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The incidence of Kaposi’s sarcoma-associated herpesvirus (KSHV)-associated Kaposi
Sarcoma has declined precipitously in the present era of effective HIV treatment. However,
KSHV-associated lymphoproliferative disorders although rare, have not seen a similar
decline. Lymphoma is now a leading cause of death in people living with HIV (PLWH),
indicating that the immune reconstitution provided by antiretroviral therapy is not sufficient
to fully correct the lymphomagenic immune dysregulation perpetrated by HIV infection. As
such, novel insights into the mechanisms of KSHV-mediated pathogenesis in the immune
compartment are urgently needed in order to develop novel therapeutics aimed at
prevention and treatment of KSHV-associated lymphoproliferations. In this review, we
will discuss our current understanding of KSHV molecular virology in the lymphocyte
compartment, concentrating on studies which explore mechanisms unique to infection in
B lymphocytes.
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INTRODUCTION

KSHV (HHV8) belongs to the gamma-herpesvirus family and is associated with both lymphoid and
non-lymphoid cell tumors in humans (Chang et al., 1994). KSHV-associated malignancies occur
primarily in the context of immunodeficiency. KSHV is the etiologic agent of Kaposi’s sarcoma, as
well as the B cell lymphoproliferative disorders, primary effusion lymphoma (PEL), and multicentric
castleman disease (MCD) (Chang et al., 1994; Cesarman et al., 1995) as well as the recently
discovered KSHV inflammatory cytokine syndrome (KICS) (Uldrick et al., 2010).

Despite nearly three decades of research, not much is known regarding the early stages of
development for KSHV lymphoproliferative disorders and the person-to-person transmission of
KSHV. This can be partly explained by the host range limitation and broad in vitro cellular tropism
of KSHV (Blackbourn et al., 2000; Bechtel et al., 2003). During the latent phase of infection, viral
gene expression is limited and KSHV is maintained as an extrachromosomal episome; persisting for
the lifetime of the individual (Ueda, 2018). Like other herpesviruses, KSHV can become lytic under
some physiological conditions (Grundhoff and Ganem, 2004; Li et al., 2014; Johnston et al., 2019;
Wei et al., 2019). The process by which the lytic switch occurs and the relative contributions of
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lytic/latent phases to KSHV persistence are poorly understood.
This is partly because expression and activity of the KSHV
regulatory proteins appear to be cell type and tissue-specific
and in vivo niches for persistence in humans remain poorly
characterized (Rivas et al., 2001; Koch et al., 2019). There are
significant gaps in our understanding of how KSHV targets B
cells for infection and how the virus manipulates B cell
physiology in the development of PEL and MCD (Figure 1).
Further study of KSHV molecular virology in the lymphocyte
compartment is needed to understand the pathogenesis
of KSHV-associated lymphoproliferation so that effective
treatment paradigms can be developed. In this review, we
explore our current understanding of KSHV biology in B cells
concentrating on studies which use de novo infection of human B
cells, analysis of patient samples from KSHV lymphoproliferative
disease, and relevant lymphoma cell lines. We have intentionally
omitted discussion of KSHVmanipulation of cytokine expression
and signaling from this work as it is complex, and we have
recently reviewed the topic comprehensively elsewhere (Alomari
and Totonchy, 2020). Moreover, we have omitted discussion of
humanized mouse models for KSHV infection as they have also
been reviewed very recently (Münz, 2020).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
B LYMPHOCYTE-SPECIFIC MOLECULAR
VIROLOGY OF KAPOSI’S SARCOMA-
ASSOCIATED HERPESVIRUS
Entry Into B Cells
HHV-8 DNA is detectable in the B cells from both HIV+ and
HIV-PEL and MCD cases (Dupin et al., 1999). Interestingly,
KSHV isolated from EBV+PEL cells is able to infect B cells from
seronegative patients (Mesri et al., 1996). Phylogenetic analysis
and the association of KSHV infection with pathological
lymphoproliferations are sufficient to characterize KSHV as a
lymphotropic gamma-herpesvirus. However, primary B cells and
B lymphoma cell lines show poor susceptibility to KSHV infection
in vitro compared to adherent cell lines (Bechtel et al., 2003). The
extensive in vitro susceptibility of adherent cell lines can partly be
explained by the presence of various cellular receptors used by the
viral glycoproteins for attachment and entry (Akula et al., 2001a;
Akula et al., 2001b; Akula et al., 2002; Rappocciolo et al., 2008;
Hahn et al., 2009; Chen et al., 2019; Großkopf et al., 2019;
Muniraju et al., 2019)

