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Abstract: Severe burns may lead to a series of pathophysiological processes that result in death.
Machine learning models that demonstrate prognostic performance can be used to build analytical
models to predict postoperative mortality. This study aimed to identify machine learning models
with the best diagnostic performance for predicting mortality in critically ill burn patients after burn
surgery, and then compare them. Clinically important features for predicting mortality in patients
after burn surgery were selected using a random forest (RF) regressor. The area under the receiver
operating characteristic curve (AUC) and classifier accuracy were evaluated to compare the predictive
accuracy of different machine learning algorithms, including RF, adaptive boosting, decision tree,
linear support vector machine, and logistic regression. A total of 731 patients met the inclusion
and exclusion criteria. The 90-day mortality of the critically ill burn patients after burn surgery was
27.1% (198/731). RF showed the highest AUC (0.922, 95% confidence interval = 0.902–0.942) among
the models, with sensitivity and specificity of 66.2% and 93.8%, respectively. The most significant
predictors for mortality after burn surgery as per machine learning models were total body surface
area burned, red cell distribution width, and age. The RF algorithm showed the best performance for
predicting mortality.

Keywords: burn; mortality; machine learning

1. Introduction

Burns are one of the most devastating types of traumatic injuries, causing morbidity
and mortality worldwide. Burn wounds induce an excessive inflammatory response that
triggers the immune system to protect against risk of infection, which can be harmful and
potentially fatal [1]. The inflammatory mediators produced and released after a burn injury
affect microcirculation, resulting in significant hypovolemic shock and substantial tissue
injury [2]. The challenges of resuscitation and treatment with potential adverse outcomes
have led to advances in the prediction of risk factors. Early detection and recognition of
risk factors associated with mortality are essential in the management of a burn injury.

Machine learning is a type of artificial intelligence (AI) that leads to a superior pre-
diction ability compared with conventional models, and has gained recent prominence [3].
Machine learning models have gained attention for their diagnostic performance, which
can automatically build analytical models to predict postoperative mortality [4]. Recently,
machine learning explainability is emphasized on decisions based on predictions provided
by machine learning algorithms, which aid in making decisions to adopt the model [5].
Studies have reported the importance of explainable machine learning which can be ap-
plied to predict risk factors for mortality [6]. Mortality prediction is considered crucial
in the early management of burn injuries, which can affect patient outcomes. Studies on
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machine learning models for mortality prediction in burn injuries have been in progress
for decades [7,8]. The application of machine learning to burn injuries enables clinicians
to reveal patterns and observe correlations that are not disclosed by traditional linear
statistical analysis [9]. Efforts have been made to demonstrate the potential of machine
learning approaches in predicting mortality in burn patients [10,11]. Not only for mortality
prediction, machine learning is also being studied for the prediction of sepsis and acute
kidney injury in burn patients, which are issues of concern [12]. However, the performance
in predicting mortality after burn surgery using different machine learning techniques has
not been clearly elucidated.

The aim of the study was to identify machine learning models with the best diagnostic
performance for predicting mortality in patients after burn surgery and to compare each
model’s suitability for this purpose. Our analysis used the following machine learning
algorithms: random forest (RF), adaptive boosting (AB), decision tree (DT), support vector
machine (SVM), and logistic regression (LGR). This study may help validate the use of
machine learning models for applications in clinical practice.

2. Materials and Methods
2.1. Study Population

Critically ill burn patients admitted to the intensive care unit (ICU) before burn surgery
from January 2010 to February 2018 were recruited. Patients with burns on more than 20%
of their total body surface area (TBSA) are defined as critically ill burn patients [13]. Data
immediately before the first burn surgery under general anesthesia were collected. The
inclusion criteria were patients who underwent burn surgery within 14 days of a burn event,
while patients under 18 years of age, those who underwent local anesthesia, and those with
known chronic kidney disease were excluded from the study. We reviewed the electronic
medical records of the patients to obtain laboratory and clinical data. This retrospective
study was approved by the Institutional Review Board of the Ethical Committee of Hangang
Sacred Heart Hospital, Hallym University, Seoul, Republic of Korea (No. 2018-057). The
informed consent was waived by the committee due to the nature of retrospective design.

