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ABSTRACT
Aims/Introduction: Recent studies advocate that omega-3 polyunsaturated fatty acids
(x-3 PUFAs) have direct anti-oxidative and anti-inflammatory effects in the vasculature;
however, the role of x-3 PUFAs in Schwann cells remains undetermined.
Materials and methods: Immortalized mouse Schwann (IMS32) cells were incubated
with the x-3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). The
messenger ribonucleic acid levels of several anti-oxidant enzymes (heme oxygenase-1
[Ho-1], nicotinamide adenine dinucleotide [phosphate] H quinone oxidoreductase 1, cata-
lase, superoxide dismutase and glutathione peroxidase) were identified using real-time
reverse transcription polymerase chain reaction. Ho-1 and nicotinamide adenine dinu-
cleotide [phosphate] H quinone oxidoreductase 1 protein levels were evaluated using
Western blotting. Nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) of the nuclear
fraction was also quantified using western blotting. Catalase activity and glutathione con-
tent were determined by colorimetric assay kits. Nrf2 promoter-luciferase activity was eval-
uated by a dual luciferase assay system.
Results: Treatment with tert-butyl hydroperoxide decreased cell viability dose-depen-
dently. DHA or EPA pretreatment significantly alleviated tert-butyl hydroperoxide-induced
cytotoxicity. DHA or EPA increased the messenger ribonucleic acid levels of Ho-1, nicoti-
namide adenine dinucleotide (phosphate) H quinone oxidoreductase 1 and catalase dose-
dependently. Ho-1 protein level, catalase activity, Nrf2 promoter-luciferase activity and
intracellular glutathione content were significantly increased by DHA and EPA.
Conclusions: These findings show that DHA and EPA can induce Ho-1 and catalase
through Nrf2, thus protecting Schwann cells against oxidative stress. x-3 PUFAs appear to
exert their neuroprotective effect by increasing defense mechanisms against oxidative
stress in diabetic neuropathies.

INTRODUCTION
Diabetic peripheral neuropathies, which are the most prevalent
chronic complications that affect patients with diabetes,
decrease quality of life and increase morbidity1. The metabolic
mechanisms responsible for diabetic complications as a result
of hyperglycemia include oxidative stress upregulation2, protein

kinase C abnormalities3, non-enzymatic glycation endproduct
increase4 and polyol pathway hyperactivity5. Oxidative stress is
specifically considered the final common pathway of cellular
injury in hyperglycemic conditions6.
Reportedly, omega-3 polyunsaturated fatty acids (x-3

PUFAs), such as docosahexaenoic acid (DHA) and eicosapen-
taenoic acid (EPA) occurring in fish oil, decreased cardiovas-
cular events in clinical studies of Eskimos7. Recent large-scaleReceived 14 February 2018; revised 9 August 2018; accepted 9 September 2018
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studies also reported that x-3 PUFAs reduce the risk of car-
diovascular disease8,9. Several studies have shown that x-3
PUFAs have anti-inflammatory10,11 and anti-oxidant effects12.
DHA upregulates anti-oxidant enzymes in human umbilical
vein endothelial cells (HUVECs)13, and both DHA and EPA
can prevent H2O2-induced cytotoxicity in 3T3-L1 adipocytes14.
Furthermore, there is evidence that DHA and EPA can
decrease oxidative stress in patients with type 2 diabetes15.
Despite interest in the anti-oxidative actions of x-3 PUFAs,
their effects on neural cells, such as Schwann cells, have not
been elucidated.
Nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2)

exerts significant cytoprotective effects on oxidative stress
through the Nrf2–anti-oxidant response element (ARE) path-
way16,17. Nrf2 pathway activation initiates the transcriptional
regulation of ARE-dependent expression of diverse anti-oxi-
dants and phase II detoxification enzymes, including heme oxy-
genase-1 (Ho-1) and nicotinamide adenine dinucleotide
(phosphate) H quinone oxidoreductase 1 (Nqo1)18. Further-
more, the overexpression of Nrf2 reportedly inhibits apoptosis
that is induced by high glucose in Schwann cells, and the trans-
plantation of Nrf2-overexpressing Schwann cells can recover
nerve functions in diabetic animals19. Therefore, Nrf2 has
become a therapeutic target in diabetic peripheral neuropathy.
Schwann cells are glial cells of the peripheral nervous sys-

