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Abstract

Background: Hospital readmissions are one of the costliest challenges facing healthcare systems, but conventional
models fail to predict readmissions well. Many existing models use exclusively manually-engineered features, which
are labor intensive and dataset-specific. Our objective was to develop and evaluate models to predict hospital
readmissions using derived features that are automatically generated from longitudinal data using machine learning
techniques.

Methods: We studied patients discharged from acute care facilities in 2015 and 2016 in Alberta, Canada,

excluding those who were hospitalized to give birth or for a psychiatric condition. We used population-level linked

administrative hospital data from 2011 to 2017 to train prediction models using both manually derived features and
features generated automatically from observational data. The target value of interest was 30-day all-cause hospital
readmissions, with the success of prediction measured using the area under the curve (AUC) statistic.

Results: Data from 428,669 patients (62% female, 38% male, 27% 65 years or older) were used for training and
evaluating models: 24,974 (5.83%) were readmitted within 30 days of discharge for any reason. Patients were more
likely to be readmitted if they utilized hospital care more, had more physician office visits, had more prescriptions,
had a chronic condition, or were 65 years old or older. The LACE readmission prediction model had an AUC of
0.66+0.0064 while the machine learning model’s test set AUC was 0.83 +0.0045, based on learning a gradient
boosting machine on a combination of machine-learned and manually-derived features.

Conclusion: Applying a machine learning model to the computer-generated and manual features improved
prediction accuracy over the LACE model and a model that used only manually-derived features. Our model can be
used to identify high-risk patients, for whom targeted interventions may potentially prevent readmissions.
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Introduction
Background/rationale
Nearly 10% of patients hospitalized in Canada are read-
mitted within 30 days [1]. Readmissions cost approxi-
mately 2 billion Canadian dollars per year in Canada [2]
in 2011 and 26 billion US dollars per year in the United
States [3] in 2014. Studies estimate that 10-60% of these
readmissions are avoidable [4—6]. In the US, the Centers
for Medicare & Medicaid Services financially penalize
hospitals with high readmission rates [7]. These conse-
quences and costs of readmissions are one of the most
important challenges facing the healthcare systems.
Transitional care interventions may reduce readmissions,
but these interventions are resource intensive. Predicting
the readmission risk of individual patients can help better
target these interventions, which can save expenses and
may also suggest new ways to prevent readmissions.
Unfortunately, conventional models do not accurately
predict readmissions; model c-statistics are rarely seen
above 0.8 [8, 9]. Additionally, most of the existing pre-
diction models rely heavily on manual feature engineer-
ing [5, 10-24], which is based on domain knowledge and
experience. Those features are often dataset-dependent,
thus limiting generalizability between datasets or juris-
dictions. Recently, machine learning methods that auto-
matically identify which parts of a given set of data are
essential for prediction have gained popularity, and there
exists such work applied in the domain of readmission
prediction as well. Notably, Rajkomar et al. used elec-
tronic health records and deep learning models to predict
30-day readmissions and other outcomes [19]. However,
their c-statistic for 30-day readmissions did not exceed
0.75 despite their c-statistics for other outcomes such as
mortality being above 0.8. There have been several simi-
lar studies, but their c-statistics are also moderate, below
0.8 [19, 25, 26]. Choi et al. explored word embeddings to
represent medical concepts [27-29], often paired with
recurrent neural networks for the prediction of clinical
events. This approach performed adequately on disease-
specific tasks (e.g., heart-failure prediction, differential
diagnosis), but they did not apply these techniques to
hospital readmission prediction. Nguyen et al. [30] used
similar techniques for hospital readmission but their tar-
get outcome was 3- and 9-month readmission and are
thus not directly comparable.

Objectives

This paper describes models to predict 30-day readmis-
sions, with a focus on testing the predictive performance
of input features that are automatically generated using
machine learning techniques, as well as manual features.
Our study is not limited to a specific patient group — it is
instead exploring ways to make accurate predictions for
patients of all age groups and with all conditions, except
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those admitted due to a baby birth or a psychiatric con-
dition. We use detailed longitudinal health data from
the province of Alberta, Canada. Alberta has a publicly
funded, universally accessible, integrated health system
and thus collects high-quality data. Our data set contains
very few missing records, in particular, there exist no
missing readmissions except for those who moved out of
the province during the study period and those who died
without being readmitted.