The primary outcome was the identification of risk factors for 90-day mortality after
burn surgery using machine learning. The secondary outcome was the selection of the
machine learning model with the best prediction performance.

2.2. Data Collection

Demographic data, laboratory data, and other patient variables were reviewed and
collected using the electronic medical records system. Preoperative characteristics of the
patients included sex, age, body mass index, history of hypertension or diabetes, American
Society of Anesthesiologists physical status (ASA PS), TBSA burned, and the presence
of inhalation injury. “TBSA burned” included a certain percentage of the body surface
with a second- or third-degree burn. The presence of inhalation injury was diagnosed by
bronchoscopic findings, with any findings other than normal considered an indication of
the presence of inhalation injury. All preoperative blood tests were performed early in the
morning of the day of surgery or the day before surgery. These preoperative laboratory data
include hemoglobin, platelet count, prothrombin time (PT), albumin, creatinine, red cell
distribution width (RDW), neutrophil–lymphocyte ratio (NLR), platelet–lymphocyte ratio
(PLR), monocyte–lymphocyte ratio (MLR), and systemic immune-inflammation index (SII).
NLR, PLR, MLR, and SII were each calculated using complete blood count (CBC) informa-
tion. SII was calculated using the following formula: (granulocyte × platelet)/lymphocyte.

2.3. Primary Analysis of the Dataset

The baseline characteristics and laboratory findings were compared in the survivor
and non-survivor groups 90 days after burn surgery. Risk factors for 90-day mortality after
burn surgery were also identified using univariate and multivariate logistic regression
analysis. The significant factors in univariate logistic regression were analyzed using the



J. Pers. Med. 2022, 12, 1293 3 of 11

backward stepwise elimination procedure of multivariate logistic regression analysis. A
two-tailed p-value < 0.05 was considered statistically significant. All statistical analyses
were performed using SPSS for Windows (version 24.0; IBM-SPSS Inc., Armonk, NY, USA).

2.4. Clinical Feature Selection and Classification Method Using Machine Learning

Although many quantitative features can be extracted from medical datasets, they
may be highly correlated with each other, or simply noise. Thus, it is important to select
a subset of features to enhance the performance and minimize the computational cost.
Feature selection using RF regressor and 20 repeated 10-fold stratified cross-validations
were performed to avoid overfitting in limited datasets (Figure 1) [14]. Important clinical
features for predicting mortality in patients after burn surgery were selected using a RF
regressor in Python (Python Software Foundation, version 3.7.4, Fredericksburg, VA, USA)
with the Scikit-learn package [https://github.com/scikit-learn/scikit-learn (accessed on
25 September 2021)) [15]. A RF classifier model was trained to use the selected features
to predict mortality [16]. The receiver operating characteristic (ROC) curve and classifier
accuracy were used to compare the predictive accuracy of the RF, AB, DT, SVM, and LGR
algorithms. Statistical differences in the AUC of each classifier were compared using a ma-
chine learning model with DeLong’s test using R (version 3.5.1; R Foundation for Statistical
Computing, Vienna, Austria), with p-values < 0.05 considered statistically significant.
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Figure 1. Schematic representation of 20 repeated 10-fold stratified cross-validations on training and
test sets.

2.5. Algorithms of Each Machine Learning Model

The RF algorithm is an ensemble of many decision trees, which are non-linear models
on various sub-samples of the dataset and calculate averaging to improve the predictive
accuracy and prevent overfitting [16]. The importance of each feature is computed from
the RF package of Scikit-learn. The RF algorithm is also known as the Gini importance.