tem, and support neurons and maintain the structural and
functional integrity of nerves. In diabetes, Schwann cells them-
selves undergo hyperglycemic insults20 and the supporting
function is disrupted, which results in peripheral nerve dys-
functions21,22. The disruption of Schwann cell mitochondrial
function in connection with glial support can cause primary
neuronal degeneration, indicating that Schwann cell dysfunc-
tion has direct effects on neuronal function23. Thus, Schwann
cells and its cell line, such as immortalized mouse Schwann
(IMS32) cells, are extensively applied for in vitro models of
diabetic neuropathy20,24.
We investigated whether x-3 PUFAs might induce the

expression of the anti-oxidant enzymes through the Nrf2 path-
way and suppress the oxidative stress-induced Schwann cell
death.

METHODS
The present study was an in vitro study and ethics approval
was unnecessary.

Reagents
Bovine serum albumin (BSA) was obtained from BBI Solutions
(Cardiff, UK). DHA, EPA and catalase assay kits were pur-
chased from Cayman (Ann Arbor, MI, USA). Low-glucose
Dulbecco’s modified Eagle’s medium, tert-butyl hydroperoxide
(tBHP) and MTT were purchased from Sigma-Aldrich (St.
Louis, MO, USA). Fetal bovine serum was purchased from
Gibco (Poisley, UK). Anti-Ho-1 antibody was purchased from
Assay Design (Ann Arbor, MI, USA). Anti-Nqo1 antibody was

obtained from Abcam (Cambridge, UK). Anti-Nrf2 antibody,
anti-b-actin and anti-lamin A/C antibodies were obtained from
Santa Cruz Biotechnology (Santa Cruz, CA, USA). The glu-
tathione assay kit was purchased from OxisResearch (Foster
City, CA, USA). CellROX Deep Red reagent was purchased
from Invitrogen (Carlsbad, CA). Other reagents and chemicals
were obtained from standard suppliers.

Cell culture
Immortalized mouse Schwann (IMS32) cells were willingly pro-
vided by Professor Kazuhiko Watabe (Kyorin University,
Tokyo, Japan). IMS32 cells were cultured in low-glucose Dul-
becco’s modified Eagle’s medium containing 5% fetal bovine
serum at 37°C in 5% CO2/95% air.

Fatty acid preparation
DHA and EPA were separately prepared as complexes with
BSA. DHA and EPA (75 lmol/L) were dissolved in ethanol
and gradually solubilized in 2.6 mmol/L fatty acid-free BSA
solution. BSA-conjugated fatty acids were lysed in Dulbecco’s
modified Eagle’s medium at the final desired concentrations.

MTT assay
IMS32 cells were cultured in 96-well plates. To identify the
effects of DHA and EPA on tBHP-induced cytotoxicity, the
cells were exposed to DHA (2.5–25 lmol/L) or EPA (2.5–
25 lmol/L) for 16 h, followed by incubation with 50 lmol/L
tBHP for 6 h. Cell viability was measured by conventional
MTT assay25. Cells were treated with 0.5 mg/mL MTT in the
medium for 3 h. The medium was then discarded, the for-
mazan product was solubilized by dimethyl sulfoxide and the
absorbance at 570 nm was determined using a microplate
reader. Values are presented as percentages of cell survival.
Absorbance of the control cells was set at 100%.

Quantitative real-time reverse transcription polymerase chain
reaction
Total RNA was prepared using the Nucleospin RNA kit
(Macherey-Nagel GmbH & Co., KG D€uren, Germany). Single-
stranded complementary deoxyribonucleic acid was prepared
from 0.5 lg total ribonucleic acid (RNA) using the PrimeScript
RT reagent kit (Takara Bio, Shiga, Japan). Quantitative analyses
of heme oxygenase-1 (Ho-1), nicotinamide adenine dinucleotide
[phosphate] H quinone oxidoreductase 1 (Nqo1), catalase (Cat),
superoxide dismutase (Sod) and glutathione peroxidase (Gpx)
messenger RNAs (mRNAs) were carried out using real-time
reverse transcription polymerase chain reaction with the Takara
Dice thermal cycler (Takara Bio, Shiga, Japan). The primer pair
sequences were as follows: mouse Ho-1, 50-CCTCACTGGCAG-
GAAATCATC-30 and 50-CCTCGTGGAGACGCTTTACATA-
30; mouse Nqo1, 50-TATCCTTCCGAGTCATCTCTAGCA-30

