion battery poses
significant challenges, with consumer concerns including range anxi-
ety, fear of battery failure and charging time. Easing these concerns
demands the ability to accurately forecast battery performance, and
specifically when usage conditions are variable.

The key challenge is the heterogeneity of the battery. Each user
uses their car differently, and even across a single battery pack not all
cells are necessarily charged or discharged with identical current'>.
These differences mean that each cell’s internal state, including the
extent of lithium plating or electrode cracking, can vary significantly
both at an intra-pack and inter-pack level*”.

To quantify the extent of degradation within cells, and to identify
cells that have reached their End of Life (in EVs, this is typically defined

as the point at which the discharge capacity has reduced to 80% of the
nominal capacity®’), the scalar State of Health (SOH) metric is typically
adopted, measured using previous cycle discharge capacity or internal
resistance® . The problem with this approach is that batteries with the
same numerical SOH do not necessarily exhibit identical levels of each
degradation process (for example, lithium plating or electrode crack-
ing), yet the impact of future cell usage on the cell’s future perfor-
mance and degradation pathway depends significantly on the type of
degradation that has already occurred"™. Accurate forecasting of
battery performance demands a non-invasive approach to acquire
information about the cell state at a microscopic level.

Both short™2?° and long” > timescale forecasting of battery
performance are of interest in battery prognostics. Over a short
timescale, predicting how the battery would respond to a particular
charging and discharging protocol can be used to develop optimal
charging protocols”. Short-term forecasting also encompasses SOH
estimation™'®?°; here, the aim is to predict the battery’s discharge
capacity or internal resistance under a specific, standardised cycling
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protocol. Over a long timescale, the focus is on predicting the
remaining useful life”, end of life?, or the ‘knee-point’ in the battery’s
life trajectory at which degradation accelerates®.

Approaches to both types of forecasting can be subdivided into
empirical, physics-based, and data-driven models, with some models
being a hybrid of these. Empirical approaches have been used to model
long-term capacity fade with power laws but assume fixed operation
over battery life and do not account for intrinsic differences in cell
state at start of life. These approaches assume that all cells of the same
chemistry will fade in the same way if operated in the same way, which
is not observed in practice®. In physics-based approaches, the battery
is either modelled mechanistically using first principles analysis of
internal physical and electrochemical processes, or using equivalent
circuit modelling, which models the cell as a circuit comprising resis-
tors and capacitors that are representative of the underlying electro-
chemical processes™?°. Mechanistic models aim to capture how the
battery voltage responds to an externally applied current (or vice
versa), which can be used to predict optimal charging protocols".
However, the parameters of such models need to be updated for each
individual cell and typically suffer from non-identifiability - several
sets of model parameters could explain the observed data equally well,
but would make drastically different predictions on test cells or on the
same cell later in its life. For circuit-based models, the parameters of
the circuit can be fitted to either current-voltage data**”, or to elec-
trochemical impedance spectra®?’. The circuit parameters can then be
used to forecast capacity degradation under standardised use
conditions®™ or to simulate the effect of different usage conditions on
battery pack performance®. However, it is challenging to capture
every degradation mode in an analytical model. Further, a new set of
model parameters must be learnt for each cell from cycle to cycle,
making it challenging to infer a general cell-to-cell model.

Purely data-driven approaches to forecasting use raw data as
input to a machine learning algorithm to forecast long term capacity
fade, resistance increase and remaining useful life**2. Feature-based
data-driven approaches applied machine learning on features extrac-
ted from the charging or discharging curve to predict discharge
capacity”’, remaining useful life”’, and abrupt capacity decays®™.
Innovations in extracting features from charge/discharge curves® and
machine learning approaches for modelling time-series data®*° have
enabled significant improvements in the accuracy of predictions.
Further studies showed that using features of the discharge curve
across a small number of initial cycles, it is possible to train machine
learning models that can generalise to different cell chemistries®.
Going beyond charging and discharging curves, approaches such as
electrochemical impedance spectroscopy (EIS)?, early cycle Cou-
lombic efficiency®, current interruption® and acoustic time-of-flight
analysis’®*® have been used for degradation forecasting. These
approaches provide a fuller description of battery state - for example,
EIS captures the response of the cell over a broad frequency range,
with different frequencies correlating to distinct physical, chemical
and mechanical changes in the active material***"**, Data-driven
methods typically utilise data generated in the laboratory setting,
where cells are charged and discharged in the same way over the
entirety of their lifetimes, thus the impact of variable cell usage on
future performance can be ignored (see Fig. 1). However, extrapolating
the models developed for laboratory setting to field data or other
realistic usage profiles such as the Worldwide Harmonized Light
Vehicles Test Cycles (WLTC)"***, where cells are cycled in vastly dif-
ferent ways over their lifetimes, has proved a major challenge’.

