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ABSTRACT
Aims  Brazil is nowadays one of the epicentres of the 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) pandemic and new therapies are needed to face 
it. In the context of specific immune response against 
the virus, a correlation between Major Histocompatibility 
Complex Class I (MHC-I) and the severity of the disease 
in patients with COVID-19 has been suggested. Aiming 
at better understanding the biology of the infection and 
the immune response against the virus in the Brazilian 
population, we analysed SARS-CoV-2 protein S peptides 
in order to identify epitopes able to elicit an immune 
response mediated by the most frequent MHC-I alleles 
using in silico methods.
Methods  Our analyses consisted in searching for the 
most frequent Human Leukocyte Antigen (HLA)-A, HLA-B 
and HLA-C alleles in the Brazilian population, excluding 
the genetic isolates; then, we performed: molecular 
modelling for unsolved structures, MHC-I binding 
affinity and antigenicity prediction, peptide docking and 
molecular dynamics of the best fitted MHC-I/protein S 
complexes.
Results  We identified 24 immunogenic epitopes in 
the SARS-CoV-2 protein S that could interact with 
17 different MHC-I alleles (namely, HLA-A*01:01; 
HLA-A*02:01; HLA-A*11:01; HLA-A*24:02; 
HLA-A*68:01; HLA-A*23:01; HLA-A*26:01; 
HLA-A*30:02; HLA-A*31:01; HLA-B*07:02; 
HLA-B*51:01; HLA-B*35:01; HLA-B*44:02; 
HLA-B*35:03; HLA-C*05:01; HLA-C*07:01 and 
HLA-C*15:02) in the Brazilian population.
Conclusions  Being aware of the intrinsic limitations of 
in silico analysis (mainly the differences between the real 
and the Protein Data Bank (PDB) structure; and accuracy 
of the methods for simulate proteasome cleavage), we 
identified 24 epitopes able to interact with 17 MHC-I 
more frequent alleles in the Brazilian population that 
could be useful for the development of strategic methods 
for vaccines against SARS-CoV-2.

INTRODUCTION
In December 2019, a novel coronavirus strain 
was detected and isolated in the city of Wuhan, 
Hubei province, China.1 This emerging viral 
infection was associated with severe human respi-
ratory disease with a fatality rate of ~2%–3%.2 
Despite the strict containment measures, severe 
acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) has spread rapidly worldwide, with 
cases now confirmed in multiple countries and 
propagation still ongoing. On 30 January 2020, 
the WHO declared COVID-19 a public health 
emergency of international concern.3

Brazil is actually one of the epicentres of the 
pandemic.4 Day by day, the epidemic advances 
with a high daily rate of cases per million people. 
Nonetheless, these data may be underestimated 
because of the reduced number of SARS-CoV-2 
molecular detection tests being made.5

The SARS-CoV-2 is an enveloped positive-
strand RNA virus belonging to the Betacorona-
virus genus of the Coronaviridae family of the 
Nidovirales order.6 SARS-CoV-2 genome has 
~30 kilobases that encode structural and non-
structural proteins.7 The 5′ encodes two large 
genes (ORF1a and ORF1b), which are translated 
into two polyproteins (pp1a and pp1ab), which 
are cleaved in a set of non-structural proteins 
essential for virus replication.8 The 3′-terminal 
region of the genome encodes four structural 
proteins, namely spike (S), nucleocapsid (N) enve-
lope (E) and membrane (M).9

The protein S on the virion surface mediates 
receptor binding and membrane fusion.6 For 
SARS-CoV-2 to infect a host cell, it is manda-
tory that protein S is cleaved (S1/S2 cleavage) 
by host cell proteases into two units: the N-ter-
minal ectodomain (S1) subunit and the C-terminal 
membrane-anchored (S2) subunit.10 During the 
receptor binding process, S1 binds via its receptor 
binding domain to the extracellular peptidase 
domain of the host receptor ACE-2, which is 
mainly expressed in the lung, gastrointestinal 
tract, kidney and heart tissues, although it is also 
present in other tissues, dictating viral tropism.10 11 
After that, S2 subunit mediates membrane fusion. 
Although cell entry is not yet fully understood, 
it is likely that a second proteolytic site (S2′) at 
subunit S2 is required for viral entry.12 Viral entry 
triggers the host’s immune system and initiates an 
inflammatory cascade that starts with the mecha-
nism of antigen presentation.6