KSHV virion attachment to adherent cells can be facilitated
through heparan sulfate proteoglycans on the host cell surface
FIGURE 1 | Schematic of early infection events for KSHV in B lymphocytes highlighting some of the significant questions that remain unanswered in the field.
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(Akula et al., 2001a), and the low in vitro susceptibility of B cells
has been attributed to a lack of HS expression. This theory is
supported by the observation that restoration of cell surface HS
in B cell lines results in increased susceptibility to infection
(Jarousse et al., 2008; Jarousse et al., 2011; Dollery et al., 2019).
The lectin DC-SIGN has also been implicated as an attachment
factor for KSHV entry into B cells. Approximately, 8% of CD19
+CD20+ peripheral blood B cells and 26% of tonsillar B cells are
positive for DC-SIGN, and activation of peripheral blood B cells
with IL-4 and CD40L results in 3 to 3.5 fold increase in DC-SIGN
and CD23 expression (Rappocciolo et al., 2006). Activated B cells
are more susceptible to KSHV infection and KSHV infected B
cells show increased DC-SIGN levels compared to uninfected
cells (Rappocciolo et al., 2008). Interestingly, B cells expressing
DC-SIGN can bind and transfer HIV-1 virions to T cells
(Rappocciolo et al., 2006). Taken together, these observations
suggest that KSHV and HIV infections act synergistically. KSHV
infection of B cells can facilitate the dissemination of HIV-1 to
CD4+ T cells via upregulation of B cell DC-SIGN expression,
and HIV, in turn, depletes the CD4+ T cell pool creating an
immunological milieu in which KSHV benefits from the lack of
immune surveillance.

KSHV encodes a variety of glycoproteins which facilitate
virion attachment, fusion, and viral entry into the host cell.
Among the various KSHV glycoproteins, gH/gL complex is
proved to be the major antigenic determinant of KSHV-specific
nAbs in the plasma of KS patients regardless of their disease status
(Mortazavi et al., 2020), suggesting that this complex is critical for
virus entry. Binding of gH/gL glycoprotein complex to the surface
is not well characterized, but it is not HSPG-dependent (Hahn
et al., 2009). KSHV entry into the BJAB cell line has been linked to
gH/gL binding to EphA7 (Großkopf et al., 2019). Eph4 also binds
to gH/gL, and is expressed in B cells, endothelial, fibroblast, and
epithelial cells (Chen et al., 2019). In HEK293T cells, Eph4 binds
more tightly with gH/gL than Eph2 (Chen et al., 2019). RNA
sequencing data shows that B cells express Eph4 on their cell
surface, albeit not as abundant as endothelial cells but higher than
epithelial cells (Chen et al., 2019). Thus, it is possible that gH/gL
complex can establish interaction with Eph4 in B cells, since
B cells may have almost the same level of Eph4 as HEK293
(epithelial cells) on their surface. However, use of Eph4 as a
KSHV entry receptor for B cells has not been studied specifically.
Interestingly, the MC116 lymphoma cell line expresses both
EphA7 and Eph4, and is susceptible to KSHV infection, but
studies with a KSHV mutant lacking gH demonstrated that
KSHV entry into MC116 cells is not dependent upon gH/gL
(Muniraju et al., 2019). This study, in particular, highlights the
significant gaps in our understanding of the molecular virology of
KSHV entry into B cells.