Methods

Study design

This is a population-based cohort study. We trained pre-
diction models using linked administrative observational
data from Alberta, Canada.

Data and target population
Our target population consists of patients who were dis-
charged from any of the acute facilities in the province of
Alberta between January 1, 2015 and December 31, 2016,
excluding only patients who were hospitalized due to a
baby birth or a psychiatric condition. For each patient,
we extracted detailed health records from 2011 to 2017
including hospitalizations from Discharge Abstract Data-
base (DAD), ambulatory visits from National Ambula-
tory Care Reporting System (NACRS), physician office
visits from claims data, drug prescriptions from Pharma-
ceutical Information Network (PIN), and lab test results.
From DAD, we extracted institution number, admit and
discharge dates, discharge disposition, diagnosis codes,
procedure codes, and the role of the providers associ-
ated with the patient’s care for each hospitalization. From
NACRS, we obtained institution number, visit mode, visit
date, disposition, diagnosis codes, procedure codes, and
functional centre account code for each ambulatory visit.
From claims data, we extracted information about visits
to primary care physicians (family medicine), internal
medicine specialists, and general surgery specialists. For
each visit, we obtained the date, diagnosis codes, pro-
cedure codes, paid amount, and service provider skill
code. From PIN, we extracted the following variables for
each prescription: Canadian Drug Identification Num-
ber, Anatomical Therapeutic Chemical (ATC) code, date,
dispensed quantity, and the number of days the prescrip-
tion covers. From lab data, we received test code, test
name, date, reference range, result, and unit of measure
for each lab test. We extracted the lab data variables only
for the lab tests listed in Appendix A in the Supplemen-
tary Material. Lastly, the extracted data also included sex,
age, and the first three alpha-numerics of postal code. All
diagnosis codes were ICD-10-CA except those in claims,
which are ICD-9. All procedure codes are following the
Canadian Classification of Health Interventions (CCI)
except those in claims which were the Health Service
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Canadian Classification of Procedures Extended Code
(CCPX).

The data were extracted and anonymized by the
Alberta Strategy for Patient Oriented Research SUP-
PORT Unit. This study was approved by the Health
Research Ethics Board of the University of Alberta (Study
ID Pro00082041).

Definition of index hospitalization

Patients may have been discharged multiple times in
2015 and 2016. We selected one index hospitalization
for each patient from these years, using the following
procedure. Among the discharge records (DAD) of the
target population in 2015 and 2016, we first excluded
from the index hospitalization selection those records
whose patient died during the hospitalization or that
had an invalid patient identifier, as well as those patients
who had at least one record whose postal code is not in
Alberta (these criteria excluded 42,900 DAD records).
We further removed records whose discharge disposi-
tion indicated transfers, which excluded 42,172 DAD
records. As previously mentioned, discharge records
related to a birth (or with disposition indicating stillbirth
or organ/tissue retrieval) were not included in the initial
data extraction. We also excluded psychiatric admissions
from our selection by removing records whose primary
diagnosis code was related to mental and behavioural
disorders (ICD F00-F99 except F10-F19), leading us to
remove the 74,618 records and 18,170 patients who had
only psychiatric admissions. We then randomly selected
one record of each patient as the index admission and we
predicted 30-day readmission after the discharge from
the index admission. To define the care episode of the
index hospitalization, we connected DAD records that
are considered continuation of care, by using the criteria
described in Appendix A. From the list of patients with
an index admission (n=428,669), we randomly divided
the data into 11 equal parts. One of these was selected
for the holdout test set. The remaining 10 pieces were
used to perform 10-fold cross-validation for comparing
models.

Definitions of outcome and manual features
Our outcome was all-cause readmission within 30 days
after discharge. In addition to the four raw features (age
at discharge, sex, discharge disposition, and length of
stay of the index episode -- included as part of model
“manual” features), we also considered two sets of input
features: derived manual ones and those automatically
generated using machine learning. We first explain the
derived manual features.