During the process of presentation of antigenic 
peptides to CD8+ (cytotoxic) T cells by Class I 
Major Histocompatibility Complex (MHC-I) 
molecules, peptides are generated by protea-
somal cleavage in the cytosol and transported 
to the lumen of the endoplasmic reticulum by 
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a transporter associated with antigen processing protein 
before they can bind MHC groove and trigger an immune 
response.13 The correlation between MHC-I and the severity 
of the disease in patients with COVID-19 has been previously 
hypothesised.14

The understanding of which SARS-CoV-2 epitopes are 
immunogenic may help advances in the development of diag-
nostic kits and prophylactic vaccines. An immunoinformatic 
approach is suitable for an initial screening, since it may predict 
algorithms and test for the immunogenicity of a vast quantity 
of peptides and alleles in a cost-effective manner, reducing the 
costs and time on workbench. Here, we analysed SARS-CoV-2 
protein S peptides aiming to prospect epitopes and their ability 
to elicit an immune response mediated by the most frequent 
MHC-I alleles in the Brazilian population.

METHODS
Selection of the MHC-I alleles
We searched for the most frequent MHC-I alleles in the 
Brazilian population through the Human Leukocyte Antigen 
(HLA) Allele Frequency Database.15 We selected allele 
frequency data from overall Brazilian populations, excluding 
genetic isolates, such as indigenous tribes or Quilombos. After 
that, we calculated the average allelic frequency for each 
HLA-A, HLA-B and HLA-C allele with data from more than 
one population data. Finally, we chose the 10 most frequent 
class I alleles.

Molecular modelling
The Protein Data Bank (PDB) structure of some alleles was 
not available (table 1). Therefore, we used SWISS-MODEL16 
to perform modelling by homology. The best model was 
chosen using the default parameters. Model refinement was 
made using 3Drefine software.17 The quality of the refinement 
was evaluated by the MolProbity score. For model validation, 
ERRAT18 and RAMPAGE19 softwares were used with their 
default parameters.

MHC binding affinity and antigenicity prediction
For immunogenicity inference, we used the NetMHCPan 
V.4.020 server, by importing the FASTA sequence of the 
SARS-CoV-2 spike protein retrieved from PDB (PDB id: 
6VSB) that will be subsequently cleaved in peptides with a 
length of 10-mer. The interrogation of each 10-mer peptide 

was made querying the selected alleles ranked in the previous 
section. We accepted as possible candidates, those allele:pep-
tide complexes with strong binding affinity, that is, those with 
%Rank score <0.50.

After that, we tested the strong binding peptides for prob-
able antigenicity using Vaxijen V.2.0,21 using a threshold of 
score <0.5 to filter out possible non-antigenic peptides.

Peptide docking
Peptide docking was carried out using the CABS-dock server.22 
We submitted to a docking simulation, those peptides that 
showed strong binding affinity and probable antigenicity to 
their specific MHC-I allele using the default parameters. After 
the docking, we excluded the complexes that showed root 
mean squared deviation (RMSD) values above 3 Å to follow 
the molecular dynamics (MD).23

Molecular dynamics
The complexes from the docking simulations (RMSD values 
below 3 Å) were further investigated by MD simulations 
using GROMACS 2020.1.24 The complex was inserted in a 
0.7 nm cubic box, filling the voided space with SPC-E water 
molecules. Calcium and sodium ions were added for reaching 
the system electronic equilibrium. Energy minimisation was 
carried out using default parameters. The equilibrium phase 
was made during 10 ns (for temperature and pressure), while 
the production phase lasted 100 ns. These steps were also 
performed using default parameters.

In order to investigate the stability of the complexes, we 
calculated RMSD, root mean squared fluctuation, radius of 
gyration (Rg), solvent accessible surface area and the determi-
nation of hydrogen bonds.