and 50-TCTGCAGCTTCCAGCTTCTT-30; mouse Cat, 50-GA
ACGAGGAGGAGAGGAAAC-30 and 50-TGAAATTCTTGAC
CGCTTTC-30; mouse Sod, 50-CAATGGTGGGGGACATATT
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A-30 and 50-TTGATAGCCTCCAGCAACTC-30; mouse Gpx,
50-ACATTCCCAGTCATTCTACC-30 and 50-TTCAAGCAGG-
CAGATACG-30; and mouse glyceraldehyde 3-phosphate dehy-
drogenase (Gapdh), 50-AACTTTGGCATTGTGGAAGG-30 and
50-GGATGCAGGGATGATGTTCT-30. Relative quantities were
calculated by the 2(-DDCt) method26.

Western blotting
Whole-cell lysates from IMS32 cells were extracted in radioim-
munoprecipitation assay buffer containing protease inhibitors
(Sigma-Aldrich). Nuclear and cytoplasmic proteins were
extracted using NE-PERTM Nuclear and Cytoplasmic Extraction
Reagents (Thermo Scientific, Rockford, IL, USA). An equal
amount of the proteins was loaded, separated by sodium dode-
cyl sulfate-polyacrylamide gel electrophoresis and transferred to
a polyvinylidene difluoride membrane (Millipore Company,
Bedford, MA, USA). The membranes were incubated with
anti-Ho-1, anti-Nqo1, anti-Nrf2, anti-b-actin or anti-lamin
A/C, followed by horseradish peroxidase-conjugated second
antibody (GE Healthcare, Buckinghamshire, UK) and detected
using ECL Prime (GE Healthcare). To quantify the relative
Ho-1, Nqo1, Nrf2, b-actin and lamin A/C protein levels,
stained band intensity was determined using ImageJ soft-
ware (developed at the National Institutes of Health, Bethesda,
MD, USA).

Assessment of cat activity
Cat activity was determined using a catalase assay kit
(Cayman), according to the instructions.

Intracellular glutathione and glutathione disulfide
Glutathione (GSH) and glutathione disulfide (GSSG) content
were determined using a Bioxytech GSH/GSSG-412 colorimet-
ric assay kit (OxisResearch), according to the instructions.

Measurement of reactive oxygen species
Reactive oxygen species were determined using CellROX Deep
Red reagent (Invitrogen) according to the manufacturer’s
instructions.

Cell transfection and luciferase assay
The ARE-luciferase reporter plasmid (pNL[NlucP/ARE/Hygro])
was purchased from Promega (Madison, WI, USA). Cells were
cotransfected with 0.2 lg of luciferase expression plasmid and
0.05 lg of pGL 4.53 (luc2/PGK) plasmid (Promega) using
Lipofectamine 3000 (Invitrogen, Carlsbad, CA) for 24 h to nor-
malize the transfection efficiency. Cells were then exposed to
DHA or EPA for 12 h, and Firefly and Renilla luciferase activi-
ties were measured by the Dual Luciferase Reporter assay sys-
tem (Promega).

Statistical analysis
Data are presented as the mean – standard error for the indi-
cated number of experiments. Statistical analyses were carried
out by one-way analysis of variance (ANOVA), and the Tukey–
Kramer correction for multiple comparisons. The statistical sig-
nificance of differences between the control (BSA only) and
DHA or EPA-treated cells was analyzed using one-way ANOVA

followed by Dunnett’s multiple-comparison test. P-values <0.05
were considered to show statistical significance.

RESULTS
Preventive effects of DHA and EPA on oxidative
stress-induced cytotoxicity
As x-3 PUFAs are known to exert anti-oxidant effects in
HUVECs13 and adipocytes14, we evaluated whether x-3 PUFAs
also have anti-oxidative effects in IMS32 cells. tBHP was used
to induce oxidative stress. Treatment with 5–50 lmol/L tBHP
for 6 h elicited cell toxicity in a dose-dependent manner
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Figure 1 | Pre-emptive effects of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on the oxidative stress-induced cytotoxicity in
immortalized mouse Schwann (IMS32) cells. (a) IMS32 cells were cultured with the indicated concentrations of tert-butyl hydroperoxide (tBHP) for
6 h. IMS32 cells were pretreated with the indicated (b) DHA or (c) EPA concentration for 16 h, followed by stimulation with 50 μmol/L tBHP for
6 h. Cell viability was determined by the MTT assay. Each value represents the mean – standard error of six experiments. **P < 0.01 compared
with the tBHP-untreated bovine serum albumin (BSA); ##P < 0.01 compared with the 50 μmol/L tBHP BSA control.
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(Figure 1a). The cytoprotective effects of DHA and EPA against
tBHP were investigated in IMS32 cells. DHA or EPA pretreat-
ment for 16 h significantly prevented tBHP-induced

