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Abstract

The ability to discriminate between normal and impaired dynamic cerebral autoregulation

(CA), based on measurements of spontaneous fluctuations in arterial blood pressure (BP)

and cerebral blood flow (CBF), has considerable clinical relevance. We studied 45 normal

subjects at rest and under hypercapnia induced by breathing a mixture of carbon dioxide

and air. Non-linear models with BP as input and CBF velocity (CBFV) as output, were imple-

mented with support vector machines (SVM) using separate recordings for learning and vali-

dation. Dynamic SVM implementations used either moving average or autoregressive

structures. The efficiency of dynamic CA was estimated from the model’s derived CBFV

response to a step change in BP as an autoregulation index for both linear and non-linear

models. Non-linear models with recurrences (autoregressive) showed the best results, with

CA indexes of 5.9 ± 1.5 in normocapnia, and 2.5 ± 1.2 for hypercapnia with an area under

the receiver-operator curve of 0.955. The high performance achieved by non-linear SVM

models to detect deterioration of dynamic CA should encourage further assessment of its

applicability to clinical conditions where CA might be impaired.

Introduction

New advances in the continuous, non-invasive measurement of arterial blood pressure (BP)

and cerebral blood flow (CBF), have facilitated the evaluation of dynamic cerebral autoregula-

tion (CA) at the bed side or during physiological maneuvers [1]. CA is the mechanism respon-

sible for maintaining CBF relatively constant, despite changes in mean BP in the range 60–150

mmHg [2–3].

Dynamic CA has been defined as the transient response of CBF, usually estimated as CBF

velocity (CBFV) with transcranial Doppler, to a sudden change in BP. Although initially pro-

posed as the CBFV response to a BP drop induced by the rapid release of compressed thigh

cuffs [4], a number of other maneuvers have been proposed to induce changes in BP to pro-

voke corresponding changes in CBFV [5–8]. Of considerable interest is the demonstration
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that dynamic CA can be assessed using spontaneous fluctuations of BP and CBFV, by assum-

ing that these signals correspond to the input and output variables, respectively, of a linear or

non-linear model whose properties can describe the physiological or pathological characteris-

tics of the CBF regulatory mechanisms. Although the use of spontaneous fluctuations has clear

advantages, such as maintaining physiological stability and facilitating clinical studies in criti-

cally ill patients, its reliability has been questioned due to the limited signal-to-noise ratio

(SNR) resulting from relatively small fluctuations of BP and CBFV.

To address the SNR limitation, without resorting to special maneuvers to increase BP vari-

ability, investigators have proposed more advanced models that could overcome the limita-

tions of standard linear transfer function analysis (TFA), which is the classic analytical

approach used in this context [9]. These models have included dedicated neural networks,

Wiener-Laguerre kernels, multivariate modeling, principal dynamic modes, multi-modal pres-

sure-flow or wavelet analysis [10–16]. We have previously reported that support vector

machines (SVM) [17] have particular advantages to model dynamic CA, including its potential

to capture non-linear behavior, one aspect of dynamic CA that has not received enough atten-

tion. More recently, we have also reported on the possibility of quantifying dynamic CA per-

formance using a ‘model-free’ index of autoregulation (mfARI) [18], which could be a more

robust metric than the more established dynamic autoregulation index (ARI) proposed by

Tiecks et al. [4]. In the present study, we have compared mfARI values estimated from non-lin-

ear SVM models with both the gain and phase estimates provided by TFA and the classic ARI

index of Tiecks et al. to assess the relative diagnostic performance of these methods. For this

purpose, we compared baseline recordings of BP and CBFV from healthy subjects with similar

recordings from the same subjects in hypercapnia, which is often used as a surrogate of

impaired CA [1, 19–20]. The relevance of this investigation is to allow a controlled assessment

of the diagnostic performance of different methods for the quantification of dynamic CA

using the receiver-operating characteristic curve (ROC) approach before translation to clinical

applications.

In summary, we tested the hypothesis that using mfARI to measure the quality of responses

derived from SVM non-linear models provides greater discrimination of reduced dynamic CA

in comparison to the combination of TFA and the standard ARI.

Materials and methods

Subjects and measurements

This study uses healthy subject data from previous studies with measurements obtained at rest,

during baseline physiological conditions and hypercapnia induced with 5% carbon dioxide

(CO2) breathing [19, 21]. In summary, subjects aged 18 years or older, free from hypertension,

diabetes, migraine, epilepsy, or any other cardiovascular or neurological disease, were studied

in a temperature controlled laboratory free from distraction. Subjects were asked to refrain

from ingesting alcohol or caffeinated products in the 12 h preceding their participation. Ethical

approval was obtained from the Southampton and South West Hampshire Research Ethics

Committee A (10/H0502/1), and written informed consent was obtained in all cases.