In this work, we seek to identify whether there exists a sufficiently
informative marker of cell health that can be used to forecast short-
term and longer term future performance, amid uneven historical and
future cell usage. Figure 1 provides an illustration of our approach, and
how it differs from previous approaches. We find that upon acquisition
of an EIS spectrum just before charging, both next cycle and longer

term cell capacity can be predicted with a test error of less than 10%.
When testing on cells subjected to similar cycling conditions to those
used to train the model, our model achieves comparable accuracy to
state-of-the-art forecasting models (8.2% test error versus 8.8% test
error), except that our model enables forecasting with no access to any
historical data, whereas previous state-of-the-art models require his-
torical data from the cell’s cycling trajectory. In addition, when extra-
polating to different operating temperatures, our model significantly
outperforms the state-of-the-art model, achieving a 57% reduction in
test error (from 34.2% to 14.6%).

We observe that our model is data-efficient, requiring just eight
cells to attain a test error of less than 10%. Crucially, our approach is
robust to dataset shift, attaining a test error of less than 7% on a dataset
with a different distribution of cycling patterns to the training set. This
is important for deployment in the field where driving patterns may be
different from those used to train the model. We additionally
demonstrate that, if available, using additional features based on his-
torical capacity-voltage data can serve to augment the state repre-
sentation and reduce average test error by up to 25%. Our approach is
robust with respect to cell manufacturer, average usage pattern and
operating temperature.

Further, our work fills a gap in publicly available data by con-
tributing a large corpus of cycling data on cells under dynamic working
conditions*. Our work focuses on a set of idealised usage distributions
rather than realistic driving profile in order to demonstrate the extent
of generalisability of the model. Our work departs from the NASA
randomised usage dataset*’, which randomly cycles cells for 50 cycles
before measuring the next cycle discharge capacity after charging via a
‘reference’ protocol. Although several models for forecasting degra-
dation under randomised conditions have been built based on this
data”®*®, the effect of a single protocol on next cycle discharge
capacity cannot be disentangled, and there is a need for a reference
charge/discharge protocol every few cycles which does not concord
with typical field usage.

Results

Data generation

For this study, we generate two separate datasets corresponding to
commercial LiR coin cells purchased from two different manu-
facturers, which allows us to test whether our approach is robust with
respect to cell manufacturer.

The first dataset corresponds to 40 Powerstream LiR 2032 coin
cells (nominal capacity 1C = 35 mAh). We subject 24 cells to a sequence
of randomly selected charge and discharge currents at 23 +2 °C for
110-120 full charge/discharge cycles. Each cycle consists of an initial
diagnosis of battery state, involving acquisition of the galvanostatic EIS
spectrum, followed by usage, involving a charging and discharging
stage. Charging and discharging consist of a two stage and one stage
Constant Current (CC) protocol, respectively; the currents are ran-
domly selected at each cycle in the ranges 70-140 mA (2-4C),
35-105mA (1-3 C), and 35-140 mA (1-4 C) respectively. To test the
model’s robustness to domain shift, we additionally cycle the
remaining 16 cells under the same conditions as above, except now
fixing the discharge current for all cells and cycles at 52.5mA (1.5C)
instead of randomly changing the discharge current at each cycle. The
space of protocols considered is illustrated in Fig. 2 and an example of
the capacity trajectories of three cells is provided in Supplementary
Fig. 1 for illustration of the difference from typical monotonic capacity
fade experiments. A complete description of cycling protocols is
provided in the Methods and the full set of operating conditions that
each cell is subjected to is detailed in Supplementary Table 1.