Another study showed that K8.1A is required for KSHV
infection of both MC116 and CD20+CD3− B cells from tonsil.
The cellular receptor interacting with K8.1A in this context is not
known, but it is independent of HS binding (Dollery et al., 2019).
Finally, the KSHV glycoprotein gB, which is presumed to be the
KSHV fusion protein, binds to DC-SIGN in situ in dose
dependent manner (Hensler et al., 2014), but whether this
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
interaction is essential for KSHV entry into B cells has not been
formally studied. xCT, the light chain has been shown to be
involved in KSHV fusion and entry in several cell lines. Although,
its mRNA expression is undetectable in CD19+ PBMCs (Kaleeba
and Berger, 2006a; Kaleeba and Berger, 2006b) xCT is highly
expressed on the surface of PEL cell lines and targeting it by xCT
selective inhibitor, induces apoptosis in caspase dependent
manner. Selective inhibition of xCT in immune deficient mouse
xenograft model proves that it plays key role in tumor
progression, survival, and growth of PEL cells (Dai et al., 2014).
The expression of xCT can be induced by KSHV miRNAs
conferring permissiveness to KSHV in murine microphages
and HUVEC cells. Additionally, the expression of xCT within
the KS lesion is correlated with the tumor stage (Qin et al.,
2010).Whether KSHV miRNAs and change in redox balance
contribute to upregulation of xCT in primary B cells to increase
the KSHV permissiveness, remains to be answered.

To date, no comprehensive studies been done on primary
human B cells samples to elucidate the cellular receptors involved
in KSHV entry into B lymphocytes or the individual and
collective contributions of KSHV glycoproteins to this process.
Further studies are needed to determine these important
interactions to facilitate the rational design of vaccine strategies
that will effectively limit the establishment of infection in the
lymphocyte compartment.

Manipulation of the Cell Cycle
KSHV can establish latent infection in many adherent cell lines,
including human and non-human cells of epithelial, endothelial,
and mesenchymal origin (Bechtel et al., 2003). Previous studies
in primary human B cells report that infection is lytic,
particularly in the absence of T cells, but what controls the
lytic switch in these cells remains to be established (Myoung and
Ganem, 2011a). In addition to T cell control of latency, B cell
immunophenotype and activation state have been implicated as
factors influencing the lytic/latent balance in B cells (Rappocciolo
et al., 2008; Hassman et al., 2011; Myoung and Ganem, 2011a), as
well as the immunological status of the individual and the
presence of other pathogens (Gregory et al., 2009).

