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Abstract

Metabolism expresses the phenotype of living cells and understanding it is crucial for different applications in
biotechnology and health. With the increasing availability of metabolomic, proteomic and, to a larger extent, transcriptomic
data, the elucidation of specific metabolic properties in different scenarios and cell types is a key topic in systems biology.
Despite the potential of the elementary flux mode (EFM) concept for this purpose, its use has been limited so far, mainly
because their computation has been infeasible for genome-scale metabolic networks. In a recent work, we determined a
subset of EFMs in human metabolism and proposed a new protocol to integrate gene expression data, spotting key
’characteristic EFMs’ in different scenarios. Our approach was successfully applied to identify metabolic differences among
several human healthy tissues. In this article, we evaluated the performance of our approach in clinically interesting
situation. In particular, we identified key EFMs and metabolites in adenocarcinoma and squamous-cell carcinoma subtypes
of non-small cell lung cancers. Results are consistent with previous knowledge of these major subtypes of lung cancer in the
medical literature. Therefore, this work constitutes the starting point to establish a new methodology that could lead to
distinguish key metabolic processes among different clinical outcomes.
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Introduction

Lung cancer is the most common cancer worldwide both in

terms of cases and deaths and its highest incidence rates belong to

Europe and North America [1]. With the advent of -omics data,

much effort has been made to identify mutations and oncogenes in

different lung cancer subtypes, aiming to develop more effective

treatments. However, prognosis is still poor and further research is

required to elucidate novel biomarkers and treatments that

improve clinical outcomes [2].

In this context, the study of metabolic processes in cancer is

currently a hot topic, as we have an increasing evidence of its re-

programming. Apart from glucose metabolism, the so-called

Warburg effect, alterations have been reported in the synthesis

of nucleotides, amino acids and lipids [3], as well as relevant

mutations in metabolic genes and accumulations of key metabo-

lites [4]. As tumor cells exhibit high genetic diversity, the

identification of relevant metabolic pathways in different cancer

sub-types represents an important research area.

High-throughput -omics technologies have brought about a

novel scenario where a more complete analysis of metabolism is

possible. A major advance was the reconstruction of the human

genome-scale metabolic network [5,6], which allowed researchers

to analyze human metabolism in different scenarios at an

unprecedented level of complexity, using theoretical methods

and -omics data [7,8]. In this direction, different network-based
metabolic pathway concepts have been introduced in the last

years [9]. They have shown that cellular metabolism involves a

more complex and varied pathway structure than those presented

in canonical maps. In particular, a promising concept is that of

Elementary Flux Modes (EFMs), which allows us to decom-

pose a metabolic network into its simplest modes of behaviour

[10]. However, the integration of -omics data with EFMs to

analyze human metabolism has been limited, due to the fact that

the computation of EFMs is hard in genome-scale networks. This

issue has been recently addressed in [11], where a new protocol to

integrate gene expression data and EFMs is proposed. This

approach was successfully applied to identify metabolic differences

among several healthy tissues.

Based on [11], our objective here is to identify key metabolic

pathways and metabolites in two major subtypes of non-small cell

lung cancer (NSCLC): adenocarcinoma and squamous-cell

carcinoma. In particular, we aim to investigate if specific

differences between these subtypes can be found combining EFMs

and gene expression data. According to previous knowledge of

these major subtypes of lung cancer in the medical literature, our

results properly distinguish key metabolic processes among the

different clinical outcomes analyzed.

Materials and Methods

Elementary Flux Modes (EFMs) concept
To illustrate the concept of EFMs, we used Figure 1, which

represents a simplified metabolic system involving glycolysis and

TCA.