RESULTS AND DISCUSSION
Table  1 shows the most frequent HLA-A, HLA-B and HLA-C 
alleles, according to the HLA Allele Frequency Database. The top 
10 HLA-A alleles correspond to 68.7% of the A* alleles, whereas 
the top 10 HLA-B alleles represent 53% and the HLA-C alleles 
68.8%. These values may not be sufficient to depict the MCH-I 
allelic variation, but it can give an estimation of the major diversity 
of the class I genes.

We modelled the MHC-I alleles, whose PDB structures were 
not available. The templates used for model prediction, refine-
ment and validations are reported in online supplementary table 1. 

Table 1  Average allele frequency and its respective Protein Data Bank (PDB) structure indentifiers (when available) of the top 10 most frequent 
Class I Major Histocompatibility Complex HLA-A, HLA-B and HLA-C alleles in the general Brazilian population

HLA-A HLA-B HLA-C

Allele Frequency PDB Allele Frequency PDB Allele Frequency PDB

A*02:01 0.2145 4L29 B*07:02 0.0870 5EO0 C*07:01 0.156 –

A*24:02 0.1010 2BCK B*51:01 0.0840 5VUE C*04:01 0.1370 1QQD

A*01:01 0.0850 4NQX B*08:01 0.0585 3×13 C*07:02 0.0800 5VGE

A*03:01 0.0755 6O9B B*18:01 0.0570 6MT3 C*08:02 0.0750 –

A*23:01 0.0457 – B*35:03 0.0470 – C*05:01 0.0610 –

A*11:01 0.0435 1X7Q B*35:01 0.0465 1XH3 C*03:03 0.0470 –

A*31:01 0.0330 – B*44:03 0.0445 4JQX C*12:03 0.0380 –

A*26:01 0.0310 – B*14:02 0.0375 3BVN C*15:02 0.0330 –

A*30:02 0.0285 – B*44:02 0.0355 1M6O C*17:01 0.0330 –

A*68:01 0.0285 6PBH B*38:01 0.0320 – C*03:04 0.0280 1EFX

Total 0.6862  �   �  0.5295  �   �  0.6880  �

HLA, Human Leukocyte Antigen.
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Overall, the models were considered suitable for docking analysis 
since they presented significant amino acid sequence similarity to 
the templates and were above RAMPAGE and ERRAT thresholds 
(98% and 80%, respectively).

Two hundred twenty-eight peptides were considered with strong 
binding affinity, according to NetMHCpan V.4.0 results (online 
supplementary table 2); of these, 73 were also considered prob-
ably antigenic based on the Vaxijen V.2.0 results. We carried out 
peptide docking simulations for all of them except for two (pep88 
and pep111), which could not be docked by CABS-dock server, 
possibly due to some issues with the MHC-I structure. As result, 
61 peptides had good docking predictions, as they showed average 
RMSD <3 Å (online supplementary table 3).

These complexes comprised 24 different MHC-I alleles: HLA-
A*01:01 (four epitopes), HLA-A*02:01 (2), HLA-A*03:01 (3), 
HLA-A*11:01 (5), HLA-A*23:01 (4), HLA-A*24:02 (3), HLA-
A*26:01 (3), HLA-A*30:02, HLA-A*31:01 (3), HLA-A*68:01 
(5), HLA-B*07:02 (3), HLA-B*18:01 (1), HLA-B*35:01 (4), 
HLA-B*35:03 (2), HLA-B*38:01 (2), HLA-B*44:02 (2), HLA-
B*44:03 (1), HLA-B*51:01 (1), HLA-C*05:01 (2), HLA-C*07:01 
(2), HLA-C*07:02 (1), HLA-C*08:02 (1), HLA-C*15:02 (1) and 
HLA-C*17:01 (1). To evaluate the stability of these complexes, we 
completed MD simulations to make trajectory analyses.