Although the latent phase of infection allows viral persistence
and immune-evasion, the production of viral progeny and viral
transmission and spread between the cells, depends on the lytic
phase. De novo infected PBMCs exhibit simultaneous expression
of numerous latent and lytic markers at the very beginning of the
infection (Purushothaman et al., 2015). This short lytic
replication seems to be a prerequisite for the establishment of
the latent phase in PBMCs infected with EBV (Halder et al.,
2009). Nevertheless, the lytic gene expression is not required for
KSHV infection of PBMCs before or after EBV infection or
mitogenic activation (Faure et al., 2019). Do B cells represent a
significant source of KSHV virions during human infection? The
early lytic gene K8 (K-bZIP), a cell cycle regulator showing
homology to EBV’ Zta, is required for viral lytic DNA replication
and virion production in PEL cell lines (Wu et al., 2002; Lefort
and Flamand, 2009). Its expression concurs with augmented C/
EBPa, p21 and p27 in the nucleus, causing the cell arrest in G1
December 2020 | Volume 10 | Article 607663
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phase (Wu et al., 2002; Izumiya et al., 2003a). This prolonged G1
arrest is as a result of K8 binding to CKD2, interfering its kinase
activity, giving ample time for viral early gene transcription and
translation (Izumiya et al., 2003a). K8 also interacts with p53
inhibiting its transcription, preventing apoptosis (Park et al.,
2000). However, in another study by Hollingworth et al., lytic
replication in PEL cells was shown to require S phase entry
(Hollingworth et al., 2020). Replication and transcription
activator (RTA) is a protein encoded by ORF8 has been shown
to co-localize with K8 within the nucleus of the PEL cells, and its
association with the K8 (Izumiya et al., 2003b) can initiate lytic
reactivation from latency by binding to a particular sequence on
the host and viral DNA further modulating the transcription of
viral and host regulatory genes throughout KSHV lytic
reactivation (Kaul et al., 2019). Viral DNA replication is
controlled by both transcriptional coactivator p300 and CBP.
P300 was shown to be involved in the oncogenesis of PEL by
driving B cell proliferation and inhibiting KSHV lytic replication.
Knockout of p300 in PEL cells decreased KSHV genome copy
number and virion production by suppressing lytic gene
expression, possibly maintaining the latency of KSHV via
binding with ATF3 (Sun et al., 2020). Nonsense-mediated
mRNA decay (NMD) is an RNA quality control implemented
by the cells to restrict the action of the RNA viruses and serve
cellular quality control. Interestingly, viral RTA’ mRNA is
targeted by NMD, impeding KSHV lytic reactivation in PEL
cells (Zhao et al., 2020). However, KSHVhas evolved to overcome
some of these quality controls and exonuclease activities by
circularizing its structural and regulatory RNAs incorporated
into the virions (Abere et al., 2020). Taken together, the current
literature demonstrates that multiple layers of both viral and
cellular regulation influence KSHV latency and lytic reactivation
in B cells. It is notable thatmost of this work has been done in PEL
cells, and future studies investigating how KSHVmanipulates the
cell cycle and cell type specific control of latency and reactivation
in primary B lymphocytes will be critical for understanding early
events in KSHV infection and pathogenesis of KSHV-associated
lymphoproliferative diseases.

Kaposi’s Sarcoma-Associated Herpesvirus
Immune Evasion
KSHV infection persists for the lifetime of the host and, like
all herpesviruses, KSHV must have an arsenal of mechanisms
for evading host immunity in order to accomplish this.
Lymphotropic gamma-herpesviruses are particularly interesting
in this regard because they can manipulate and evade the host
immune system via mechanisms that require direct infection of
immune cells. Moreover, the inflammatory nature of KSHV-
associated malignancies indicates that KSHV immune-evasion
mechanisms may also directly contribute to pathogenesis in
KSHV-associated diseases. Indeed, this immune-evasion is
manifested at the transcriptional level within the first few
hours of infection, by hampering the expression of immune
response genes and inducing the proapoptotic regulators in
BJAB cells (Naranatt et al., 2004). KSHV can infect both B and
T cells in tonsil primary cell culture, however evidence suggests
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
that infection of T cells is abortive (Myoung and Ganem, 2011b).
Moreover, there is reciprocal activation of T cells by KSHV-
infected B cells and contact-dependent control of KSHV lytic
reactivation by T cells in ex vivo tonsil cultures, and in this
system the activation of T cells is independent of both KSHV
antigen and MHC restriction (Myoung and Ganem, 2011a).

Activated, KSHV infected B lymphocytes from PBMC and
tonsils show downregulation of MHC class I (HLA-A, HLA-B,
and HLA-C) within 24 h of infection as well as decreased
expression of CD20 (Rappocciolo et al., 2008). Modulation of
MHC class I expression is also observed in PEL derived B cell-
lines and is thought to be partially due to reduced expression of
the TAP-1 gene. Importantly, this MHC-I modulation can
disrupt cytotoxic T lymphocyte surveillance of KSHV infected
cells (Brander et al., 2000), aiding in KSHV persistence and
tumorigenesis in B cells. The CD20 low phenotype of KSHV
infected cells is also present in MCD and may limit B cell-
targeted treatment options for MCD patients. However, these
patients still show clinical benefit from rituximab (an anti-CD20
monoclonal antibody) treatment (Naresh et al., 2009).