cytotoxicity in a dose-dependent manner (Figure 1b,c; black
bars). Neither DHA nor EPA alone altered cell viability com-
pared with the BSA control (Figure 1b,c; white bars).
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Figure 2 | Dose-dependent effects of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on the messenger ribonucleic acid levels of
Ho-1, Nqo1 and Catalase in immortalized mouse Schwann (IMS32) cells. IMS32 cells were cultured with the indicated (a–e) DHA or (f–j) EPA
concentration for 6 h. Total ribonucleic acid was purified and quantified by real-time reverse transcription polymerase chain reaction. Each value
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Effects of DHA and EPA on anti-oxidant enzyme expression
We measured the mRNA levels of various anti-oxidant
enzymes to explore the protective mechanisms of DHA and
EPA against oxidative stress. Both DHA and EPA increased
the mRNA levels of Ho-1, Nqo1 and Cat in a dose-depen-
dent manner (Figure 2a–c,f–h); however, DHA and EPA
treatment did not have any effect on the mRNA levels of
Sod and Gpx (Figure 2d,e,i,j). The mRNA levels of Ho-1
increased maximally between 3 and 6 h after treatment with
7.5 lmol/L DHA (Figure 3a) or 25 lmol/L EPA (Figure 3b),

whereas the mRNA levels of Nqo1 and Cat showed
maximal increases at 12 h (Figure 3c–f). Furthermore, DHA
or EPA treatment for 12 h significantly enhanced Ho-1 pro-
tein levels (Figure 4a,b,d,e). Similarly, treatment with DHA
for 12–24 h significantly enhanced the Nqo1 protein level
(Figure 4a,c).

Effects of DHA and EPA on catalase activity
Because we previously reported that either DHA or EPA could
increase the mRNA levels of Cat, we then measured the
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Figure 3 | Time-dependent effects of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on the messenger ribonucleic acid levels of
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catalase activity in IMS32 cells. DHA or EPA treatment for
12 h significantly enhanced the catalase activity by 1.7- and
1.6-fold, respectively, compared with the controls (Figure 5).

Effects of DHA and EPA on redox homeostasis
As both DHA and EPA could induce anti-oxidant enzymes in
IMS32 cells, we measured the GSH and GSSG content to
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determine whether the protective effects of DHA and EPA were
involved in GSH metabolism. Figure 6a–c shows the intracellu-
lar GSH and GSSG content, and the GSH/GSSG ratio,

respectively. DHA or EPA treatment for 12 h significantly
enhanced the intracellular GSH content by 1.5- and 2.7-fold,
respectively, compared with the controls (Figure 6a); however,
the GSSG content remained unchanged after either DHA or
EPA treatment (Figure 6b). The GSH/GSSG ratio was
enhanced after either DHA or EPA treatment compared with
the controls (Figure 6c). Treatment with 50 lmol/L tBHP for
90 min significantly increased reactive oxygen species compared
with the BSA control. The increase in reactive oxygen species
by 50 lmol/L tBHP was suppressed by pretreatment with
7.5 lmol/L DHA or 25 lmol/L EPA for 16 h (Figure 6d).

Effects of DHA and EPA on Nrf2 activation
Nrf2 is a key transcription factor responsible for the upregula-
tion of anti-oxidant enzymes, including Ho-1, Nqo1 and Cat.
To investigate whether Nrf2 is activated by DHA or EPA, we
measured the ARE-luciferase activity and Nrf2 translocation
into nuclei in IMS32 cells. Luciferase activities induced by
DHA and EPA were evaluated by the ARE-luciferase expres-
sion plasmid in IMS32 cells. DHA and EPA significantly
increased the ARE-luciferase activities by 2.8- and 3.1-fold,
respectively, compared with the controls (Figure 7a). Nrf2
translocation into the nuclei was confirmed by western blot-
ting of the nuclear and cytosolic fractions. DHA or EPA
treatment for 3 and 6 h significantly increased Nrf2 in the
nuclear fraction (Figure 7b,d). Conversely, DHA or EPA treat-
ment for 3 and 6 h significantly decreased Nrf2 in the cytoso-
lic fraction (Figure 7c,e). These data suggest that DHA or
EPA can both increase Nrf2 nuclear translocation and that
Nrf2 binds to ARE.