We computed the number of discharges and the
total number of days the patient stayed in-hospital in
the 6 months and 2 years prior to the current visit. The
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Charlson Comorbidity Index [31] was calculated based
on ICD-10-CA codes of each patient’s DAD records over
the past two years (including from the index admission).
We also used the number of unique ICD-10-CA codes
that appeared in the index episode, as well as the num-
ber of unique and total procedures performed during the
index episode. We computed the numbers of emergency
department (ED) visits and non-emergency outpatient
visits in the past 6 months and in the past 2 years, and
a binary variable if the index admission was through the
ED. We also obtained the numbers of physician visits in
the past 6 months and 1 year, separately for family phy-
sicians, internal medicine specialists, and general sur-
gery specialists. As a proxy of access to care, we included
binary variables whether a patient incurred a claim dur-
ing the past 2, 3, and 4 years. Additionally, we calculated
the total claimed dollar amounts from physician visits
during the past 2, 3, and 4 years. Regarding prescrip-
tions, we computed the number of prescription records,
the total prescribed days, and the number of unique
drugs (in ATC code) in the past two years and during the
index episode. Features based on the twenty most com-
mon lab tests were additionally created (Appendix A).
Lastly, we identified the presence of four chronic condi-
tions (asthma, hypertension, chronic heart failure, and
diabetes) using algorithms validated by Tonelli et al. [32]
that use ICD9-CM/ICD10 codes. We extracted income,
employment, housing status, citizenship status, and edu-
cation level of the first three digits of the postal code of
each patient from the 2020 Canadian Census of Popula-
tion dataset [33] using the Postal Code Conversion File
[34], but later removed these features as they did not
improve model performance.

Machine learned features

In addition to the manual features, we extracted feature
vectors using machine learning techniques from lon-
gitudinal health records of each patient, which cover at
least four years prior to their index admissions and origi-
nate from various data sources. The number of these
records (a proxy for healthcare usage) varies consider-
ably between patients. In this paper, we use Word2Vec
[35] (from Python’s NLTK library, specifically, the Con-
tinuous Bag-of-Words implementation), an unsupervised
technique borrowed from natural language processing,
to encode the longitudinal information. Word2Vec not
only summarizes, but also enriches the data by encoding
related concepts from different data sources (e.g., a diag-
nosis code and a related medication) as similar numeric
vectors rather than treating them as incomparable. In
this process, we first created patient “sentences’, formed
by collecting all medical data entries (ICD codes, ATC
codes, codes representing different events such as an
emergent admission, etc.) associated with a patient and
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sorting them chronologically. In the sentence, each word
is a diagnosis code or a procedure code or an ATC code,
etc. For example, if a patient accrued “K65" “1.SQ.52
and “JO1DH” in this order in the data, their associated
sentence would be “K65 1SQ52 JOIDH” More details
are available in Appendix B. The Word2Vec learner
then effectively creates fixed-length numeric represen-
tations of each word (medical code) based on the con-
text within the sentences. Roughly speaking, words that
tend to appear together in proximity in sentences receive
numeric representations that are close. Once an inven-
tory of numeric representations of those words has been
created, each patient’s sentence can be viewed as a list of
numeric vectors. There are many techniques to create a
patient’s feature vector with respect to their medical his-
tory. Here, we use a simple summation of the last 25 vec-
tors (as well as 15 for the purposes of sensitivity analysis,
see Appendix C for these results as well as other values
tested). If two patients have the exact same set of 25 most
recent medical codes in sequence, then their resulting
feature vectors are the same.

Model training

We considered learning both logistic regression (LR) and
gradient boosting machine (GBM) models for predict-
ing readmission from our patient representations. GBMs
encompass ensemble learning techniques that use many
base learners, such as decision trees, to build a sequence
of prediction models; and later, to predict for a novel
instance, it aggregates the predicted outcomes from those
individual base models. We note that our main objective
is not a thorough comparison of machine learning mod-
els and we chose GBM as an example of machine learning
models for illustration. GBM has parameters adjusting its
training process and we used the default setting of the
Python library scikit-learn [36] in all of our comparisons.
In addition, we used a set of manually selected training
parameters that are expected to lead to a better perfor-
mance [37], to observe the impact of training parameters
(called GBM Tuned). The manually selected parameters
were: learning rate=0.01, max_depth=8, and n_estima-
tors=1000. For definitions of these parameters, please see
the scikit-learn GBM documentation [38]. In addition, an
LR model based on the LACE score [39] was evaluated as
a baseline. The LACE Score was developed and validated
using the Canadian Discharge Abstract Database and has
been externally validated [40] and become the industry
standard for readmission risk prediction, which was our
motivation to test LACE as a baseline in this study. All
classification models described above were implemented
in Python using scikit-learn.
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Results