KSHV encodes four viral interferon regulatory factors (vIRFs).
These proteins have minimal homology to human IRFs, but
vIRF1, vIRF2, and vIRF3 are known to bind DNA elements
similar to their human IRF counterparts (Lubyova and Pitha,
2000; Park et al., 2007; Hu et al., 2016) vIRFs exert their regulatory
role at varying levels ranging from hampering the antiviral
interferon response to inhibition of signaling pathways to
control the function of cellular proteins, thereby interfering
with the cellular processes such as apoptosis (Rivas et al., 2001;
Nakamura et al., 2001; Lee et al., 2009) proliferation and
angiogenesis (Wies et al., 2008; Li et al., 2019; Li et al., 2020)
vIRF3 (LANA-2) expression is detected in nearly all virus infected
cells in PEL andMCD tumors, and vIRF3 is a bona fide oncogene
which can inhibit the function of p53. Moreover, among the
KSHV vIRFs, the function of vIRF3 is thought to be B cell-
specific. Interestingly, the expression level of vIRF3 does not
fluctuate even after lytic reactivation (Rivas et al., 2001),
suggesting that there is an alternative level of regulation driving
vIRF3 expression in B cells. In latently infected PEL cell lines,
vIRF3 is linked to decreased MHC-II expression, and vIRF3 also
modulates both type II (Schmidt et al., 2011) and type I interferon
responses (Lubyova et al., 2004). vIRF3-mediated inhibiton of
IFNg results in inhibition of both PIII and PIV promoter of class
II transactivator (CIITA) transcription (Schmidt et al., 2011).
Importantly, vIRF3 is required for the survival of both EBV co-
infected and EBV negative B cell lymphomas in vitro (Wies
et al., 2008).

Kaposi’s Sarcoma-Associated Herpesvirus
Modulation of B Cell Phenotypes
The Proliferation and Plasmablast Differentiation
PEL is an immunoblastic tumor affecting the pericardial or pleural
area of the body cavities. PEL tumor cells are negative for most B cell
surface markers except CD138/syndecan, a marker of terminal
plasma cell differentiation (Jenner et al., 2003). These terminally
differentiated CD138+CD20+ and CD20− plasma cells are highly
December 2020 | Volume 10 | Article 607663
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targeted by KSHV infection in primary B cells of tonsillar sample,
gaining greater survival rate for CD20− cells over 3 days post
infection. This indirect survival effect is as a result of differentiation
of other B cell lineages into the CD138+ cells (Aalam et al., 2020).
Interestingly, more than 60% of the KSHV infected B cells from
PBMCs of KS positive patients are positive for CD138 (Bella et al.,
2010). In MCD, the pathological cells are monotypic/polyclonal
plasmablasts located in the mantle zone of spleen and lymph nodes
(Du et al., 2001). These cells express PRDM1 / BLIMP1 marking
them as pre-plasma or terminal plasma stage of B-cell
differentiation (Chadburn et al., 2008). Most of KSHV infected B
cells in MCD patients express IL-6 (Du et al., 2001), and the
importance of IL-6 signaling in MCD is illustrated by the finding
that tocilizumab (an IL-6R blocking monoclonal antibody) can
ameliorate the symptoms or even lead to prolonged remission in
some MCD cases (Song et al., 2010; Galeotti et al., 2012;
Ramaswami et al., 2020). In ex vivo infection models, particularly
those performed in tonsillar B lymphocytes, the immunophenotype
of infected cells closely resembles the pathological cells present in
MCD (Du et al., 2001; Chadburn et al., 2008; Totonchy et al., 2018).
Latently KSHV infected B cells from the tonsil (characterized by
LANAdots), proliferate, and express a high level of IL-6R and CD27
on their surface exhibiting plasma blast morphology at 72 h post-
infection (Hassman et al., 2011). Similarly, KSHV infection of
naïve B lymphocytes from human tonsil upregulates IL-6
secretion as well as CD27 expression (Totonchy et al., 2018). Ex
vivo infection of activated peripheral blood B cells expressing
DC-SIGN results in infection of primarily naive and IgMmemory
B cells at early times post-infection (Rappocciolo et al., 2008).
Remarkably, a similar expansion of MZ-like memory and naive
B cells is seen in PBMC from HIV negative KS patients (Bella
et al., 2010). Taken together, the concordance between pre-disease
immunophenotypes, ex vivo infection immunophenotypes and
the phenotypes seen in KSHV lymphoproliferative diseases
suggests that KSHV infection manipulates the B cell
compartment toward particular immunophenotypes even in the
absence of overt KSHV-associated lymphoproliferation.