• G
(

Nj
)
=

K
∑

i=1
pi(1− pi) = 1−

K
∑

i=1
p2

i

where K is the number of classes, and P is the probability of each class.

https://github.com/scikit-learn/scikit-learn
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The AB classifier is a meta estimator that first fits a classifier on the original dataset,
and then fits additional copies of the classifier on the same dataset with the weights of
incorrectly classified instances adjusted, such that the subsequent classifiers focus more on
difficult cases [17]. The AB classifier is also calculated using the following equation:

• h f (x) =

 1, i f
T
∑

t=1
(log 1/βt)ht(x) ≥ 1

2

T
∑

t=1
log 1

βt

0, otherwise
DT is a non-parametric supervised learning method for classification and regression.

The goal of this method is to generate a model predicting a target value by learning simple
decision rules inferred from the data features [18]. A tree can be seen as a piecewise constant
approximation. For a classification outcome with values 0, 1, . . . , K − 1, for node,

• Pmk =
1

Nm
∑

y∈Qm

I(y = k)

is the proportion of class k observations in node m. If m is a terminal node, the predicted
probability for this region is set to Pmk.

SVM constructs hyperplanes in a high or infinite dimensional space, which can be
used for classification, regression, or other tasks. Intuitively, a good separation is achieved
by a hyperplane that has the maximum gap to the nearest training data points of any
class, because typically, the larger the margin, the lower the generalization error of the
classifier [19,20]. The primal problem can be equivalently formulated as:

• LinearSVR = minw,b
1
2 wTw + C ∑

i=1
max

(
0, | yi −

(
wT∅(xi) + b

)∣∣−ε,

where we make use of epsilon-insensitive loss, i.e., errors of less than ε are ignored. This is
the form that is directly optimized by linear support vector regression (SVR).

LGR is a linear model for classification rather than regression. It quantifies the rela-
tionship between a dependent categorical outcome and one or more independent predictor
variables. This implementation can fit binary, One-vs.-Rest, or multinomial logistic regres-
sion with optional l1, l2 [21,22]. As an optimization problem, binary class l1 penalized
logistic regression minimizes the following cost function:

• minw,c
1
2 wTw + C

n
∑

i=1
log
(
exp

(
−yi

(
XT

i w + c
))

+ 1
)

Similarly, l2 regularized logistic regression solves the following optimization problem:

• minw,c‖w‖1 + C
n
∑

i=1
log
(
exp

(
−yi

(
XT

i w + c
))

+ 1
)

3. Results
3.1. Basic Demographics and Selected Important Clinical Features

Of 731 patients, there were 533 survivors and 198 non-survivors. Table 1 shows
the baseline characteristics of the two groups. Univariate logistic regression analysis
identified that age, diabetes, hypertension, ASA PS III and IV, TBSA burned, inhalation
injury, RDW, platelet count, PT, albumin, and creatinine were significantly correlated with
90-day mortality of patients after burn surgery under general anesthesia (Table 2). Of these
factors, age (odds ratio (OR) = 1.067, 95% confidence interval (CI) = 1.047–1.088, p < 0.001),
diabetes (OR = 3.211, 95% CI = 1.288–8.000, p = 0.012), ASA PS III and IV (OR = 4.918, 95%
CI = 1.581–15.305, p = 0.006), TBSA burned (OR = 1.095, 95% CI = 1.078–1.113, p < 0.001),
RDW (OR = 1.679, 95% CI = 1.378–2.046, p < 0.001), PT (OR = 4.649, 95% CI = 1.259–17.171,
p = 0.021), and creatinine (OR = 1.818, 95% CI = 1.181–2.798, p = 0.007) were considered
independent risk factors in the multivariate logistic regression analysis.

The mean ages in the training and test datasets were 53.96 and 58.86, respectively.
A total of 11 features were selected using the RF regressor: age, ASA PS, TBSA burned,
hemoglobin, RDW, platelet count, PT, albumin, creatinine, PLR, and SII. Of these 11 features,
the most significant predictors were TBSA (0.28447 ± 0.28447), RDW (0.10053 ± 0.10053),
and age (0.08842 ± 0.08842) (Table 3). This is depicted as a histogram in Figure 2.
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Table 1. Baseline characteristics and laboratory findings of the survivor and non-survivor groups 90
days after burn surgery.