Having used the first dataset to confirm the approach can suc-
cessfully forecast discharge capacity several cycles ahead, we
later significantly expand our analysis to explore the model’s robust-
ness to cell manufacturer, changes to usage pattern and operating
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Fig. 1| Schematic comparison of the proposed approach to previous research
works. Feature-based methodologies for degradation prediction have focused on
constant charging protocols (the blue/red curve denotes the charge/discharge
phase), using features from capacity-voltage curves as input®>'. This necessitates
knowledge of historic charging data. Our approach considers variable charging

protocols (the shaded blue/red region denotes the range of currents that the
charge/discharge protocols are drawn from), which is more comparable to the EV
setting. Further, we employ the electrochemical impedance spectrum measured
just before charging as input, without any knowledge of historic data, and predict
the impact of different future usage protocols on the discharge capacity.

temperature. To achieve this, we cycle an additional 48 cells from a
second manufacturer, RS Pro (nominal capacity 40 mAh), under a
much wider range of usage patterns. In this case, each cell is again
subjected to 100 cycles of two-stage CC charging, and one-stage CC
discharging, with the three rates randomly selected at the start of each
cycle. However, we now make the problem more challenging by having
a different distribution of currents for each cell, to replicate the sce-
nario in which different battery users have different average usage
patterns to each other, but still exhibit random cycle-to-cycle beha-
viour. Of these cells, sixteen are also cycled at a higher operating
temperature of 35 °C.

Capacity forecasting using EIS

We first consider the setting in which we want to predict the next
cycle discharge capacity, for a cell whose usage history (including for
example, cycle or calendar age, or historical capacity-voltage data)
is completely unknown, if we apply a particular charging and

discharging profile. We frame the problem as a regression task, and
train a probabilistic machine learning model to learn the mapping Q,,
= f(sp, @p), with uncertainty estimates, where s, is the battery state at
the start of the nth cycle, a, is the future action (the nth cycle charge/
discharge protocol), and Q, is the discharge capacity measured at the
end of the cycle. The battery state vector s, is formed from the con-
catenation of the real (Z,.) and imaginary (Z;,,) components of the
impedance measured at 57 frequencies, wy,...,ws7, in the range
0.02Hz-20kHZ; S, =[Z,o(@0)),Zim (@), Z re(@s7),Z;in(@s7)]. The action
vector is formed from the concatenation of the nth cycle charge and
discharge currents.

Figure 3 illustrates the accuracy of our model. Using both state
and action as input, the next cycle discharge capacity is predicted
with an average error of 8.2%. Importantly, both state and action
(Fig. 3a) are found to be necessary to predict future cell performance: if
state (Fig. 3b) or action (Fig. 3c) alone are used as inputs, the test
error approximately doubles to 20.7% and 15.4% respectively. This
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demonstrates the importance of both the cell’s internal health and the
externally selected usage in determining realised cell performance.

For applications such as optimised charging and repurposing
triaging, it is important that a model of battery life trajectory can
forecast not only the immediate next cycle discharge capacity, but also
capacity several cycles into the future**°, With this in mind, we next
investigate how the predictive accuracy of the model changes as we
push the model to predict capacity further into the future. In each case,
the input comprises the concatenation of the state representation at
the start of the nth cycle, s,,, with the ‘action’ vector a,,_,.; comprising
all charging and discharging currents that will be applied between
cycle n and cycle n +}.

Figure 4 shows how the coefficient of determination R*> changes
with j. As expected, the accuracy of the model generally decreases as
the forecasting interval increases. However, the model still attains
R?=0.75 when projecting 40 cycles into the future.

Data efficiency and robustness to domain shift

We next test the robustness of our method by investigating data effi-
ciency and model generalisability. To test data efficiency, we measure
how performance changes as the number of cells used to train the
model increases. As seen in Fig. 5, there is a marked reduction in test
error from 23.8% to 8.2% as the number of cells increases from two to
22. Nevertheless, the model is demonstrably data-efficient, with just
eight cells needed to obtain a test error of less than 10%.

