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Objectives: To explore the MRI-based differential diagnosis of deep learning with data
enhancement for cerebral glioblastoma (GBM), primary central nervous system lymphoma
(PCNSL), and tumefactive demyelinating lesion (TDL).

Materials and Methods: This retrospective study analyzed the MRI data of 261 patients
with pathologically diagnosed solitary and multiple cerebral GBM (n = 97), PCNSL (n = 92),
and TDL (n = 72). The 3D segmentation model was trained to capture the lesion. Different
enhancement data were generated by changing the pixel ratio of the lesion and non-lesion
areas. The 3D classification network was trained by using the enhancement data. The
accuracy, sensitivity, specificity, and area under the curve (AUC) were used to assess the
value of different enhancement data on the discrimination performance. These results
were then compared with the neuroradiologists’ diagnoses.

Results: The diagnostic performance fluctuated with the ratio of lesion to non-lesion area
changed. The diagnostic performance was best when the ratio was 1.5. The AUCs of
GBM, PCNSL, and TDL were 1.00 (95% confidence interval [CI]: 1.000–1.000), 0.96 (95%
CI: 0.923–1.000), and 0.954 (95% CI: 0.904–1.000), respectively.

Conclusions: Deep learning with data enhancement is useful for the accurate
identification of GBM, PCNSL, and TDL, and its diagnostic performance is better than
that of the neuroradiologists.
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INTRODUCTION

Cerebral glioblastoma (GBM), primary central nervous
system lymphoma (PCNSL), and tumefactive demyelinating
lesion (TDL) are distinct neurological lesions with respect
to their pathology, treatment, and prognosis. GBM and
PCNSL are both malignant primary intracranial tumors in
adults (1, 2). The conventional management strategies
are surgical resection followed by radiochemotherapy for
GBM, and chemotherapy for PCNSL, respectively. The
clinical onsets of the two kinds of neoplasms are not
specific and closely related to the extent and location of
lesions (3). TDL is an inflammatory disease characterized
by varied neurodegenerative clinical manifestations, such as
movement disorder and vision impairment (4). Hormone
therapy is effective for TDL, and the clinical course is more
favorable than brain malignancy.

All these three kinds of lesions can be either solitary or
multiple (5–7). The conventional MRI findings of these three
kinds of lesions are overlapping. As solitary lesions, they usually
present as enhanced masses with peripheral edema. As multiple
lesions, they present as scattered and enhanced masses in the
brain. The open-ring enhancement in TDL may be an important
sign that distinguishes it from other tumors (8). This typical
radiological finding, however, is not frequent, resulting in a
difficult diagnosis.

The similar routine MRI findings represent a challenge for the
differential diagnosis. Given the conventional radiology
characteristics, some advanced MRI modalities have been used
for the differentiation of three lesions. A systematic review
showed that the dynamic susceptibility contrast-enhanced
image (DSC) and arterial spin labeling (ASL) had the potential
to discriminate PCNSL from GBM (9). Another study reported
that diffusion-weighted imaging (DWI) could be a useful
diagnostic tool to differentiate among PCNSL, GBM, and
inflammatory demyelination pseudotumor (10). Moreover,
MRS had been a valuable approach to distinguish the
mimicked pathologies (11).

However, these advanced MR modalities mainly focused only
on the enhanced component of the lesion. Radiomics-based
analysis, on the other hand, can explore the whole lesion
including the enhanced and non-enhanced components.
Recently, different radiomics have been developed to better
understand cerebral entities. For example, the deep learning
approach has been used for the differential diagnosis or
grading in meningioma (12–14).

Thus far, both the advanced MR modalities and radiomics
analysis have been used for the differentiation of the three
lesions; however, these have only focused on the solitary form
of the three lesions. All three lesion types can be multiple (4, 15).
Moreover, most radiomics analysis have only considered
machine learning algorithms with small datasets (10, 16).
Thus, we collected more data and attempted to identify the
three types of lesions by using MRI-based deep learning with
data enhancement algorithm, with simultaneous focus on single
and multiple lesions.
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MATERIALS AND METHODS

Ethics Statement
This study is retrospective in nature. It was approved by the
ethics committee of Beijing Tiantan Hospital. The need for
patient informed consent was waived.