An EFM is technically a minimal subset of enzymes able to

perform in sustained steady-state. Steady-state implies that
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metabolites inside the boundaries of the system, e.g. pyruvate (Pyr),

must be in stoichiometric balance, i.e. flow in must be equal to

flow out. This condition requires the definition of metabolites able

to be exchanged outside the system, namely here the inputs are

glucose (D-Glc) and acetate (Ac), while the outputs lactate (D-Lac)

and carbon dioxide (CO2). In addition, ‘‘minimal’’ means that the

removal of an enzyme leads to pathway disruption. In our example

in Figure 1, we have 3 EFMs. EFM1 represents anaerobic

glycolysis; EFM2 aerobic glycolysis via TCA cycle; EFM3 TCA

cycle fed by acetate. It is easy to check that they satisfy the

conditions mentioned above. For more technical details, please see

[10].

Note that EFMs are minimal modes of behaviour and

combinations are also possible. However, in different scenarios

some of them may prevail over the others. For example, cancer

cells produce energy primarily via anaerobic glycolysis (EFM1)

even when sufficient oxygen is available (Warburg effect). Note that

EFMs typically have different inputs (substrates) and outputs

(excreted metabolites). In this article, we aim to exploit this idea to

separate different clinical scenarios based on gene expression data.

Human EFMs collection and lung cancer data
Here we used a subset of 5875 EFMs previously determined in

[11] from Recon 1 human metabolic network [5], which contains

2469 biochemical reactions and 1587 metabolites. This subset of

EFMs involves a diverse list of metabolic pathways potentially

active in different human physiological conditions (see [11] for

more detailed information of this set of EFMs).

On the other hand, gene expression data was extracted from

Gene Expression Omnibus (GEO) database [12]. In particular, we

considered 58 human NSCLC tumor tissue samples from [13],

and 6 normal lung tissue samples (CN) from [14]. 40 NSCLC

tumor tissue samples were taken from patients clinically diagnosed

as adenocarcinoma (AD), while the other 18 tumor tissue samples

from patients with squamous-cell carcinoma (SQ). All these

samples were hybridized in an Affymetrix array HGU 133 plus,

which contains 54.675 probes for 20.283 genes. We describe

below different methods applied to analyze this data.

Differential expression analysis
We determined which genes were over-expressed, unchanged or

under-expressed in AD with respect to SQ (upAD) and vice versa

(upSQ). Note that over-expressed genes in AD are down-expressed

in SQ, and vice versa, as can be observed in the first column of

Table 1. In addition, gene expression data from healthy tissues

cannot be directly compared with data from cancer tissues as they

belong to a different data source. This does not constitute an issue,

as we are focused on elucidating differences between AD and SQ.

For this task we used limma package in R statistical software

[15], i.e. multiple linear regressions and empirical bayes statistics

that determine the likelihood of a gene not being differentially

expressed between both conditions (p-value). Then, false discovery

rate (FDR) technique was applied to correct the effect of multiple

hypotheses testing, transforming previous p-values into q-values

[16]. We considered differentially expressed genes those with a q-

value lower than 5%. Note that this threshold is arbitrary,

however, the smaller the threshold, the greater the confidence

level. The determination of up- and down-regulated genes is

straightforward based on linear regression coefficients.

Absolute expression analysis
We define absolute expression analysis as the classification of

genes as present or absent in a specific biological sample. Here we

particularly classified genes into three states: highly-, normally-

and lowly-expressed. This discrete classification of genes was made

for every group: AD, SQ and CN. Note that this analysis was

conducted for each group separately and no comparison between

groups was made, i.e. absolute expression of genes is a functional

property for each group.

For this purpose we first classified genes in each sample as active

or inactive based on the Gene Expression Barcode model [17].

Then, in order to obtain the desired three level classification, we

defined a gene as highly (lowly) expressed if all the probes

containing such gene are active (inactive) in the entire set of

samples, and moderately expressed otherwise. A less stringent

threshold (for example 95% of the probes instead the 100%) can

be selected, but the confidence level of gene high- and low-

expression will be decreased.

Data transformation: from genes to reactions
Differential and absolute gene expression leads to an up-

regulated/highly-expressed, unchanged/normally-expressed and

down-regulated/lowly-expressed gene classification.