Descriptive statistics

We used data from 428,669 patients (62% female, 38%
male, 27% 65 years or older, Table 1) for training and eval-
uating models: 24,974 (5.72%) were readmitted within 30
days of discharge for any reason. Table 1 contains sum-
mary statistics for the raw and derived manual features
used, excluding lab-based features. Lab test features were
not shown in the table as each of the 20 included lab tests
were formatted as multiple categorical variables with
many possible values (Appendix A), thus their summary
is extensive. The average LACE score was found to be
7.10 (Std.Dev 3.27) over the entire study population, 6.99
(Std.Dev 3.22) for patients without a 30-day readmission
event, and 8.91 (Std.Dev 3.61) for those who were read-
mitted in 30 days. According to Table 1, infants, seniors,
and patients with hypertension or heart failure appear to
have a higher chance of 30-day readmission.

Table 2 shows AUC scores of different models evalu-
ated by 10-fold cross-validation (Fig. 1) and using the
test set, which was not used during the model building
(Fig. 2). It also reports the standard deviation of the train-
ing-set AUC from cross-validation. Here, we compare
the performance of LR and GBM, each trained with dif-
ferent combinations of manual and Word2Vec features.
In Word2Vec, all results used the last 25 codes (this value
outperformed other candidates such as 15 codes, see
Appendix C) in the patient vector summation step. Other
sensitivity analyses can be found in Appendix C.

Using both manual and Word2Vec features in com-
bination yields the best results regardless of the model
used (LR: 0.786+0.0058, GBM: 0.814£0.0045, GBM with
tuned parameters: 0.8251+0.0045, all from cross-valida-
tion; see Fig. 3 for ROC curves). Each of these compari-
sons is statistically significant after Bonferroni correction
using paired t-tests, P<0.00001. Within LR, Word2Vec
features alone perform the second-best with a test AUC
of 0.757, followed by manual features alone with an AUC
of 0.747. Within GBM, the manual feature model yielded
a test AUC of 0.804. The Word2Vec model yielded a test
AUC of 0.768. We compared the sensitivity of the GBM
models trained on the three different feature sets when
the specificity is fixed at 0.75. The sensitivity of the Word-
2Vec features was 0.653, the manual features yielded
0.716, and the combination of the two was 0.748. In addi-
tion, we computed the net reclassification improvement
(NRI) [41] from the GBM model with manual features to
the GBM model with both manual and Word2Vec fea-
tures. The NRI was 0.0142 with a 95% confidence interval
(CI) [0.0006, 0.0278]. The NRI for events (readmission)
was 0.0059 with a 95% CI [-0.0073, 0.0191], and the NRI
for non-events was 0.0083 with a 95% CI [0.0050, 0.0116].
The LR LACE baseline far underperformed the rest of
our models with AUCs of 0.655 from cross-validation
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Table 1 Raw and Manually Derived feature descriptive statistics of the whole target population, those who were not readmitted

within 30 days, and those who were. The lab test features are not shown

Descriptive Statistics of Raw and Manually Defined Features

All Not readmitted in 30 days Readmitted in 30
(n=428,669) (n=403,695) days
(n=24,974)
Variable Number (%) Number (%) Number (%)
or or or

Mean (Std.Dev)

Mean (Std.Dev)

Mean (Std.Dev)

Raw Features

Sex (Female)

Age

<1

1-14

15-24

25-64

>65

Length of Index Admission Stay

Discharge Disposition

01: Transferred to an acute care inpatient institution
02: Transferred to Continuing Care

03: Transferred to Other Facility

04: Discharged to home or home setting with sup-
port services

05: Discharged home (no support services required)
06: Signout (left against medical advice) & AWOL
(absent without leave)

07: Died

12: Patients who do not return

266,549 (62%)
12,841 (3%)
20,020 (5%)
34,125 (8%)
243,808 (57%)
117,875 (27%)
2(4)

133 (0.03%
10,081 (2%
2249 (0.5%,
33,954 (8%

376,625 (88%)
4699 (1%)

567 (0.1%)
361 (0.08%)

Manually Defined Features (Excluding Lab-Based Features)

Admitted through ED - Index

Num. procedures - Index

Num. unique procedures - Index
Num. unique ICD codes - Index
Num. unique drugs - Index / Last 2y

Num. prescribed days - Index / Last 2y

Num. prescription records - Index / Last 2y

Num. hospital admissions - last 6 m / 1y

Num. emergency department visits -last 6 m / 1y
Num. non-emergency department visits - last 6 m
/1y