£ 140
45, Charge
£ 70
>
(@]
o Time / mins

0 15 30 45

-70 -
Discharge

-140

Fig. 2 | Proposed charge-discharge protocol. We generate battery cycling data by
subjecting cells to a sequence of random charge and discharge currents. We apply
two stages of constant current (CC) charging for up to 15 min each, with currents
drawn from the ranges 70-140 mA (2-4 C) and 35-105 mA (1-3 C), respectively (the
blue shaded region). If the safety threshold voltage of 4.3V is reached before the
time limit, then charging is stopped. During discharging, a single constant dis-
charge current, randomly selected in the range 35-140 mA (1-4 C), is applied (the
red shaded region), until the voltage drops to 3.0 V.

An important test of model generalisability is to study model
accuracy when the domain distribution changes, i.e. when the model is
being deployed in settings that are different from the training data™.
This is important for deployment in the field as the approach needs to
be robust to driving patterns that might be different from the training
data®. We test model robustness by cycling an additional 16 cells from
the same manufacturer, but now adjusting the cycling protocol by
fixing the discharge current to 1.5C for each cell throughout its life. We
use a model trained using only cells that were subjected to random
discharge currents over their lifetime, to predict next-cycle discharge
capacity of cells subjected to fixed discharging. To illustrate the dif-
ference in training and test datasets, the distribution of discharge
capacities is shown for each in Fig. 6a.

The predictive accuracy of the model on the fixed discharge
dataset is illustrated in Fig. 6b. Promisingly, the model attains a test
error of just 6.3% on this domain-shifted dataset, which corresponds
to R2=0.76.

Our model also outputs predictive uncertainty, which indicates
how certain the model is about the quality of its predictions. It is
especially important in the domain-shifted setting that the model
‘knows what it does not know’ and estimates high predictive uncer-
tainty about data points that it is likely to obtain a high error on. We can
test the model’s ability to estimate its uncertainty by observing how the
average test error changes as the number of data points is reduced to
include only the data points that the model is most confident about. If a
model can successfully estimate its level of certainty, the average test
error should reduce as the proportion of data is reduced to include
only the most confidently predicted points. Figure 6¢ shows a 32%
reduction in root-mean-squared error (RMSE) as the proportion of data
is reduced from 100% to the most confident 25%, demonstrating that
our model has learnt which predictions it should be confident about.

Comparison of state representations

Having demonstrated the ability of the EIS spectrum to capture battery
state, we now benchmark this representation of battery health against
other approaches utilised in the literature, including the state-of-the-art
feature-based method”*, and consider whether there are additional
features to the EIS spectrum that can serve to augment battery state.
Simple measures that have been used to forecast or estimate battery
SOH include using the previous cycle discharge capacity, or the capa-
city throughput since cycling commenced. More advanced approaches
include extracting features of the historical capacity-voltage discharge
curves, as shown in Fig. 1. The state-of-the-art approach to extracting
such features was implemented by Severson et al.”> and inspired the
approaches to feature extraction used recently by Attia et al. and
Paulson et al.””*'. We benchmark how our EIS-based approach performs
relative to those state-of-the-art features.

3 50 E b- 5 E C _s0 73
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Fig. 3 | Predicting next cycle discharge capacity. a Given knowledge of the state
(the battery's internal state, as characterised by the EIS spectrum) and the action
(the next cycle charge/discharge protocol), our model predicts the next cycle
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discharge capacity with an error of 8.2%. Both state and action are needed to
accurately forecast performance; using (b) state or (c) action alone is insufficient.
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Further, we assess whether incorporation of physical interpreta-
tions, in the form of equivalent circuit models (ECM), improves pre-
dictions. We use the widely implemented Randles circuit model,
comprising a series resistance, connected with a resistance in parallel
with a capacitance and a Warburg impedance element, as well as the
more complex Extended Randles circuit, which adds an additional
resistor-capacitor parallel combination in series to the Randles circuit.
The ECM is fitted to the spectrum (at an associated computational
cost) and we use the extracted parameters as the state representation
instead of raw EIS data.

In total, we consider the following features in our benchmark:

a. o © b. 09
T 9 . . 0.81 .
5 .
S . ~ . .
GJ m . . .
2| ..
U 8 0.7
'—
‘s 10 20 30 40 06610 20 30 40

Number of cycles Number of cycles

Fig. 4 | Multi-step forecasting. Our model can also forecast longer term battery
performance, as quantified by (a) % test error, and (b) R? value. Given the EIS
spectrum and knowledge of the next protocols that will be applied to the cell, the
discharge capacity is predicted with a test error of less than 10% up to 32 cycles
in advance.
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Fig. 5| Data efficiency. The model performance, as quantified by (a) % test error and
(b) R?, improves as the number of cells used to train increases. The model is data-
efficient, achieving a test error of less than 10% with just eight cells in the training set.