Variable Survivor Group (n = 533) Non-Survivor Group (n = 198) p-Value

Age, years 52.0 ± 14.4 58.0 ± 15.9 <0.001
Sex, male/female 441 (82.7)/92 (17.3) 166 (83.8)/32 (16.2) 0.825

Body mass index, kg/m2 23.6 ± 3.4 23.5 ± 3.1 0.765
Diabetes 22 (4.1) 26 (13.1) <0.001

Hypertension 72 (13.5) 45 (22.7) 0.003
ASA PS <0.001

I/II/III and IV 71 (13.3)/240 (45.0)/222 (41.7) 6 (3.0)/26 (13.1)/166 (83.8)
TBSA burned, % 38.5 ± 15.1 63.6 ± 20.7 <0.001
Inhalation injury 165 (31.0) 110 (55.6) <0.001

Hemoglobin, g/dL 13.5 ± 3.0 13.9 ± 3.5 0.100
RDW 13.0 ± 1.0 13.8 ± 1.4 <0.001

Platelet count, ×109/L 204.8 ± 111.3 180.5 ± 133.8 0.023
Prothrombin time, INR 1.1 ± 0.2 1.2 ± 0.3 <0.001

Albumin, g/dL 2.9 ± 0.8 2.5 ± 0.9 <0.001
Creatinine, mg/dL 0.78 ± 0.42 1.02 ± 0.62 <0.001

NLR 10.6 ± 19.1 11.2 ± 15.7 0.695
PLR 276 ± 464 304 ± 606 0.553
MLR 0.85 ± 1.31 1.13 ± 2.39 0.121

SII 2171 ± 4108 1909 ± 3783 0.435

Data are shown as mean ± standard deviation or number (%) as appropriate. ASA PS: American Society of
Anesthesiologists physical status; INR: international normalized ratio; MLR: monocyte–lymphocyte ratio; NLR:
neutrophil–lymphocyte ratio; PLR: platelet–lymphocyte ratio; RDW: red cell distribution width; SII: systemic
immune-inflammation index; TBSA: total body surface area.

Table 2. Univariate and multivariate analyses for evaluating the risk factors of mortality after burn
surgery.

Univariate Analysis Multivariate Analysis

Variables Odds Ratio (95% CI) p-Value Odds Ratio (95% CI) p-Value

Age, years 1.027 (1.016–1.039) <0.001 1.067 (1.047–1.088) <0.001
Diabetes mellitus 3.511 (1.940–6.356) <0.001 3.211 (1.288–8.000) 0.012

Hypertension 1.883 (1.244–2.852) 0.003 1.348 (0.683–2.660) 0.389
ASA PS

I 1.000 (Reference) 1.000 (Reference)
II 1.282 (0.508–3.237) 0.599 1.101 (0.329–3.681) 0.876

III and IV 8.848 (3.755–20.852) <0.001 4.918 (1.581–15.305) 0.006
TBSA burned, % 1.075 (1.063–1.087) <0.001 1.095 (1.078–1.113) <0.001
Inhalation injury 2.788 (1.994–3.898) <0.001 1.380 (0.844–2.257) 0.199

Hemoglobin, g/dL 1.048 (0.995–1.104) 0.075
RDW 1.711 (1.471–1.990) <0.001 1.679 (1.378–2.046) <0.001

Platelet count, ×109/L 0.998 (0.997–1.000) 0.014 0.999 (0.997–1.001) 0.477
Prothrombin time, INR 29.531 (10.480–83.213) <0.001 4.649 (1.259–17.171) 0.021

Albumin, g/dL 0.596 (0.480–0.741) <0.001 0.981 (0.686–1.404) 0.916
Creatinine, mg/dL 2.894 (1.908–4.391) <0.001 1.818 (1.181–2.798) 0.007

NLR 1.002 (0.993–1.010) 0.696
PLR 1.000 (1.000–1.000) 0.506
MLR 1.090 (0.994–1.195) 0.068

SII 1.000 (1.000–1.000) 0.440

CI, confidence interval; ASA PS, American Society of Anesthesiologists physical status; TBSA, total body surface
area; RDW, red cell distribution width; NLR, neutrophil–lymphocyte ratio; PLR, platelet–lymphocyte ratio; MLR,
monocyte–lymphocyte ratio; SII, systemic immune-inflammation index; INR, international normalized ratio.
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Table 3. Feature importance of the variables associated with mortality after burn surgery.