In order to map this gene expression classification into the set of

metabolic reactions included in the set of EFMs selected, we used

the Boolean laws, also known as Gene-Protein-Reaction (GPR)

rules, reported in [5], as previously done in [11,18]. Note here that

Recon 1 human metabolic network reconstruction annotates 1496

genes from which 1451 are found in the HGU 133 plus array.

Based on these GPR rules and the gene expression categoriza-

tion, we obtain a three level metabolic reaction classification, i.e.

Figure 1. Example network that represents a simplified system involving glycolysis and TCA cycle. Abbreviations: Ac, Acetate; AcCoA,
Acetyl-CoA; Cit, Citrate; D-Lac, lactate; D-Glc, glucose; OAA, oxaloacetate, Pyr, Pyruvate, CO2, Carbon dioxide.
doi:10.1371/journal.pone.0103998.g001
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up-regulated/highly-expressed, unchanged/normally-expressed

and down-regulated/lowly-expressed reactions.

Characteristic and differential EFMs
We mapped the reactions classification into the set of 5876

EFMs in each scenario: AD, SQ, CN, upAD and upSQ. For AD,

SQ and CN scenarios, we determined a subset of characteristic

EFMs with the approach presented in [11]. We define charac-
teristic EFMs as those significantly enriched with highly

expressed reactions and involving a small number of lowly

expressed reactions. This definition focuses on absolute expression

data (see previous ‘‘Absolute expression analysis’’ subsection).

This concept can be extended for differential expression data, in

our case using the gene sets obtained for upAD and upSQ

scenarios. In particular, we define differential EFMs as those

significantly enriched with over-expressed reactions and involving

a small number of under-expressed reactions. Note that the use of

differential expression involves several theoretical issues, e.g. genes

consistently highly expressed may have a small fold change.

As the combination of differential EFMs with characteristic

EFMs is a more accurate approach, in this paper we coined the

term ‘‘prominent’’ EFMs for those EFMs that are character-

istic and differential at the same time, i.e. they are significant both

in the absolute and the differential analyses.

Table 1. Resulting gene/reaction expression and characteristic EFMs.

Scenario Genes (1/0/-1) Reactions (1/0/-1) Characteristic EFMs

AD 1096/9265/9922 181/887/421 165

SQ 1317/8145/10821 240/719/530 207

CN 1353/5131/13799 262/494/733 228

upAD 1725/16163/2395 333/1017/139 116

upSQ 2395/16163/1725 267/985/237 267

Abbreviations stand for adenocarcinoma (AD), squamous-cell carcinoma (SQ), control (CN), up-regulated genes in AD with respect to SQ (upAD) and up-regulated genes
in SQ with respect to AD (upSQ). Up-regulated/highly-expressed, unchanged/normally-expressed and down-regulated/lowly-expressed gene/reactions are denoted 1, 0
and -1, respectively.
doi:10.1371/journal.pone.0103998.t001

Figure 2. Venn diagrams proportional to the number of characteristic EFMs in: A) AD, SQ & CN; B) SQ, upSQ & AD; C) AD, upAD & SQ.
doi:10.1371/journal.pone.0103998.g002
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Results and Discussion

Around 70% of diagnosed lung cancers are Non Small Cell

Lung Cancers (NSCLC) and belong to two main subtypes,

particularly AD and SQ. The objective of this work is to elucidate

specific metabolic properties and differences between AD and SQ

lung cancers. To that end, the methodology presented above was

used.

Table 1 summarizes the results for the absolute and differential

expression analysis accomplished. Interestingly, in Table 1 we

found that the number of lowly expressed genes and reactions in

CN is significantly higher than in two cancer scenarios. This may

suggest that the reprogramming of cancer metabolism enhances

systemic robustness, probably activating silenced pathways that

guarantee and optimize proliferation. Note however that, to a

much lesser extent, the number of highly expressed reactions is

higher in CN. These insights may indicate that metabolism in CN

is more specific than in cancer and presents less variability across

samples in the active set of enzymes. The same conclusion is

achieved with moderately expressed genes. On the other hand, if

we focus on the differential analysis, we found, as expected by

construction, that up-regulated genes in upAD are down-regulated

in upSQ, and vice versa, e.g. the subset of 1725 up-regulated genes

in AD (1 in upAD) matches the subset of down-regulated genes in

SQ (-1 in upSQ). However, the same does not occur at the

reactions level due to GPR rules, which illustrates the regulatory

complexity of metabolism.