Subjects
Our study recruited 97, 92, and 72 patients with GBM, PCNSL,
and TDL, between January 2005 and December 2019. Of these
subjects, 97 patients with GBM, 76 patients with PCNSL, and 52
patients with TDL were from a single medical institute. The
remaining 16 patients with PCNSL and 20 patients with TDL
were from another medical institute. All patients with GBM and
PCNSL were confirmed by pathology. Among 72 patients with
TDL, 52 were diagnosed based on the definition of TDL:
demyelinating lesions (2 cm or greater) or lesions between 0.5
and 2 cm with possible mass effect that can be mistaken for
tumor-like space-occupying lesions and have a characteristic
radiographic appearance (17). With analysis of medical records
and clinical and MRI characteristics, 20 were pathologically
confirmed owing to the diagnostic uncertainty.

The inclusion criteria were as follows: (1) GBM and PCNSL
confirmed by pathology, respectively; (2) TDL diagnosed by
pathology or the corresponding criteria (17); (3) available
cerebral MRI before diagnosis. The exclusion criteria were as
follows: (1) patient age <18 years; (2) missing clinical
information; (3) receipt of hormone therapy before undergoing
MRI; (4) no data on enhanced MRI; (5) lesions not in the
cerebral parenchyma; and (6) MR images with obvious artifact.
The enrollment process is presented in Supplementary File 1.
Each type of entity was composed of solitary or multiple lesions.

MRI Acquisition and Lesions
Segmentation
The MRI acquisition protocols were composed of pre- and post-
enhanced T1-weighted (CE-T1) images. The contrast media
type, venous injection dose, and acquisition parameters for
CE-T1 are given in Supplementary File 2.

All MR images in the form of digital imaging and
communications in medicine (DICOM) were input to the ITK-
SNAP (version 3.4.0, www.itk-snap.org). The regions of interest
(ROIs) of these three types of lesions were manually delineated
on axial CE-T1 by a neuroradiologist using ITK-SNAP.

Before the ROI segmentation, two blinded neuroradiologists
with 10 years of experience independently diagnosed these three
types of diseases for 130 randomly selected cases out of the 261
cases. Each neuroradiologist had access to the full DICOM
images from different MRI scanners. The number of accurately
diagnosed cases by the two senior neuroradiologists were divided
by that of all diagnosed cases. The result was determined to
calculate the diagnostic performance.

Statistical Analysis
All continuous and categorical variables were expressed as the
mean ± standard deviation and the number (percentage),
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respectively. One-way analysis of variance (ANOVA) and
Pearson’s chi-square tests were used to compare the group
differences with regard to patient age, sex ratio, and number of
multiple lesions by SPSS (version 23.0, IBM Corporation,
Armonk, NY, USA). A p < 0.05 was considered to indicate
statistical significance. The receiver operating characteristic
(ROC) curve obtained from the pROC (version 1.16.2) of
R (version 4.0.2) was used to show the area under the
curve (AUC), accuracy, specificity, and sensitivity under
different thresholds to evaluate the performance of the
classification model.
Algorithm Implementation
Most of the algorithms were implemented by Python 3.7.4. The
261 subjects were randomly divided into a training set and a
testing set. The training set included 67 cases of GBM, 65 cases
of PCNSL, and 50 cases of TDL, and the testing set consisted of
30 cases of GBM, 27 cases of PCNSL, and 22 cases of TDL. All
data were converted into a NIFTI format to adapt to a
3D network.

The diagnosis process is presented in Figure 1. It was divided
into three stages and was not an end-to-end solution.

In the first stage, a 3D U-Net (18) was used to automatically
predict the lesion area. First, MRI was cropped to reduce the
consumption of computing resources, and then the data were
normalized to reduce the interference of medical image caused
by uneven light. The initial input network image size was
reduced to 128 × 128 × 32 without affecting the segmentation
performance. Second, the fixed-size image was entered into a
convolution layer and four ResBlock downsampling modules to
obtain different depth features. Third, the features obtained after
the fourth downsampling were fused with the features obtained
after the third downsampling module. The fused features were
entered into the upsampling ResBlock module to obtain the
upsampling features. By analogy, the image size was finally
restored to 128 × 128 × 32. Finally, the number of channels
were reduced to two after the image entered a convolution layer.
The segmentation mask was obtained by argmax function, and
the segmentation mask was restored to 512 × 512 × 24 by
bilinear interpolation.

In the second stage, the segmented lesion area was combined
with the original MR image to change the pixels of the lesion area
by a certain multiple, and the pixels of the non-lesion area were
unchanged. The following combination equation was used:

Mn = M +M • n • k

Where Mn represents the enhanced data, M represents the
original MR image, n represents the segmented mask, and k
represents the enhancement coefficient. In this experiment, five k
values were selected, namely, −0.5, 0, 0.5, 1, and 2, to explore the
best model. The Mn visualization for different k values is shown
in Figure 2.