Variables Feature Importance

TBSA burned 0.28447 ± 0.28447
RDW 0.10053 ± 0.10053
Age 0.08842 ± 0.08842

Creatinine 0.08194 ± 0.08194
Platelet 0.07586 ± 0.07586

PLR 0.07459 ± 0.07459
Prothrombin time 0.06747 ± 0.06747

ASA PS 0.06676 ± 0.06676
Albumin 0.05457 ± 0.05457

Hemoglobin 0.05401 ± 0.05401
SII 0.05139 ± 0.05139

TBSA—total body surface area; RDW—red cell distribution width; ASA PS—American Society of Anesthesiolo-
gists physical status; PLR—platelet to lymphocyte ratio; and SII—systematic immune-inflammation index.
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Figure 2. Plot of feature importance using random forest regressor. This figure shows the importance
of each covariate in the final model. TBSA burned, RDW, and age achieved the highest feature
importance in the machine learning models. TBSA: total body surface area; RDW: red cell distribution
width; ASA PS, American Society of Anesthesiologists physical status; PLR, platelet to lymphocyte
ratio; and SII, systematic immune-inflammation index.

3.2. Diagnostic Performance of Each Machine Learning Model

Figure 3 compares the AUCs of different machine learning models. RF achieved
the highest AUC (0.922, 95% CI 0.902–0.942), with sensitivity and specificity of 66.2 and
93.8%, respectively. The AUCs of AB, DT, SVM, and LGR were 0.915 (95% CI 0.883–0.947),
0.769 (95% CI 0.705–0.833), 0.706 (95% CI, 0.582–0.829), and 0.917 (95% CI 0.895–0.939),
respectively. Table 4 shows the AUC, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV) of each machine learning model.

Table 4. AUC, sensitivity, specificity, PPV, and NPV of each machine learning model.

Model AUC (95% CI) Sensitivity Specificity PPV NPV

RF 0.922 (0.902–0.942) 66.2% 93.8% 79.9% 88.2%
AB 0.915 (0.883–0.947) 69.2% 91.2% 74.5% 88.8%
DT 0.769 (0.705–0.833) 68.7% 85.2% 63.3% 88.0%

SVM 0.706 (0.582–0.829) 3.0% 99.0% 54.5% 73.3%
LGR 0.917 (0.895–0.939) 68.7% 92.7% 77.7% 88.8%

RF—random forest; AB—adaptive boosting; DT—decision tree; SVM—support vector machine; LGR—logistic
regression; AUC—area under the receiver operating characteristic curve; PPV—positive predictive value; and
NPV—negative predictive value.
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3.3. Pairwise Comparison of AUC among Machine Learning Models

The pairwise comparisons of the AUCs using DeLong’s test demonstrated that RF
(AUC = 0.922) showed no statistical difference with AB (AUC = 0.915) (p = 0.359) (Figure 4).
However, comparisons between RF and DT (AUC = 0.769), SVM (AUC = 0.706), or LGR
(AUC = 0.917) showed a significant difference (p < 0.05).

J. Pers. Med. 2022, 12, x FOR PEER REVIEW 9 of 12 
 

 

 

Figure 4. Box-and-whisker plot of the area under the AUC using DeLong’s test. RF showed no sta-

tistical difference with AB (p = 0.359). However, comparisons of RF with DT and SVM showed a 

significant difference, with p < 0.001 (**). Comparisons between RF and LGR also showed significant 

difference, with p < 0.05 (*). RF: random forest; AB: adaptive boosting; DT: decision tree; SVM: sup-

port vector machine; LGR: logistic regression; AUC: area under the receiver operating characteristic 

curve. 