Measurements were made in the supine position. CBFV was recorded in the right middle

cerebral artery with transcranial Doppler (Companion III, Viasys Healthcare, San Diego, CA,

USA) using a 2 MHz transducer. BP was measured non-invasively using arterial volume

clamping of the digital artery (Finometer, Finapres Medical System, Amsterdam, The Nether-

lands). Delivery of 5% CO2 in air was achieved with a face mask (Vital Sing, Totowa, NJ,

USA), which was connected to a CO2 delivery subunit. The subunit comprises a Y valve that

controls whether CO2 or air is being administrated and a 200 I Douglas bag used to store the
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CO2/air mixture. The face mask was also connected to a capnograph (Datex Normocap 200,

Helsinki, Finland) to measure end-tidal CO2 (EtCO2) continuously. A 3-lead surface electro-

cardiogram (ECG) was also recorded.

Baseline values of CBFV, BP and EtCO2 were recorded for an initial period of 5 min. with

subjects breathing normal air, after all variables were stable for at least 15 min. This was fol-

lowed by a 5 min. recording with each subject breathing the CO2/air mixture.

Signals were sampled at a rate of 200 Hz. All signals were filtered in both directions using

an eight-order Butterworth low-pass filter with a cut off frequency of 20 Hz. ECG was used for

detecting the beginning and end of each cardiac cycle and mean beat-to-beat values were esti-

mated for BP, CBFV, HR and EtCO2. These physiological parameters were interpolated using

a third order polynomial and resampled to 0.2 s to create a uniform time base. Finally, the sig-

nals were sub-sampled to 2 Hz and its amplitude normalized within the [0–1] interval for use

by the SVM.

Transfer function analysis

The Welch’s periodogram method was used to estimate auto-power and cross-spectral power

densities in order to calculate a transfer function (TF) using BP as input and CBFV as output.

Each 5 min. recording was broken down in 102.4 s (512 samples) segments of data and FFT

transformed with 50% overlap, following a multiplication by a Hanning window as recom-

mended by the Cerebral Autoregulation Research Network [9]. The resulting estimates of gain

and phase were averaged for the low frequency (LF: [0.07–0.2] Hz) and very low frequency

(VLF: [0.02–0.07] Hz) ranges, for comparison with the ARI estimates as described below.

Classic dynamic autoregulation index

The method proposed by Tiecks et al. [4] assesses changes in CBFV in response to changes

introduced in BP by the sudden release of inflated bilateral thigh cuffs. The relationship

between the BP and CBFV signals is described by a second order differential equation with

three parameters, which was used to generate responses for specific trios of parameter values

as ten grading templates associated to index values between 0 (absence of autoregulation) and

9 (best autoregulation). The ARI value of an actual CBFV response to a thigh-cuff maneuver is

determined by selecting the template that best fits the observed signal. We used continuous

ARI values obtained by interpolation as indicated in Chacon et al. [22].

Model-free autoregulation index

Unlike the classic ARI, this index does not need to be calculated by fitting templates produced

by an arbitrary mathematical model and it is not limited to responses from a linear system.

Thus, mfARI values can be used to characterize responses from both linear and non-linear

models. This index was designed to be calculated from the response to a thigh-cuff maneuver,

but it can also be used to evaluate step responses generated by a model, as exemplified in Fig 1.

The method runs an optimization process to fit the best pair of straight lines to the CBFV

response by minimizing the sum of eT and eS errors (Fig 1). One straight line characterizes the

transient state (usually with a positive slope) and the other, horizontal line, represents the

steady-state response of the system (a constant, Ks). The rise time (Δτ) of the former straight

line, i.e. the duration of the transient state, corresponds to the first parameter estimated from

the step response; the second parameter is the constant Ks itself. Finally, a third parameter is

determined that corresponds to the angle (ϕ) between the straight line that represents the tran-

sient state of CBFV and the straight line that represents the transient BP signal. To obtain

index values in the same scale of [0–9] used by the classic ARI, we used templates, as proposed
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by Tiecks et al. [4], to gauge the three mfARI parameters (Δτ, Ks and ϕ) from each one and

generated a regression equation to relate them to the corresponding ARI values. In this way,

for each model’s response to a BP step it is possible to obtain an mfARI value by using this

regression equation. The advantages of mfARI, in terms of correctness and reproducibility, as

well as its theoretical foundations, have been reported previously [18].

Proposed models

Support Vector Machines have been used to obtain non-linear models of the ABP-CBFV

dynamic relationship [17]. The fundamentals of SVM are presented in S1 Appendix. SVM are

static models that relate an input vector to an output real value. In order to capture the tempo-

ral relationship of two or more signals, it is necessary to add external delays or recurrences.