In the third stage, the enhanced data were preprocessed
similar to the first stage. The Resnet18 (19) was trained and
Frontiers in Oncology | www.frontiersin.org 3
tested by the preprocessed images to identify GBM, PCNSL,
and TDL.

In addition, identification using the lesion area was
considered one of the comparative experiments. The mask
segmented by the automatic segmentation network was
multiplied with the original MR image so that the surrounding
area of the original MR image was removed and only the lesion
area was retained. Resnet18 was used for identification of the
lesion area. The flow chart of a comparative experiment is shown
in Figure 3.

The AUC, accuracy, sensitivity, and specificity were
calculated according to the output of the classification network.
When ROC curves were plotted, one disease was considered
positive and the other two were considered negative.
RESULTS

Subjects’ Clinical Characteristics
Patients with TDL were the youngest. Those with GBM had the
highest ratio of solitary lesions (85.6%, 83/97) (Table 1).

Diagnostic Performance
The AUC (95% confidence interval [CI]), accuracy, sensitivity,
specificity, and overall accuracy are presented in Tables 2 and 3.
The ROC curves are shown in Figure 4. When k was 0.5, the
diagnostic performance was the best, and the overall accuracy
was 92.4%. The AUC (95% CI) of GBM, PCNSL, and TDL were
1.00 (1.000–1.000), 0.96 (0.923–1.000), and 0.95 (0.904–1.000),
respectively. The selected radiomics features of GBM, PCNSL,
and TDL at the optimal k value are shown in Figure 5. The
overall diagnostic performances of the two neuroradiologists
were 52.4%.
DISCUSSION

In our study, GBM and PCNSL were found more in male than
female patients, while TDL was found more in female than male
patients. This observation was in accordance with previous
studies (7, 20). The mean age of patients with these three types
of lesions was between 40 and 50 years in our subjects, consistent
with some previous reports (7, 20, 21). Regarding the number of
lesions, solitary GBM was found in 85.6% (83/97) patients,
similar to that reported by Kapoor et al. (6). The ratio of
multifocal PCNSL and TDL lesions was slightly higher than
that of non-focal lesions, inconsistent with some previous reports
(7, 22). This discrepancy may be due to the different case
selection criteria among studies.

In this study, we aimed to simultaneously differentiate
among three types of lesions. This is different from existing
similar studies that only differentiated between two types of
lesions. For example, GBM was differentiated from PCNSL by
using different MRI modalities (23, 24), machine learning
August 2021 | Volume 11 | Article 665891
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FIGURE 1 | The implementation process of three-stage algorithm based on deep learning with data enhancement.
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TABLE 1 | Clinical characteristics of subjects.

GBM PCNSL TDL p

Number of subjects 97 92 72
Age (years, mean ± SD) 54.61 ± 12.35 53.34 ± 12.57 41.33 ± 12.82 <0.001*
Sex 0.224
Male 56 (57.7%) 57 (62.0%) 35 (48.6%)
Female 41 (42.3%) 35 (38.0%) 37 (51.4%)
Number of lesions <0.001*
Solitary 83 (85.6%) 45 (48.9%) 32 (44.4%)
Multiple 14 (14.4%) 47 (51.1%) 40 (55.6%)
Frontiers in Oncology | www.frontiersin.org
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*p < 0.05. GBM, cerebral glioblastoma; PCNSL, primary central nervous system lymphoma; TDL, tumefactive demyelinating lesion; SD, standard deviation.
FIGURE 2 | Enhanced data with different k values. The top row represents solitary figures, and the bottom row represents multiple lesions. k is −0.5 (A), 0 (B), 0.5
(C), 1 (D), and 2 (E).
FIGURE 3 | The implementation process of the lesion area diagnosis algorithm.
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applications (25), and radiomics approach (26); GBM was
differentiated from TDL by using methionine positron
emission tomography (PET) (27) ; and PCNSL was
differentiated from TDL by using different MRI modalities
(28, 29). Moreover, these differential studies between two kinds
of entities only focused on solitary lesion. Multiple PCNSL was
differentiated from multifocal gliomas by using PET (30).
However, the differentiation was also being performed
between two types of lesions. To our knowledge, our study is
the first to simultaneously differentiate the three entities with
solitary and multifocal types by radiomics analysis.