S

* Previous cycle discharge capacity Q.

* Capacity throughput (CT) since cycling commenced, as defined
by the sum of cell charge and discharge capacities from cycles O
ton-1.

* State of Health (SOH), as defined by Q,,-1/Qo.

* State-of-the-art features of the capacity-voltage discharge curve
(CVF): Following Severson et al.?, we form a state representation
at the start of cycle n by extracting features from the
capacity-voltage discharge curve after cycle n-1. We fit each
curve to a spline function, linearly interpolating to measure
capacity at 1000 evenly spaced voltages from V;, to V... This
1000-dimensional capacity vector Q,—; is normalised by sub-
tracting the equivalent vector from cycle 0, Qo. The following
features are then used as inputs: V.., Vmin, l0g(var(Q,,_; — Qq)),
log(IQR(Q,,_; — Qp)). Additionally, we fit the capacity to a
sigmoid Q(V) = W}Mwhere V is the normalised voltage
and use the parameters po, p;, p» as features.

* Equivalent circuit model parameters (ECM-R and ECM-ER): We fit
equivalent circuit models using the Randles circuit (ECM-R) and
Extended Randles circuit (ECM-ER) to the EIS spectra and con-
catenate the obtained parameters together.

We note that in contrast to EIS features, the formation of a state
representation using the first four aforementioned features demands
access to historical current-voltage data, over at least the entirety of
the previous discharge and for some features, over the entire cell
lifetime. However, they benefit from the advantage of not requiring
equipment to measure the EIS spectrum, which comes with an asso-
ciated financial and temporal cost. Forming a state representation
using the ECM parameters (extracted from the EIS spectrum) has an
associated computational cost and can be considered a form of
dimensionality reduction of the raw EIS data. An additional problem
faced by ECMs in general is non-uniqueness, in that multiple different
combinations of ECM parameters can generally explain a particular EIS
spectrum equally well*%,

Table 1 shows how the state representation impacts test error and
model goodness of fit. In all cases, the model is trained to predict the
next cycle discharge capacity, given the next cycle protocol and the
chosen state representation. Interrogating the relative importance of
features, we first consider the baseline of using EIS only (without
including the protocol) and using the protocol only (without including
EIS). Perhaps unsurprisingly, battery degradation is a function of both
the current state and future charge/discharge protocol. As such, using
both EIS and the protocol significantly outperforms using EIS only or
using the protocol only.
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Fig. 6 | Robustness to domain shift. a The distribution of discharge capacity is
different for cells cycled under variable discharge rates (blue) compared to a fixed
discharge rate (red); the overlap region of the two distributions appears darker in
colour. b Our model, trained on the variable discharge rate cells, accurately pre-
dicts the discharge capacities of cells cycled under a fixed discharge rate. The
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colour of the plotted points denotes predicted uncertainty (see colour bar). ¢ The
model “knows what it does not know': when we restrict the test data used to
calculate the root-mean squared error (RMSE) by including only the predictions
that the model is most confident about (i.e. with lowest predictive uncertainty), the
RMSE reduces.
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Table 1| Comparison of state representations

Table 2 | Robustness of approach to cell manufacturer

Input R? Test error (%)
Protocol only 0.32 15.4
EIS only 0.05 20.7
EIS + Protocol 0.83 8.2
ECM-R + Protocol 0.69 10.7
ECM-ER + Protocol 0.80 8.4
SOH + Protocol 0.61 12.4
CVF + Protocol 0.75 8.8
CT + Protocol 0.52 13.3
Q1 + Protocol 0.56 12.1
EIS + CVF + Protocol 0.88 6.7
EIS + CVF + CT + Q4 + Protocol 0.91 6.2

We consider whether augmenting the EIS-based state representation with additional features
can enhance model performance. The State of Health (SOH), as defined by the ratio between the
previous discharge capacity and the initial discharge capacity, does not fully capture the bat-
tery’s current health: using this scalar state representation instead of the multidimensional EIS
representation increases the test error by 51%. The most informative representation of battery
state is obtained by adding previous capacity-voltage discharge curve features (CVF), capacity
throughput (CT), and previous discharge capacity Qn-1.