We selected as differential and characteristic EFMs for

each scenario those with a FDR lower than 20%. The total

number of statistically significant EFMs can be found in Table 1.

In particular, we found a considerable number of characteristic

EFMs in each condition and, as discussed in [11], their number

was not necessarily proportional to the number of highly- and

lowly-expressed (up- and down-regulated) reactions. Therefore, it

is not surprising that more characteristic EFMs are found in SQ

than in AD, since the number of characteristic and differential

EFMs depends on the connectivity of highly- and lowly-expressed

(up- and down-regulated) reactions in our set of EFMs [11]. In

order to visualize and interpret differential and characteristic

EFMs, we mapped them into the Venn diagrams shown in

Figure 2.

Figure 2.A shows the number of characteristic EFMs that

overlap in CN, SQ and AD. As partially expected, it can be

observed that the metabolic activity in cancer tissues (AD and SQ)

is more similar than in healthy tissue (CN). In particular, a

common subset of 109 characteristic EFMs is found for AD and

SQ. Among them, 56 are not involved in CN, which may

represent a core metabolic network of lung cancer metabolism.

The other 53 EFMs are common for our three scenarios, revealing

similarities among cancer and healthy tissues.

In order to detect more specific pathways and metabolites in

AD and SQ, we compared characteristic and differential EFMs of

SQ and AD, as shown in Figures 2.B and 2.C, respectively. As

noted above, we considered as SQ prominent those EFMs

characteristic in SQ and up-regulated in SQ; analogously, AD

prominent EFMs are characteristic in AD and up-regulated in

AD. We identified 46 SQ prominent EFMs and 13 AD
prominent EFMs, i.e. characteristic EFMs which are at the

same time differential EFMs. However, from these EFMs, 20 SQ

prominent EFMs and 13 AD prominent EFMs were found to be

characteristic in both cancer tissues. This implies that, though

being present in both tissues, their activity is higher in SQ and AD,

respectively. In addition, we detected one clear false positive in SQ

differential EFMs, i.e. an EFM differentially expressed in SQ

which is only characteristic in AD, and two false positives in AD

differential EFMs.

AD and SQ prominent input/output metabolites
The results above show that our approach is able to distinguish

prominent EFMs in AD and SQ lung cancers. In order to

translate this information into more practical insights, we focused

on input and output metabolites involved in these 46 SQ and 13

AD prominent EFMs, respectively. For illustration, consider

Figure 3, which shows an SQ prominent EFM consuming glycerol
(glyc) and L-alanine (ala-L), input metabolites, and producing L-
serine (ser-L) and L-lactate (lac-L), output metabolites.

As these EFMs were obtained from a human genome-scale

metabolic network, these input and output metabolites mainly

correspond to substrates (uptake) and excreted products in lung

cancer and, therefore, could be measured in bio-fluids and be

spotted as biomarkers. Hence, this approach could complement

metabolomic studies.

We here analyzed input/output metabolites involved in AD and

SQ prominent EFMs. In particular, we identified input/output

metabolites present in the 46 SQ and upSQ EFMs, but not in

upAD and if possible (not in) AD and CN. These metabolites are

termed SQ prominent. We hypothesize for SQ prominent

metabolites a higher uptake (inputs) and secretion (outputs) flux

than in AD and, therefore, they could be used to distinguish SQ

and AD. The same can be done for the 13 AD and upAD EFMs.

However, no results of interest were found in this case.

Table 2 shows a summary of the most relevant SQ prominent

uptake and secretion metabolites obtained. Full details can be

found in File S1. Based on literature, we discuss below previous

works as to the role of these metabolites.