Our study showed that a deep learning algorithm with data
enhancement could accurately differentiate among solitary and
multifocal GBM, PCNSL, and TDL. This method has two
advantages. First, an automatic segmentation network was
designed for the lesion region. The neural network can
improve focus to the lesion area by enhancing it; this
significantly improves the overall diagnostic performance of
the neural network for GBM, PCNSL, and TDL. The
performance of the model rises first and then falls with the
increase in the ratio of lesion area to non-lesion area, and there is
an optimal ratio. This means that both the focus area and the
non-focus area contain information that can be used for
diagnosis. When the ratio is appropriate, the neural network
can maximize the information in the two areas for the
identification of three lesions. Second, the data were
transformed into 3D data, and 3D u-net and 3D Resnet were
used for image segmentation and classification, respectively. 3D
data have better diagnostic performance than 2D data and 2D
networks. The consumption of computing resources is reduced
by dividing the training into three stages.

Our study had several limitations. First, although we tried to
minimize it, there may be some selection bias owing to the
Frontiers in Oncology | www.frontiersin.org 6
retrospective nature of the study. Second, our training process
was not end-to-end, and while this saves computing resources,
this makes it more challenging for non-professionals to use this
diagnostic method. Although we tried to use the end-to-end
network for training, the existing data could not support training
several times larger than the existing model to achieve better
diagnostic performance. Therefore, more data need to be
collected to support end-to-end networks. Third, this
experiment only studied the differentiation of three
radiologically similar lesions; neuroradiologists may consider
additional diseases when making a diagnosis. The existing
supervised machine learning and deep learning methods can
only diagnose the disease as one of the training set labels, and
ignore other possible diseases. If the subject is not one of the
training set labels, there is no possibility of being diagnosed
correctly. Fourth, no external validation was performed. Last,
only single-mode MRI data were used in this study. Inclusion of
multimodal data will provide more diagnostic information and is
one of the important ways to improve diagnostic performance.
However, the single-model data reduce the difficulty of data
collection, which makes our method more easily applicable to
other diagnosis processes than other methods. Therefore, our
method showed good performance in diagnostic accuracy and
can provide a feasible reference for the identification of
other diseases.
CONCLUSION

Deep learning with data enhancement is useful for the
identification of GBM, PCNSL, and TDL, and its diagnostic
performance is better than that of neuroradiologists.
TABLE 3 | Diagnostic performance of the model using the lesion area.

AUC (95% CI) ACC SEN SPE

GBM 1.00 (1.000–1.000) 1.00 1.00 1.00
PCNSL 0.94 (0.900–0.989) 0.84 0.70 0.90
TDL 0.94 (0.892–0.991) 0.84 0.77 0.86
Overall accuracy 0.84
Aug
ust 2021 | Volume 11 | Article 66
AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; GBM, cerebral glioblastoma; PCNSL, primary central nervous system lymphoma; TDL, tumefactive
demyelinating lesion.
TABLE 2 | Diagnostic performance at different k values.

k Overall accuracy AUC (95% CI) ACC SEN SPE

GBM PCNSL TDL GBM PCNSL TDL GBM PCNSL TDL GBM PCNSL TDL

–0.5 0.81 1.00 (1.000–1.000) 0.86 (0.785–0.943) 0.83 (0.738–0.924) 1.00 0.81 0.81 1.00 0.82 0.55 1.00 0.81 0.91
0 0.86 1.00 (1.000–1.000) 0.92 (0.856–0.980) 0.90 (0.823–0.975) 1.00 0.86 0.86 1.00 0.82 0.73 1.00 0.88 0.91
0.5 0.92 1.00 (1.000–1.000) 0.96 (0.923–1.000) 0.95 (0.904–1.000) 1.00 0.92 0.92 1.00 0.85 0.91 1.00 0.96 0.93
1 0.91 1.00 (1.000–1.000) 0.95 (0.900–1.000) 0.92 (0.838–1.000) 1.00 0.91 0.91 1.00 0.85 0.86 1.00 0.94 0.93
2 0.92 1.00 (1.000–1.000) 0.96 (0.906–1.000) 0.92 (0.813–1.000) 1.00 0.92 0.92 1.00 0.85 0.91 1.00 0.96 0.93
AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; GBM, cerebral glioblastoma; PCNSL, primary central nervous system lymphoma; TDL, tumefactive
demyelinating lesion.
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FIGURE 4 | Receiver operating characteristic (ROC) curve at different k values and region of interest (ROI).
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