We then explore the impact of physics-based representation of
the EIS spectrum, using the Randles (ECM-R) and extended Randles
(ECM-ER) equivalent circuit models. Comparing EIS + Protocol with
ECM-R + Protocol and ECM-ER + Protocol reveals that these physics-
based models lose information, and using a machine learning
approach to directly learn from raw data might be advantageous.

We next consider the different approaches that have been
reported in the literature, Q,—;, SOH, CT, and CVF, with CVF being the
state-of-the-art in the battery informatics literature. In all cases, EIS +
Protocol outperforms those other features with Protocol, although
CVF is competitive.

Interestingly, information from capacity-voltage curve data (CVF)
is complementary to EIS - combining EIS with these features leads to a
significant increase in accuracy (EIS + CVF + Protocol). This is perhaps
unsurprising, as EIS probes the impedance of the single ‘static’ cell
discharged state (with high information content per instant state),
whilst capacity-voltage curves probe how the cell state evolves con-
tinuously over the path from charged to discharged (with low infor-
mation content per instant state).

Finally, the best model performance is attained by combining all
of the above features to form the state representation. In this case the
average test error is just 6.2%.

Robustness to different cell manufacturers

We now extend our analysis to explore how robust our approach is to
changing the cell manufacturer, adjusting the operating temperature
and adjusting the average use pattern. We repeat our experiment on a
new batch of 32 commercial LiR coin cells (of nominal capacity 1C =40
mAh) from RS Pro, a different manufacturer, except we now make the
problem significantly more challenging by subjecting different sub-
groups of cells to one of four different usage distributions. These
usage distributions are shown in Supplementary Table 1.

We measure the accuracy of the model in two ways: firstly, we
consider the case where the model is exposed to cells that have been
subjected to the same distribution of protocols as the test set (random
splitting), and second, the more challenging case where the model is
only trained on the cells which are subjected to three of the cycling
protocol distributions and tested on the remaining eight cells sub-
jected to a different cycling protocol. This is a much harder task as the
average usage on the test cells is very different to the average usage on
the training cells—it is a test of whether the model can extrapolate to
different average use not just different cycle-to-cycle use.

Input Random train/test split Stratified train/test split
R? Test error (%) R? Test error (%)

EIS + Protocol 0.78 15.2 0.59 211

CVF + Protocol 0.69 16.5 0.38 27.7

EIS + CVF + Protocol 0.84 12.9 0.68 19.5

We make qualitatively similar observations when we test our approach on cells manufactured by
RS Pro (rather than Powerstream), with EIS found to be a slightly better state representation than
state-of-the-art capacity-voltage features (CVF). The best results are obtained when the two
representations are combined. We test how the model performs when we split the training and
testing sets randomly, and when we instead stratify the training and testing sets such that the
model is tested on cells with a different usage distribution to the cells it was trained on. Usage
conditions and an extended comparison of different state representations are provided in
Supplementary Tables 1, 2 and 3.

Table 3 | Robustness to operating temperature

Input R? Test error (%)
EIS + Protocol 0.76 14.6
CVF + Protocol 0.20 34.2
EIS + CVF + Protocol 0.80 14.0

Accuracy of the model trained on 32 cells (manufactured by RS Pro) cycled at 23 °C and tested
on 16 cells from the same manufacturer but cycled at 35 °C. Here we compare the model

accuracy when different representations are used to characterise the battery’s internal state. An
extended comparison of different state representations is provided in Supplementary Table 4.

The results for different state representations are shown in
Table 2 for both the case where the train/test split is random, and
where the split is stratified into different usage patterns. Comparable
observations are made for cells purchased from the second manu-
facturer: namely, the most accurate predictions are made when the
state representation is formed using features of the EIS spectrum
alongside those formed from the discharge curve (CVF). As expected,
the model performs significantly better when it has been trained on
data from some cells that have been exposed to a similar distribution
of cycling patterns as those that the model is tested on. However, the
model remains performant in the scaffold split scenario, and in this
setting the test error reduces by 30% when the state representation is
formed using the EIS spectrum alongside the features of the discharge
curve, instead of solely using features of the discharge curve.
These additional results further demonstrate that if available, both
the EIS spectrum and discharge curve can act as informative markers
of the battery’s internal state, but that they are complementary to
each other.