DISCUSSION
In the present work, we showed that x-3 PUFAs exert anti-
oxidant effects on IMS32 cells. x-3 PUFAs stimulate Nrf2
translocation from the cytoplasm into the nucleus, where it
binds to ARE and initiates the expression of anti-oxidant
enzymes, including Ho-1, Nqo1 and Cat, in IMS32 cells. Fur-
thermore, we identified the preventive effects of x-3 PUFAs
against the oxidative stress-induced cell death. The present
findings are consistent with recent studies suggesting that the
anti-oxidant effects are induced by x-3 PUFAs in HUVECs13

and 3T3-L1 adipocytes14. x-3 PUFAs suppress inflammatory
responses by inhibiting the arachidonate cascade in neu-
trophils27, and the stimulation of the G protein-coupled recep-
tor 120 by DHA exerts anti-inflammatory effects in
macrophages28. Recent studies report the anti-oxidant effects of
4-hydroxy-2-hexanal (4-HHE), resolvin E1 and protectin D1,
which are intracellular metabolites of x-3 PUFAs13,29–33. We
also examined the effects of 4-HHE on the mRNA levels of
anti-oxidant enzymes and found that 4-HHE increased the
mRNA levels of Ho-1, Nqo-1 and Cat (data not shown).
Future studies should investigate whether x-3 PUFAs are
involved in the arachidonate cascade, the G protein-coupled
receptor 120 pathway or 4-HHE.
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Figure 6 | Anti-oxidant effects of docosahexaenoic acid (DHA) and
eicosapentaenoic acid (EPA) in immortalized mouse Schwann (IMS32)
cells. IMS32 cells were cultured with 7.5 μmol/L DHA or 25 μmol/L EPA
for 12 h. (a) Glutathione (GSH) content, (b) glutathione disulfide (GSSG)
contents and (c) the GSH/GSSG ratio were determined with a GSH
assay kit. Each value represents the mean – standard error of three
experiments. *P < 0.05, **P < 0.01 compared with each bovine serum
albumin (BSA) control. (d) Measurement of reactive oxygen species
(ROS) was determined using a fluorescence plate reader (Techan,
Germany) at excitation/emission of 630/670 nm. Each value represents
the mean – standard error of four experiments. *P < 0.05 compared
with each BSA control; ##P < 0.01 compared with the 50 μmol/L tert-
butyl hydroperoxide (tBHP) BSA control.
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DHA and EPA can induce the expression of the same anti-
oxidant enzymes, including Ho-1, Nqo1 and Cat; however,
DHA concentrations that induce the expression of these
enzymes differ from those of EPA (Figure 2). DHA increases
the mRNA levels of Ho-1, Nqo1 and Cat at 7.5 lmol/L. In
contrast, EPA increases only the mRNA levels of Cat at
7.5 lmol/L, whereas 25 lmol/L EPA is required to increase
that of Ho-1 and Nqo1. It has been suggested that DHA
induces anti-oxidant enzymes more potently than EPA. The
differences between DHA and EPA might result from differ-
ences in their metabolism14. Studies13,14 have reported that
DHA and EPA increase the mRNA levels of Ho-1 and Nqo1 in
HUVECs and 3T3-L1 cells, respectively; however, the increase
in the mRNA levels of Cat was confirmed in both cell types.
The present results showed that both DHA and EPA can
increase the mRNA levels of Cat, Ho-1 and Nqo1 in neural
cells. We suggest that differences in the induction of anti-oxi-
dant enzyme expression might depend on the cell or tissue type
being examined.
Both DHA and EPA can induce the expression of Ho-1