Twenty-four MHC-I and protein S peptides (pep) complexes 
presented good results from MD simulations; these are summarised 
in table 2. Trajectory analysis of HLA-A alleles showed that the 
most compact and rigid complexes were: HLA-A*01:01 with the 
peptides pep2 and pep3 (online supplementary figure 1); HLA-
A*02:01 with pep6 and pep7 (online supplementary figure 2); 
HLA-A*11:01 combined with pep15 and pep18 (online supple-
mentary figure 4); HLA-A*24:02 with pep24 (online supplemen-
tary figure 6); HLA-A*68:01 with pep65 (online supplementary 

figure 10); HLA-A*23:01 in complex with pep83 (online supple-
mentary figure 5); HLA-A*26:01 with pep85 and pep87 (online 
supplementary figure 7); HLA-A* 30:02 with pep92 (online 
supplementary figure 8); and HLA-A*31:01 in complex with 
pep96 (online supplementary figure 9). It is worth noting that even 
among the most stable complexes, the solvent accessibility varied.

This variation was due to the peptides binding in different 
positions to the HLA-A alleles. The other peptides (less 
compact and more flexible) showed more fluctuations in the 
loop conformations of the complex, including in the peptide 
structure by itself. In fact, a comparison among the struc-
tures confirmed that the major difference among the complex 
is in the peptides and not in the regions of HLA-A without 
secondary conformation (online supplementary figures 25 
and 26). However, although these differences may affect the 
stability of the complexes, they do not induce structural modi-
fications sufficient to unfold the protein.

Regarding HLA-B alleles, the complexes with minimal 
changes from the initial form during the simulations were: 
HLA-B*07:02 with pep59 (online supplementary figure 11); 
HLA-B*51:01 in complex with pep70 (online supplemen-
tary figure 18); HLA-B*35:01 with pep72, pep73 and pep75 
(online supplementary figure 13); HLA-B*38:01 with pep79 
(online supplementary figure 15); and HLA-B*35:03 in 
complex with the peptides pep97 and pep98 (online supple-
mentary figure 14). Similar to the most compact and stable 
complexes of HLA-A, the major differences among the most 
rigid and flexible complexes were not in the peptides itself but 
in regions of HLA-B alleles without secondary conformations 
(online supplementary figures 27 and 28).

Analysing the trajectories for HLA-C, it was possible to observe 
that the most stable complexes were HLA-C*05:01, with pep103 

Table 2  Best protein S epitope is bound to its respective Major Histocompatibility Complex Class I alleles according to molecular dynamics results

Allele PDB Peptide Code %Rank OPPA prediction Average RMSD (Å)