We next verify that the model is robust with respect to changing
external operating temperature. We cycle an additional 16 cells at 35 °C
and test the model trained on data from cells cycled at room tem-
perature. Table 3 shows that our model can extrapolate to cells
operated at these higher temperatures, but that the EIS spectrum plays
a particularly important role in characterising the battery state when
the cell is not operated at the same temperature. The model obtains a
test error of 34.2% when only the discharge curve features are used to
characterise state, which reduces to 14.0% when both the EIS spectrum
and discharge curve features are used. This further demonstrates the
additional information that EIS signals contain relative to charging-
discharging curves, and supports the hypothesis that EIS implicitly
tracks temperature®.

Discussion

In this paper, we showed that the electrochemical impedance spec-
trum accurately characterises the internal state of a cell, and a machine
learning model can be trained to accurately forecast both immediate
and longer term cell performance with predictive uncertainty, even
amid uneven and unknown historical cell usage. Our model achieves
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comparable accuracy (8.2% test error) to the state-of-the-art forecast-
ing approach (8.8% test error) when testing on cells subjected to the
same distribution of operating conditions as the cells used to train the
model. However, as outlined in Fig. 1, the state-of-the-art approach
demands access to historical cycling data whereas our model enables
forecasting with no historical data. Additionally, our model sig-
nificantly outperforms the state-of-the-art model when extrapolating
to a higher operating temperature, with a 57% reduction in test error
(from 34.2% to 14.6%).

Our method is data-efficient, achieving a next-cycle test error of
9.9% with training data from just eight cells, and is robust to shifts in
dataset distributions. Additionally, we find that there is scope to boost
model performance by 25% if historical cycling data is available; such
data can be used to derive features that augment the cell state repre-
sentation. We demonstrate that our approach can be utilised across
different cell chemistries, and the model is robust to different oper-
ating temperatures.

Our approach differentiates from the prior art in two important
ways : First, we employ an information-rich electrical signal—EIS—
which captures the response of the cell across different
timescales without any knowledge of the cycling history. This is in
contrast to most existing methods which employ features from the
charging-discharging curve—a significantly more coarse-grained sig-
nal—as input to machine learning models. Our results suggest sig-
nificant improvements in battery management systems abound by
incorporating circuitries that measure electrochemical impedance,
albeit at a financial and temporal cost.

Second, we focus on uneven cycling, where the charging and
discharging rates vary from cycle to cycle. This departs from previous
studies on machine learning for battery degradation which focused on
constant charge/discharge conditions, which are typical in battery
testing. Our results problematise the concept of a single scalar State of
Health, as the state of the battery is dependent on the extent of the
myriad different degradation mechanisms, which in turn depends on
the sequence of historic charge/discharge protocols. Rather, we sug-
gest that a cell can be described by a multidimensional state vector,
captured using informative high-dimensional measurements like EIS,
and a machine learning approach can be used to predict future capa-
cities given the state vector and future charge/discharge protocols.
Furthermore, although in this work we only consider forecasting
starting from an initially discharged state, we hypothesise that it
should be possible in future work to forecast discharge capacity
starting from any state of charge based on the EIS measurement, since
EIS spectrum implicitly tracks state of charge®* .

We note that the general framework that we have laid out for
predicting future battery performance given current cell state and
future actions has scope to be applied in a broad range of battery
diagnostic and control settings. For example, predicting the effect of a
proposed charging protocol on next cycle discharge capacity as well as
long term degradation is important for optimising rapid charging
applications™, where a balance must be achieved between charging
time and rate of cell degradation®’. Our work can additionally be
extended to consider more complicated dynamic usage protocols,
such as WLTC.

Methods
Battery cycling
For this study we cycle 88 commercial LiR coin cells purchased from
two different manufacturers, Powerstream and RS Pro, in a tempera-
ture regulated laboratory at 23 + 2 °C. A Biologic BCS-805 potentiostat
is used for cycling, and photographs of the experimental setup are
provided in Supplementary Fig. 2.