Total length-of-stay in hospital - last 6 m / 2y
Num. General Practice Visits - last 6 m / 1y

Num. General Surgery Visits - last6 m / 1y

Num. Internal Medicine Visits - last 6 m / 1y

147
7.18 (6.73)

4662 (125.33)/
1730.75 (2719.67)
240(16.83)/
53.85 (162.04)
0.16 (0.50) /
026(0.72

2.58)/
206 4.00

072)

45 (2.58)

(4.00)

372(869)/

563(1476)
478.12)/
@

4 78(21.28)
8.98 (1 0,89) /
14.29 (16.77)
0.52(2.09)/
0.68 (2.80)
1.00(3.61)/
144 (5.22)

Patient with physician claim incurred - last 2y / 3y / 4y 416,397 (97%) /

417,609 (97%) /
418,188 (98%)

253,429 (63%)

10,257 (3%)

19,279 (5%)
32,931 (8%)
233,650 (58%)

107,578 (27%)
2(4)

101 (0.03%)
9311 (2%)

2055 (0.5%)
29,805 (7%)

357,453 (89%)
4065 (1%)

566 (0.1%)
339 (0.08%)

353,341 (88%)
1.57 (1 69)
6 (1.64)
4.27 3.59)
43 (241)
699 (6.55)

45.01(122.87)/
1671.71 (2680.03)

/

233(15.68)/51.39 (156.83)

4(045)/
023 (0.64)
39(244)/

97 (3.74)
3.60 (8.30)
542 (1407
6(741)/
426 (19.77)
8.79(1043)/
13.97 (16.03)
0.50(1.94) /
0.65 (2.56)
092 (3.28)/
2(4.71)

/
)

393,1 96 (97%) /
394,359 (98%) /
394,921 (98%)

13,120 (52%)

2584 (10%)
741 (3%)
1194 (5%)
10,158 (41%)
10,097 (41%)
4(7)

32(0.1%)
770 (3%)
194 (0.8%)
4149 (17%)

19,172 (77%)
634 (3%)

1(0.004%)
22 (0.09%)

23,771 (95%)
1.06 (1.87)
1.04 (1.77)
5.16 (4.52)
2.12(3.26)/ 1031
(8.50)
7135(157.82)/
2685.03 (3144.93)
349 (29.76) /
93.62 (226.78)
046 (0.98) /
0.73(143)
244 (4.18)/
3.52(6.76)
552(1346)/
8.92 (22.96)
498 (15.25)/
13.26 (37.07)
8(1627)/
19.62 (25.37)
0.79(3.73)/
1.14 (5.35)
2.26 (6.98) /
3.37(10.22)
23,201 (93%) /
23,250 (93%) /
23,267 (93%)
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(continued) Table 1
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Descriptive Statistics of Raw and Manually Defined Features

All Not readmitted in 30 days Readmitted in 30
(n=428,669) (n=403,695) days
(n=24,974)
Variable Number (%) Number (%) Number (%)

or
Mean (Std.Dev)

or
Mean (Std.Dev)

or
Mean (Std.Dev)

1835.68 (2038.73) /
238930 (2601.73) /
2870.56 (3086.34)

Claimed amount - last 2y / 3y / 4y

179039 (1932.89) /
2330.13 (247042) /
2800.01 (2934.25)

2567.71(3222.20)/
3345.84 (4069.96) /
4010.92 (4790.24)

Comorbidity

Charlson score, mean (Std.Dev) 0.42 (0.99) 0.40 (0.96) 0.81(142)
Hypertension 124,407 (29%) 114,068 (28%) 10,339 (41%)
Diabetes 59,359 (14%) 54,119 (13%) 5240 (21%)
Heart failure 26,217 (6%) 22,534 (6%) 3683 (15%)
Asthma 8503 (2%) 8013 (2%) 490 (2%)
Table 2 Area Under the Curve (AUC) of models generated with Discussion

Python, where the Word2Vec features are the sum of the numeric
vectors of the last 25 codes

Validation and Test AUCs of Different Models and Feature
Configurations

Model Features Average Cross- Test
Validation AUC (St. AUC
Dev.)