HLA-A*01:01 4NQX NLDSKVGGNY pep2 0.1041 0.7882 2.5624

HLA-A*01:01 4NQX GWTAGAAAYY pep3 0.2305 0.5358 2.6896

HLA-A*02:01 4L29 KLNDLCFTNV pep6 0.2287 2.6927 1.1479

HLA-A*02:01 4L29 FELLHAPATV pep7 0.3513 0.5982 1.1796

HLA-A*11:01 1X7Q VTLADAGFIK pep15 0.1366 0.8702 2.1979

HLA-A*11:01 1X7Q SLIDLQELGK pep18 0.2777 1.0275 1.9232

HLA-A*24:02 2BCK TYVPAQEKNF pep24 0.0424 0.7276 2.0925

HLA-A*68:01 6PBH HVTYVPAQEK pep65 0.2517 1.0786 1.1007

HLA-A*23:01 swissmodel CYFPLQSYGF pep83 0.3803 0.7776 2.8308

HLA-A*26:01 swissmodel EILDITPCSF pep85 0.1991 1.2698 1.7413

HLA-A*26:01 swissmodel GWTAGAAAYY pep87 0.2372 0.5358 1.9260

HLA-A*30:02 swissmodel IGAEHVNNSY pep92 0.4353 1.2671 1.5989

HLA-A*31:01 swissmodel RKSNLKPFER pep96 0.4348 0.8187 2.4331

HLA-B*07:02 5EO0 TPCSFGGVSV pep59 0.3909 1.7080 2.7139

HLA-B*51:01 5VUE VAYSNNSIAI pep70 0.4565 1.0545 1.2241

HLA-B*35:01 1XH3 LPIGINITRF pep72 0.0959 1.3027 2.2773

HLA-B*35:01 1XH3 QIPFAMQMAY pep73 0.2719 1.2149 1.6030

HLA-B*35:01 1XH3 FPNITNLCPF pep75 0.4307 1.3964 2.4222

HLA-B*44:02 1M6O TESNKKFLPF pep79 0.4851 1.0405 1.4687

HLA-B*35:03 swissmodel LPIGINITRF pep97 0.1519 1.3027 2.0459

HLA-B*35:03 swissmodel LPFFSNVTWF pep98 0.4127 0.6567 0.4809

HLA-C*05:01 swissmodel LVDLPIGINI pep103 0.1770 1.3499 0.2044

HLA-C*07:01 swissmodel IVRFPNITNL pep105 0.1311 0.5548 4.0092

HLA-C*15:02 swissmodel AVRDPQTLEI pep109 0.4849 0.7083 2.5140

It is possible to see the Protein Data Bank (PDB) ID for the structures used (or the indication that the structure was modelled using Swiss-model); the amino acid sequence; the code that we used 
during the simulations; %Rank value from NetMHC Pan; Vaxijen’s OPPA score and average root mean squared deviation (RMSD) for the docking simulations according to CABS dock.
HLA, Human Leukocyte Antigen.
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(online supplementary figure 19); HLA-C*07:01, with pep105 
(online supplementary figure 20) and HLA-C*15:02, with pep109 
(online supplementary figure 23). The latter complex, though, 
appeared to be stable only by the end of the simulation.

There are a few works in the literature using a similar approach to 
evaluate possible immunogenic peptides in the SARS-CoV-2 protein 
S. One study identified five CD8+ T cells epitopes (YLQPRTFLL, 
GVYFASTEK, EPVLKGVKL, VVNQNAQAL and WTAGAAAYY) 
and eight B cell epitopes that bind the MHC class I and II alleles 
more frequent in China.25 A second study found 13 MHC-I 
(SQCVNLTTR, GVYYHKNNK, GKQGNFKNL, GIYQTSNFR, 
VSPTKLNDL, KIADYNYKL, KVGGNYNYL, EGFNCYFPL, 
GPKKSTNLV, SPRRARSVA, LGAENSVAY, FKNHTSPDV and 
DEDDSEPVL) and three MHC-II possible protein S antigenic 
peptides.26Joshi et al27 reported the MHC-I ITLCFTLKR as a 
possible candidate for vaccine development. Comparing these 
previous results with our simulations, only GWTAGAAAYY 
complexed with HLA-A*01:01 and HLA-A*26:01 presented good 
NetMHC-Pan and Vaxijen scores, as well as good docking stability 
and RMSD during the MD.

In conclusion, being aware of the intrinsic limitations of 
in silico analysis (differences between the real and the PDB 
structure, accuracy of the methods for simulate protea-
some cleavage, as well as molecular modelling, docking and 
dynamics’ shortcomings), we described 24 epitopes present in 
the SARS-CoV-2 protein S that could interact with 17 different 
MHC-I alleles in the Brazilian population. These epitopes can 
elicit an effective CD8+ T cells immune response and could 
be useful to develop strategic methods for vaccines against 
COVID-19. Finally, our immunoinformatic approach could be 
a useful tool to determine a guided starting point to design and 
develop epitope-based vaccines.

Take home messages

►► The understanding of which severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) epitopes are 
immunogenic may help in the development of diagnostic kits 
and prophylactic vaccines.

►► An immunoinformatic approach is suitable for Major 
Histocompatibility Complex Class I (MHC-I) screening, to 
predict the immunogenicity of a vast quantity of peptides and 
alleles in a cost-effective manner.

►► SARS-CoV-2 protein S peptides have been analysed in silico 
aiming to prospect epitopes and their ability to elicit an 
immune response mediated by the most frequent MHC-I 
alleles in the Brazilian population.

►► Twenty-four epitopes present in the SARS-CoV-2 protein S 
have been observed, which could interact with 17 different 
MHC-I alleles identified in the Brazilian population.

Handling editor  Runjan Chetty.
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