4. Discussion 

In this study, we applied a machine learning approach to clinical features to compare 

models that predict patient mortality after burn surgery. RF achieved the highest AUC 

(0.922) among the evaluated models. Additionally, the pairwise comparisons of AUCs 

demonstrated that RF showed no statistical difference with AB. However, comparisons 

between RF and DT, SVM, and LGR showed a significant difference.  

Using machine learning, the current study identified the most significant predictors 

of mortality after burn surgery as TBSA burned, RDW, and age. Among the 11 clinical 

features analyzed, TBSA burned constituted almost 30% of the feature importance. The 

feature importance of the other clinical features in descending order is RDW, age, creati-

nine, platelet count, PLR, prothrombin time, ASA PS, albumin, hemoglobin, and SII, with 

each forming less than 10% of the importance. TBSA burned is well known for its strong 

association with mortality in burn patients [23]. Additionally, RDW and age showed high 

feature importance among the clinical features. Clinical laboratory results such as creati-

nine, platelet count, PT, and PLR are significant risk factors in burn patients. This result is 

consistent with previous studies using classic logistic regression analysis [24,25].  

The extent of injury is described using the percentage of the TBSA affected by a burn. 

The evaluation of TBSA burned is important for the initial burn management to estimate 

fluid requirements. TBSA burned is known to be a risk factor of mortality in burn injury, 

because higher TBSA leads to a poor prognosis [26]. Age is another well-known risk factor 

of mortality in burn patients. The underlying medical conditions, impaired response to 

infection, decreased ability to tolerate stress and physiological insult, and poor nutritional 

status associated with old age may cause adverse outcomes in elderly patients after burn 

injury [27,28].  

Several preoperative laboratory variables have been analyzed for their predictive 

ability of mortality in burn patients. CBC is a routinely applied laboratory blood test for 

most patients. The unique components analyzed by CBC are known to be related with 

inflammation or infection that affects the prognosis of medical conditions [24]. Of these 

simple blood biomarkers, RDW is a numerical measurement of the range in the volume 

and size of the erythrocytes. An increase in RDW may reflect conditions that modify 

Figure 4. Box-and-whisker plot of the area under the AUC using DeLong’s test. RF showed no
statistical difference with AB (p = 0.359). However, comparisons of RF with DT and SVM showed a
significant difference, with p < 0.001 (**). Comparisons between RF and LGR also showed significant
difference, with p < 0.05 (*). RF: random forest; AB: adaptive boosting; DT: decision tree; SVM: support
vector machine; LGR: logistic regression; AUC: area under the receiver operating characteristic curve.
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4. Discussion

In this study, we applied a machine learning approach to clinical features to compare
models that predict patient mortality after burn surgery. RF achieved the highest AUC
(0.922) among the evaluated models. Additionally, the pairwise comparisons of AUCs
demonstrated that RF showed no statistical difference with AB. However, comparisons
between RF and DT, SVM, and LGR showed a significant difference.

Using machine learning, the current study identified the most significant predictors
of mortality after burn surgery as TBSA burned, RDW, and age. Among the 11 clinical
features analyzed, TBSA burned constituted almost 30% of the feature importance. The
feature importance of the other clinical features in descending order is RDW, age, creatinine,
platelet count, PLR, prothrombin time, ASA PS, albumin, hemoglobin, and SII, with each
forming less than 10% of the importance. TBSA burned is well known for its strong
association with mortality in burn patients [23]. Additionally, RDW and age showed
high feature importance among the clinical features. Clinical laboratory results such as
creatinine, platelet count, PT, and PLR are significant risk factors in burn patients. This
result is consistent with previous studies using classic logistic regression analysis [24,25].

The extent of injury is described using the percentage of the TBSA affected by a
burn. The evaluation of TBSA burned is important for the initial burn management to
estimate fluid requirements. TBSA burned is known to be a risk factor of mortality in burn
injury, because higher TBSA leads to a poor prognosis [26]. Age is another well-known
risk factor of mortality in burn patients. The underlying medical conditions, impaired
response to infection, decreased ability to tolerate stress and physiological insult, and poor
nutritional status associated with old age may cause adverse outcomes in elderly patients
after burn injury [27,28].