Induction of Immunoglobulin Light Chain Revision
One of the more puzzling characteristics of MCD is the fact that
KSHV infection is restricted to Igl positive B lymphocytes in
patient samples (Du et al., 2001). The same restriction is observed
in KSHV infected B lymphocytes derived from tonsil samples
(Hassman et al., 2011). Moreover, in PEL, most infected B cells
are lg negative with occasional Igl positive B cells (Matolcsy et al.,
1998). Our group was able to show that KSHV infection in Igk
tonsil lymphocytes induces Igl expression via re-induction of V(D)J
recombination driving BCR revision. These cells express LANA,
K8.1 and ORF59 markers, indicating a mixed population of
lymphocytes in latent and lytic stages of infection (Totonchy
et al., 2018). The same study also detects the Igl+ KSHV infected
cells in biopsies of HIV positive patients with AIDS-related
lymphadenopathy (ARL) having no histologically similar
characteristics of MCD, again supporting the conclusion that
KSHV manipulates B cell physiology even in the absence of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
KSHV-associated lymphoproliferative disease and establishing
that the Igl+ phenotype in MCD is driven directly by KSHV
infection. Further study is needed to characterize the intervening
events that drive KSHV infected B cells from these early
manipulations of B cell phenotype and physiology to overt
pathological lymphoproliferation.
DISCUSSION

KSHV has been co-evolving within the human immune system
for thousands of years, and it has developed a plethora of
mechanisms for manipulating both B cell physiology and
overall immunology which are just beginning to be understood.
In recent years, progress on this has been accelerated by new
models allowing efficient infection of tonsil-derived primary B
cells (Kang and Myoung, 2017). Some of these primary human
samples can last up to 10 days, giving ample time to explore the
early infection events. One of the hurdle of studying human
primary B cell is their limited survival and difficulty of
immortalizing them. In the study by Faure et al. (2019), they
could achieve up to 20 fold increase in KSHV infection of
peripheral B cells co-infected with EBV. These cells were best
infected when exposed to KSHVwithin 24 h of EBV infection and
could survive for months under culture conditions. In our recent
paper (Aalam et al., 2020), we have generated a library of 40 tonsil
specimen and included detailed B cell subtype analysis and de
novo infection model. The samples exhibited diverse range of
susceptibilities and determined varieties of B cells are susceptible
to KSHV infection with CD138+ cells being highly targeted
population. However, detailed infection analysis on what drives
the susceptibility on these samples are missing as is information
about the contributions of cellular and viral genes as well as the
immunological milieu to the emergence of pathological
lymphoproliferation. While, adherent cells and B cell lines are
extensively used for their convenience and ease of manipulation,
confirming the same findings within the human primary cells
should not be overlooked. Therefore, more systematic and
detailed studies are required to evaluate KSHV molecular
virology in primary B cells to decode the dynamics of KSHV
pathology in the lymphocyte compartment.
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