A higher intracellular abundance methylglyoxal in SQ in

comparison with AD has been previously reported in [19], which

constitutes a clear success of our approach. In addition, a high

expression of deaminoneuraminic acid in both SQ and AD tissues

was found in [20]. However, our approach predicted a more

relevant role in SQ, which requires further research to be

validated. Note also that both methylglyoxal and deaminoneur-
aminic acid are typically incorporated into different proteins and

their presence in different biofluids has not been explored.

Given the results presented in [19], one may question the reason

as to why deaminoneuraminic acid is not involved in the subset of

characteristic EFMs in AD. It must be observed that our source of

evidence is gene expression data. In SQ we found a regular

expression pattern for genes involved in EFMs producing

deaminoneuraminic acid, but not in AD. This does not exclude

the importance of deaminoneuraminic acid in AD, as post-

transcriptional changes may occur.

With respect to tetrahydrofolate and heptaglutamyl folate, a

different performance of folate metabolism in AD and SQ has

been recently elucidated [21]. In that work, it is reported that

gamma-glutamyl hydrolase enzyme, which removes polyglutamate

Figure 3. Illustration of an SQ prominent EFM and its input and output metabolites. Ellipses represent metabolites and arrows represent
reactions. White and black dots within the arrows represent reversible and irreversible reactions, respectively. Each metabolite is depicted with its
corresponding compartment shown in brackets: [e], extracellular, and [c], cytosol. Grey and white ellipses represent external and internal metabolites,
respectively. Nomenclature for metabolites and reactions was taken from [5] and it is included in File S1.
doi:10.1371/journal.pone.0103998.g003
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chains from polyglutamylated folate, facilitating escape of folate

from within the cells, is higher in SQ than AD. This is particularly

in line with our hypothesis.

In [22], they found a higher but non-significant level of L-
Phenylalanine, glutamate and glycerol in serum from AD patients.

This is in consonance with our results, which suggest a major

cellular uptake of these metabolites in SQ. For other amino acids

appearing in our set of EFMs (L-alanine, glutamine and L-serine),

not shown in Table 2, the comparison between AD and SQ is not

available in [22]. However, they found a significant alteration of

their serum levels between lung cancer and healthy patients.

For the rest of the metabolites, further research is required to

validate their function in AD and SQ. However, aside from D-
mannose, we could find clear association of these metabolites with

cancer. For example, in [23], a higher release of acetone was found

in breath of lung cancer patients than in healthy volunteers. In

addition, a lower level of acetoacetate was found in malignant

pleural effusions [24]. On the other hand, the accumulation of

alpha-N-Phenylacetyl-L-glutamine has been previously hypothe-

sized as an urinary biomarker for bladder cancer [25] and,

therefore, it constitutes an attractive hypothesis to be explored.

Note here that, as shown in Figure 1, EFMs may combine

different canonical metabolic pathways and pieces of them. In our

set of 46 SQ prominent EFMs, the most frequent canonical

pathways are the degradation of glycerol and D-mannose, as well

as the biosynthesis of serine and glutamine.

Given the results provided in Table 2, it is clear that EFMs are

more informative than canonical pathways, as the list of potential

metabolites is wider when EFMs are directly interrogated. This

shows the potential of our approach with respect methods based

on canonical pathways.

Conclusions

The concept of Elementary Flux Mode is not new in Systems

Biology [10]. However, their computation has been not possible in

genome-scale networks until recently, which has restricted their

use to analyze -omics data. With the advent of optimization-based

techniques [26–29], the performance of algorithms to compute

EFMs in genome-scale metabolic networks is rapidly improving.

These advances have allowed us to determine a significant set of

EFMs in different organisms, as shown in [11] for human

metabolism. Based on them and -omics data, a more accurate

picture of metabolic processes will be obtained in different

scenarios.

In this article we have identified key EFMs in both AD and SQ

NSCLC based on gene expression data, finding a different

metabolic signature. To that end, we used and extended the

approach presented in [11], with a gene classification based on i)

absolute and ii) differential expression analysis, which are

complementary and allows us to have more accurate results.