Several preoperative laboratory variables have been analyzed for their predictive
ability of mortality in burn patients. CBC is a routinely applied laboratory blood test for
most patients. The unique components analyzed by CBC are known to be related with
inflammation or infection that affects the prognosis of medical conditions [24]. Of these
simple blood biomarkers, RDW is a numerical measurement of the range in the volume
and size of the erythrocytes. An increase in RDW may reflect conditions that modify
erythrocyte shapes as a result of premature release of immature cells into the bloodstream,
as in the case of massive blood loss [29]. In addition, reports have shown that inflammation
contributes to an increased RDW by inhibiting the production of erythropoietin or by
decreasing erythrocyte survival [30,31]. Recently, RDW’s prognostic ability to predict
morbidity and mortality in various clinical conditions has been demonstrated [32]. In burn
patients, high RDW has been associated with adverse outcomes with mortality, but not
as an independent risk factor [33,34]. However, in this study, we found that preoperative
RDW is an independent predictive factor for 90-day mortality in patients after burn surgery
using multivariate regression, as well as in the evaluations using machine learning.

Machine learning is a subset of AI that develops algorithms and technologies that en-
able computers to learn. Machine learning is a statistical method for extracting regularities
from data. Machine learning uses various models or algorithms to extract data, predict,
and classify their laws. Application of machine learning has advanced recently in various
aspects of medicine [3]. Logistic regression is a traditional model commonly employed
in medical applications to interpret clinical data in depth. Recent machine learning mod-
els include RF, AB, DT, SVM, and LGR, which are methods used to find a more optimal
predictive model [35,36].

Among these machine learning models, our study demonstrated that RF showed the
best performance in terms of predicting mortality in patients after burn surgery. Addition-
ally, RF was not significantly different from AB. Despite the high AUC values of RF and
AB, PPV and NPV were not high. Thus, the selection of the appropriate machine learning
model to be used in clinical situations depends on the user.

Machine learning approaches have recently been reported to have better predictive
abilities than classic statistical analysis. Regarding machine learning techniques in burn
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research, burn injury and management can be recognized as patterns that can capture
non-linearities shown in independent features such as TBSA burned, age, or inhalation
injury, which is different from conventional statistical approaches [37]. Another study about
predicting mortality of burn patients was conducted using artificial neural networks, which
included 15 clinical features, including inhalation injury, TBSA burned, and admission
period [38]. To our knowledge, the current study is the first attempt at evaluating the
clinical features of the patients to assess 90-day mortality after burn surgery using machine
learning, with AUC as the performance metric.

The conducted analysis had some limitations. First, since this is a single-center study;
institutional characteristics may have contributed to the survival of the burn patients.
Perioperative clinical management might have changed over the eight-year period over
which the patient data were collected. Thus, the results cannot be generally applied to burn
patients. However, since the data used in this study were collected in the largest burn center
in Asia, which performs standardized burn surgery, the effects on the present outcome
may be minimal. Second, there was data loss or inaccurate data due to the retrospective
design, which resulted in a relatively small dataset. Third, the models use the baseline
preoperative characteristics without postoperative data. Although a dynamic model with
sequential data may be superior, the model in our study predicts mortality within a specific
period, which may be significant. Fourth, this study did not include the machine learning
explainability techniques which may have provided a better understanding of how the
models yield to their predictions. Finally, the additional data not included in our clinical
features may have improved prediction. Further prospective studies are needed concerning
these additional data with common clinical features for clinical acceptance.

5. Conclusions

This study demonstrated that the most significant predictors for 90-day mortality
after burn surgery are percentage of burned TBSA, RDW, and age, using machine learning
techniques. The RF algorithm showed the best performance for predicting mortality among
the machine learning models evaluated. Pairwise comparisons demonstrated that RF
showed no statistical difference with AB. However, comparisons between RF and DT, SVM,
or LGR showed a significant difference. Further investigation in the future on a larger cohort
with composite factors may help support the validity of the machine learning models.
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