mRNA within 3 h, peaking at 6 h. Furthermore, the expres-
sion of Nqo1 mRNA was induced at 6 h and peaked at
12 h (Figure 3). In our results, mRNA time lapse and DHA
or EPA protein expression was different. As there are several
processes for transcription or translation, the time for tran-
scription or translation is known to vary34, and we speculate
that these processes differ between DHA and EPA. The time
required for x-3 PUFAs to be metabolized into 4-HHE
might have reportedly caused this time lag14. The different
induction times might be responsible for the difference in
timing of anti-oxidant effects after Nrf2/ARE pathway activa-
tion.
The present results showed that the levels of GSH, an anti-

oxidant, were increased by both DHA and EPA (Figure 6).
Glutathione was synthesized by glutamate cysteine ligase modi-
fier subunit (GCLM) and glutathione reductase (GR). Lee
et al.35 reported that DHA prevents cell death induced by para-
quat in dopaminergic SN4741 cells. These protective effects
against paraquat-induced oxidative stress suggest that DHA
increases the mRNA levels of GR and GCLM through Nrf2,
and enhances the accumulation of intracellular GSH35. We
found the same results for GCLM protein (data not shown).
Therefore, DHA and EPA increase GSH levels, possibly
enhancing their preventive effects against oxidative stress in
Schwann cells.
We showed that DHA and EPA increased ARE-luciferase

activity by 2.8- and 3.1-fold, respectively, compared with con-
trols (Figure 7). Ishikado et al.13 reported that DHA increased
ARE-luciferase activity by 50-fold in HUVECs; the extent of
the increase was much higher than that seen in the present
results. The difference in the extent of the ARE-luciferase activ-
ity induction might be due to low plasmid transfection effi-
ciency in neural cells. In the present study, DHA and EPA
both showed a weak induction of ARE-luciferase activity in

IMS32 cells; however, we confirmed that both DHA and EPA
can induce Nrf2 translocation, increase the mRNA levels of
Ho-1, Nqo1 and Cat, and stimulate Ho-1 protein levels. Collec-
tively, DHA and EPA exert anti-oxidant effects through the
Nrf2/ARE pathway in IMS32 cells.
Nerve conduction velocity and nerve blood flow can be

restored by DHA administration in diabetic rats36,37. DHA
entered the sciatic nerve in an in vivo study36. Additionally,
Na+, K+-ATPase activity of red blood cells was elevated by
DHA36. Recently, x-3 PUFAs supplementation for 12 months
was shown to increase the corneal nerve fiber length by 29% in
patients with type 1 diabetes38. We speculate that the induction
of anti-oxidant enzymes in neural cells contribute, at least
partly, to improving diabetic neuropathy observed in previous
studies.
Previously, DHA and EPA were used at high concentrations

(75–100 lmol/L)13,14,28. The maximum concentrations of a
single oral dose of 2 g ethyl x-3 fatty acid capsules (compris-
ing EPA and DHA) are as follows: 58.1 lg/mL EPA
(192 lmol/L) and 115.0 lg/mL DHA (350 lmol/L). In the
present study, 25 lmol/L EPA or 7.5 lmol/L DHA protected
neural cells from oxidative stress. The 25 lmol/L EPA and
7.5 lmol/L DHA doses used in the present study were
approximately 1/8 and 1/45 of the maximum concentrations
of a single oral dose of EPA and DHA capsules, respectively.
Therefore, DHA or EPA concentrations used in the present
study might be able to exert sufficient anti-oxidant effects in
peripheral nerves.
Diabetic neuropathy progresses through multiple mecha-

nisms, including oxidative stress upregulation39,40, protein
kinase C abnormalities41, increased non-enzymatic glycation
end-products42 and polyol pathway activation43. Of these,
oxidative stress is recognized as the most significant common
pathway of these pathogenic mechanisms6.
Hyperglycemia-enhanced oxidative stress is exacerbated by a

concomitant reduction in endogenous anti-oxidant defenses39.
Genetic variations and polymorphisms in endogenous anti-oxi-
dant enzymes are associated with an increased diabetic
neuropathy44,45. Thus, the enhancement of endogenous
anti-oxidant enzymes in nerve tissues might help prevent dia-
betic neuropathy.
In the present study, we showed that both DHA and EPA

can prevent cell death by inducing numerous anti-oxidants in
Schwann cells. The present findings suggest that the
enhancement of anti-oxidative defenses facilitated by x-3
PUFAs might have clinical values in diabetic neuropathy
treatment.
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