Logistic Regression (LR) ~ Manual 0.7612 (0.004123) 0.747

Word2Vec 0.7470 (0.005600) 0.757
Manual and 0.7862 (0.005758) 0.783
Word2Vec
Gradient Boosting Ma- Manual 0.8037 (0.004001) 0.804
chine (GBM) Word2Vec 0.7700 (0.005138) 0.768
Manual and 0.8138 (0.004534) 0.813
Word2Vec
Manual and 0.8249 (0.004549) 0.826
Word2Vec!

Logistic Regression (LR) LACE 0.6548 (0.006444) 0.655

fGBM with manually selected training parameters (see Section Methods -
Model Training)

and 0.655 on the test set. Though our main purpose is
to compare feature sets, the results also provide a com-
parison between models. Fixing the set of features used,
GBMs perform better than LR models. When using
manual and Word2Vec features, GBM is statistically bet-
ter during cross-validation than LR according to a two-
sided paired t-test with P<0.001. We computed the NRI
between the two models, both with manual and Word-
2Vec features. The NRI was 0.0570 with a 95% CI [0.0407,
0.0732]. The NRI for events was 0.0354 with a 95% CI
[0.0197, 0.0511], and the NRI for non-events was 0.0216
with a 95% CI [0.0177, 0.0255]. We also evaluated the
performance of our best model (GBM Tuned) on differ-
ent subpopulations and obtained the feature importance
analysis result of the model. These results can be found in
Appendix D.

In this paper, we built features and models to predict
30-day readmissions using seven years of data from 429 K
patients. We considered Word2Vec features, which were
automatically generated using machine learning tech-
niques, as well as manual features. Our analysis shows
that Word2Vec features improve the prediction accuracy
and that equipping an advanced prediction model with
both the manual and Word2Vec features achieves the
best performance. Our best model achieved an AUC of
0.83 on a test set over 42 K patients, which was not used
during the model building.

Using only the automated features also showed good
performance. LR using only the Word2Vec features had
AUC 0.76 and GBM using the same features was AUC
0.77. This shows the potential of using features that are
automatically generated without domain experts’ manual
work. We also note that using only manual features per-
formed well, too: LR (resp., GBM) achieved AUC 0.75
(resp., 0.80), which is similar to or higher than most of the
models reported in literature. This underscores a major
strength of this study — the high quality of the data used,
which likely contributed to the high AUC values obtained
using manual features. Regarding data quality, the prov-
ince of Alberta has a single payor, universally accessible,
integrated health system, which enables the collection of
comprehensive administrative data, with minimal loss
to follow-up. In all the feature combinations, GBM con-
sistently performed better than LR. This showcases the
importance of utilizing more recent advancements in
machine learning to make better predictions in the health
sector; it is likely that even higher performance could be
achieved by employing and tuning state-of-the-art classi-
fication techniques, at the cost of a higher computational
load. Another strength is that our model makes predic-
tions for all age ranges, covers both medical and surgical
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10-Fold Cross Validation Mean AUC Comparison

m LR
s GBM

I GBM Tuned

0.6

AUC

0.4

0.2

0.0
LACE Manual Word2Vec Manual + Word2Vec

Features Used

Fig. 1 Average Area Under the Curve (AUC) comparison for Logistic Regression (LR) and Gradient Boosting Machines (GBM) on different feature sets
using 10-fold cross validation. See the ‘Methods - Model Training’ section for an explanation of the model GBM Tuned

Test AUC Comparison

LR
s GBM

s GBM Tuned
0.8

0.757 [0:f68

0.6

AUC

0.4

0.2

0.0
LACE Manual Word2Vec Manual + Word2Vec

Features Used

Fig. 2 Area Under the Curve (AUC) comparison for Logistic Regression (LR) and Gradient Boosting Machines (GBM) on the test data using different fea-
ture sets. See the'Methods - Model Training' section for an explanation of the model GBM Tuned

admissions, and is not limited to patients with a specific = and less detailed data source compared to electronic
condition. medical or electronic health records. Accordingly, infor-

Our study is not without limitations. First, linked mation from the latter type of repository, such as nar-
administrative data were used, which are a less complete  rative physician and allied health notes, may further
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Feature-Based ROC Curve Comparison
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Fig. 3 Receiver Operating Characteristic (ROC) Curves for Gradient Boost-
ing Machine (GBM) models trained using only Word2vec features, only
manual features, and a combination of Manual and Word2Vec features

improve prediction accuracy when incorporated into
the approach studied here. Second, if a patient died after
discharge without being readmitted, then the death was
not captured in our data. Third, although our results can
be considered generalizable to other single-payor, uni-
versally accessible health systems (such as those in other
Canadian provinces), generalization beyond this setting
should be performed with caution. Lastly, in the process
of building Word2Vec features, we added the numeric
representations of words in a patient’s sentence to obtain
a feature vector for the patient. More sophisticated meth-
ods to combine the numeric vectors may improve the
prediction performance.