Across all datasets, cells are subjected to a sequence of randomly
selected charge and discharge currents for 110-120 full charge/dis-
charge cycles. Cycling commences when the cell is in the fully

discharged state, and each cycle comprises the following steps: (a)
resting for 20 min at the open circuit voltage, (b) acquisition of the
galvanostatic EIS spectrum in the fully discharged state, (c) two stage
CC charging, (d) resting for 20 min at the open circuit voltage, (e)
acquisition of the galvanostatic EIS spectrum in the fully charged state,
(f) one stage CC discharging. The galvanostatic EIS spectrum is always
measured by collecting impedance measurements at 57 frequencies
uniformly distributed in the log domain in the range 0.02Hz-20kHz
using a sinusoidal current with amplitude of 5 mA. Cells are cycled in a
temperature-controlled lab room at 23 +2 °C.

To generate the first dataset, we cycle 24 Powerstream LiR 2032
coin cells (nominal capacity 1 C = 35 mAh). For these cells, charging
consists of a two-stage CC protocol; currents are randomly selected in
the ranges 70-140mA (2C-4C) and 35mA-105mA (1C-3C) in stages 1
and 2 respectively. A time limit of 15 min is set for each charging stage
such that the total charging time is constrained to be 30 min or less.
Charging will stop before the 30 min time limit if the safety threshold
voltage of 4.3 V is reached. During discharging, a single constant dis-
charge current, randomly selected in the range 35mA-140mA (1C-4C),
is applied, until the voltage drops to 3.0 V.

An additional 16 cells (also manufactured by Powerstream and of
nominal capacity 35 mAh) are cycled under the same conditions,
except now we fix the discharge current at 52.5 mA (1.5C) for all cells
and cycles, instead of randomly changing the discharge current at
each cycle.

We then generate a second dataset that enables exploration of the
model’s robustness to cell manufacturer, changes to usage pattern and
operating temperature. We cycle 48 cells from a second manufacturer,
RS Pro (nominal capacity 40 mAh), under a much wider range of usage
patterns. The general six-step cycling protocol remains the same as
described above, with each cell again being subjected to 100 cycles of
two-stage CC charging, and one-stage CC discharging, with the three
rates randomly selected at the start of each cycle. However, the dis-
tribution of currents now changes for each cell. Of these cells, sixteen
are also cycled at a higher operating temperature of 35+2°C, in a
temperature-controlled heating chamber. A description of the full set
of operating conditions that each cell is subjected to is detailed in
Supplementary Table 1.

Machine learning model

All problems in this study are framed as regression tasks. We train a
probabilistic machine learning model to learn the mapping Q; =
f(sn, a,_j), with uncertainty estimates, where s, is the battery state at
the start of the nth cycle, a, is the set of future cycling protocols
applied over cycles n to, and Q;is the discharge capacity at the end of
the jth cycle. The battery state vector s, is generally formed from the
concatenation of the real (Z,.) and imaginary (Z;;,) components of the
galvanostatic EIS spectrum measured in the fully discharged state at
the start of the cycle at 57 frequencies, w, ..., ®s;, in the range
0.02Hz-20kHz; s, = [Z (@), Zify (01>, Z o(@s57), Zim(Ws7)]. FOr the task
of predicting next cycle discharge capacity, the action vector a, is
formed from the concatenation of the nth cycle charge and discharge
currents. When predicting discharge capacity several cycles, j, ahead
of time, the future protocol is now formed from all charging and
discharging currents that will be applied between cycle n and
cycle n+j.

For the machine learning model, we use an ensemble of 10
XGBoost models®, each with 500 estimators and a maximum depth of
100. The mean and standard deviation of the predictions made by each
model in the ensemble are used to quantify the predicted output and
the predictive uncertainty. To test model performance we use the
median R? score and median percentage error. To obtain test metrics
from a dataset comprising N cells, we randomly leave two test cells out,
train on the remaining N-2 cells and repeat this process N/2 times,
leaving different cells out each time.

Nature Communications | (2022)13:4806



Article

https://doi.org/10.1038/s41467-022-32422-w

Data availability
The data generated in this study are provided in the Zenobo database
at https://doi.org/10.5281/zen0do.6645536%.

Code availability
The code required to reproduce this manuscript is available at https://

github.com/PenelopeJones/battery-forecasting®.
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