There has been much debate in the literature about the

correlation between mRNA and protein levels, as well as

metabolic fluxes. The extent to which transcriptomic data

correlates with proteomic and fluxomic data is still an open

question [30]. However, different recent articles have shown the

relevance of gene expression data for predicting metabolic

phenotypes, e.g. [7,31], which illustrates the value of approaches

as the one presented here. Note also that our approach is general

and could be applied to proteomic and metabolomic datasets,

overcoming post-transcriptional changes.

Our approach was used to identify input and output metabolites

with a different activity in AD and SQ NSCLC. We found a

number of these metabolites, finding a good agreement with

previously reported literature. Our approach, based on EFMs and

gene expression data, open new avenues for studying novel

biomarkers (metabolites) characterizing different clinical out-

comes. Note that the amount of gene expression data in different

cancer cell lines and patients is massive [12]. Using this data in the

context of the approach presented here could guide metabolomic

experiments and biomarker discovery in plasma/urine samples,

particularly given the difficulty of interpreting metabolomics

spectra in non-targeted approaches.

Supporting Information

File S1 Contains four excel worksheets defining i) the names and

abbreviations of the reactions and metabolites involved in the used

human metabolic network reconstruction [5], ii) details of EFMs

selected as characteristic/differential from a general set compiled

in [11], iii) activity of EFMs selected as characteristic/differential

in different lung cancer scenarios, and iv) an extension of Table 2,

Table 2. SQ prominent secretion and uptake metabolites.

Names CN AD up AD SQ upSQ

S1: Deaminoneuraminic acid 1 - - 5 5

S2: Methylglyoxal 2 - - 4 4

S3: Tetrahydrofolate - - - 1 1

S4: Acetone - - - 1 1

S5: alpha-N-Phenylacetyl-L-glutamine - - - 1 1

U1: Acetoacetate - 4 - 5 5

U2: D-Mannose 2 - - 4 4

U3: Glycerol 1 1 - 4 4

U4: Heptaglutamyl folate - - - 1 1

U5: L-Phenylalanine - - - 1 1

U6: L- Glutamate - - - 1 1

Entries in the table count for the number of characteristic and differential EFMs involving a particular uptake U or secretion S metabolite.
doi:10.1371/journal.pone.0103998.t002
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including full details of SQ and AD specific uptake and secreted

metabolites.

(XLSX)
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lung cancer biomarkers by hyphenated separation techniques and chemo-
metrics. Clin Chem Lab Med 50: 573–581. doi:10.1515/cclm.2011.769.

24. Zhou X-M, He C-C, Liu Y-M, Zhao Y, Zhao D, et al. (2012) Metabonomic

classification and detection of small molecule biomarkers of malignant pleural
effusions. Anal Bioanal Chem 404: 3123–3133. doi:10.1007/s00216-012-6432-

6.
25. Wang X, Zhang A, Han Y, Wang P, Sun H, et al. (2012) Urine Metabolomics

Analysis for Biomarker Discovery and Detection of Jaundice Syndrome in

Patients With Liver Disease. Mol Cell Proteomics 11: 370–380. doi:10.1074/
mcp.M111.016006.

26. De Figueiredo LF, Podhorski A, Rubio A, Kaleta C, Beasley JE, et al. (2009)
Computing the shortest elementary flux modes in genome-scale metabolic

networks. Bioinformatics 25: 3158–3165. doi:10.1093/bioinformatics/btp564.
27. Rezola A, de Figueiredo LF, Brock M, Pey J, Podhorski A, et al. (2011)

Exploring metabolic pathways in genome-scale networks via generating flux

modes. Bioinformatics 27: 534–540. doi:10.1093/bioinformatics/btq681.
28. Kaleta C, de Figueiredo LF, Schuster S (2009) Can the whole be less than the

sum of its parts? Pathway analysis in genome-scale metabolic networks using
elementary flux patterns. Genome Res 19: 1872–1883. doi:10.1101/

gr.090639.108.

29. Rezola A, Pey J, Tobalina L, Rubio Á, Beasley JE, et al. (2014) Advances in
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