Overall, the models we created performed similarly
well, but using a machine learning model along with the
computer-generated features improved the prediction
accuracy. Using only the Word2Vec features produced
models with AUCs similar to or higher than previous
work based on features automatically generated from
electronic health records [19, 26]. Although the perfor-
mances of different studies cannot be compared directly
due to different methods and samples, these results vali-
date the potential of the proposed automatic feature gen-
eration. There have been some attempts to define a large
number of features manually from longitudinal data and
apply feature selection methods [20—-24, 42]. However, it
is unclear how to represent temporal aspects as features
(for example, one has to determine whether to distin-
guish the same diagnosis code issued one week ago vs.
three months ago and how). Also, the manual method
may be labor-intensive and less applicable generally
across different systems. Our paper provides a compre-
hensive and automated method to derive features from
longitudinal data that takes the temporal components
into account. Also, there have been some studies training
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a deep learning model such as a convolutional neural
network using longitudinal data [19, 25, 30, 43]. In con-
trast, we present a feature generation method that sum-
marizes longitudinal data (including its temporal aspects)
into a single feature vector so that it can be used to train
any prediction model. The suggested method provides
an interpretation of the generated features (Appendix
B), which is often difficult in deep learning prediction
models. The fact that using both kinds of features results
in the best accuracy in our study raises the question of
whether it is feasible to improve the automated feature
generation to such an extent that the need for manual
features can be eliminated.

To implement the presented model, we needed to link
administrative data to create patient sentences, compute
the numeric representations of the sentence components
(e.g., diagnosis codes, procedure codes, etc.), and build
the prediction model. Once the model is trained, we can
make a prediction for a new patient by first converting
his/her records into a sentence, computing the Word-
2Vec features of the patient (by using the numeric repre-
sentations of words previously obtained), and computing
the manual features for models that require them. Note
that all of these steps after model training can be auto-
mated in practice and require the same data access as the
LACE model, because both require accessing adminis-
trative data of a patient. The major computations of our
framework are learning the numeric representations
of codes and training a machine learning model, which
are done a priori, before making a prediction for a new
patient. Computing the features of the target patient in
real-time would require linking the patient’s data from
different sources in real-time. This study benefited from
the fact that the data are from an integrated health sys-
tem. However, such integrated data sets are expected to
become more available in the near future (e.g., the CRISP
program [44], as well as others [45-47]), and our study
demonstrates the potential of those initiatives to innovate
healthcare delivery. Also, we highlight that our model is
not limited to a specific subpopulation and yet showed
high performance. Deploying a unified model can save
tremendous amounts of administrative cost and effort
compared to deploying multiple models.

In general, it is more desirable to predict readmission at
the time of admission than the time of discharge, but the
prediction timing of most past studies is at discharge [9].
The present study predicts readmissions also at discharge
because our models used some variables from the index
hospitalization episode in addition to records from before
the index admission. Therefore, building models that pre-
dict at the time of admission is beyond the scope of the
current study. It is also preferable to predict preventable
readmissions so that appropriate action could perhaps
be taken to avoid the second admission. However, past
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studies have shown a wide variation in the definitions of
preventable readmissions and, therefore, operationalizing
models to predict this outcome remains a challenge. One
important use of readmission prediction is to inform tar-
geted interventions that may prevent readmissions. Past
studies suggest that some post-discharge interventions
can reduce readmissions and save associate costs [48, 49].
For example, Alberta provides home-based acute care for
individuals with chronic or complex diseases or low acu-
ity medical conditions. Because resources for these inter-
ventions are limited, health systems are under pressure
to better target these interventions. Using our prediction
model to help decisions regarding these interventions is a
future direction to explore.

In conclusion, we have shown that using both com-
puter-generated and manual features improved predic-
tion accuracy over manually-derived features alone and
over a LACE model. This demonstrates that modeling
using machine learning features can improve upon con-
ventional methods, illustrating the potential of this new
method to improve understanding of readmission and its
effect on clinical care delivery.
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