Specifically, we used ν Support Vector Regression (ν-SVR) to develop dynamic univariate

models with BP as input and CBFV as output of two types: Non-linear Finite Impulse

Response (NFIR) models and Non-linear Autoregressive (NAR) models. The structures of

these types of models are shown in Eqs (1) and (2) respectively, in which p(t) is the BP value at

time instant t, v̂ðtÞ is the predicted CBFV at time instant t, and F represents a non-linear func-

tion.

v̂ðtÞ ¼ FðpðtÞ; pðp � 1Þ; � � � ; pðt � npÞÞ ð1Þ

v̂ðtÞ ¼ Fðv̂ðt � 1Þ; v̂ðt � 2Þ; � � � ; v̂ðt � nvÞ; pðtÞ; pðp � 1Þ; � � � ; pðt � npÞÞ ð2Þ

Fig 1. mfARI parameters. Characterization of a typical model’s CBFV response (dotted line) to a BP negative step

(dashed line). Δτ is the duration of the transient response. Vbase is the baseline level, which is used to normalize the

signal before determining the slope of the straight line that characterize its transient response (thick solid line). The

horizontal thick solid straight line is the representation of the constant steady state response (Ks). The angle between

the line of transient CBFV response and line of BP recovery is the parameter ϕ. eT and eS are examples of the errors in

the transient and steady state phase respectively, their sum is minimized to fit the best set of straight lines.

https://doi.org/10.1371/journal.pone.0191825.g001
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Each pair of signals, i.e. simultaneous recordings of spontaneous fluctuations of BP and

CBFV of one subject, was separated into two sections: the training segment, consisting of the

first two and half minutes of the signals, and the validation segment, with the last two and half

minutes. All models were trained with the former section using the one-step-ahead prediction

strategy, and validated with the latter fragment following the model predictive output strategy,

in which the model predicts the complete CBFV validation segment for the unseen validation

BP segment. The search for both the delays in the BP signal and the recurrences was made

empirically. The hyper-parameters of non-linear ν-SVR were bounded by grid search. Then

the process was repeated after interchanging the training and validation segments.

The efficiency of a model was determined with the Pearson’s correlation coefficient (CC)

between the real CBFV signal and the CBFV estimated by the model. The best model for each

subject is the one with the highest CC in the validation segment. But high correlation is not

enough to guarantee that a model’s response has physiological plausibility. To solve this prob-

lem, we implemented a computational routine, based on the indications suggested by Ramos

et al. [23], that automatically discards models that generate non-physiological responses.

Training and validating subroutines were implemented using the R environment [24] to libsvm
[25] in package e1071 [26].

Statistical analysis

Data normality was tested using Shapiro-Wilk’s statistic. Paired comparisons were made with

the Student’s t-test or the Wilcoxon test as appropriate.

We evaluated each approach separately by analyzing three different linear mixed-effect

models (LMEM) that included, following current recommendations [27–28], both random

intercepts and random slopes by subject. LMEM were built using the lmerTest R package [29]

and estimated marginal means, standard errors, confidence intervals and contrast p-values

(employing the Kenward−Roger approximation for degrees of freedom) were obtained with

the lsmeans [30] package. The LMEM to analyze the goodness-of-fit of the models used as

fixed effects the model structure (NFIR or NAR) and the subject’s condition (normal or hyper-

capnia), as well as their interaction. In this case, correlation coefficients were previously con-

verted to standard z scores for arithmetic manipulation using Fisher’s transformation. The

LMEM to compare autoregulation index values also considered model structure and subject’s

condition, but the index type (classic ARI or mfARI) was also introduced as a fixed effect. The

LMEM for TFA included the TF coefficient (gain or phase), the frequency range (VLF or LF)

and the subject’s condition. In this case, individual TF coefficient values had to satisfy recom-

mended statistical criteria imposed on the coherence function to be included in the study [9].

The discriminatory ability of the different approaches was compared in terms of the area

under the ROC curve (AUC). ROC curves were obtained from autoregulation index values by

using numbers in [0–9] as discrimination thresholds, while we used the subject’s mean values

of TF gain and phase for this. AUC values achieved by each method were compared with the

non-parametric test provided in the pROC R package [31], which is based on the bootstrap

method (5,000 iterations). In all cases, p< 0.05 was considered statistically significant.

Results

Good quality recordings were obtained for 45 subjects aged 31 ± 12 years, in both baseline and

hypercapnia. Grand means and standard deviations (SD) of systemic and cerebrovascular

parameters, including indices of dynamic CA across subjects, are given in Table 1. The Sha-

piro-Wilks test indicated lack of normality in the case of BP. In the TFA analysis, one baseline

case and two cases of hypercapnia did not meet the bounds imposed by the coherence function
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and were removed from the study. Noteworthy, most parameters in Table 1 showed highly sig-

nificant changes as a result of hypercapnia. Subject-specific TF coefficients are detailed in S1

File.

Spontaneous fluctuations of BP, EtCO2 and CBFV for a representative subject are shown in

Fig 2 where the characteristic slow rise in CBFV is observed following breathing 5% CO2 in air

(Fig 2B).

All NAR models exhibited acceptable responses to the input step of BP, while responses

with plausible physiological patterns could not be obtained with NFIR models for two subjects

in hypercapnia. Global mean step responses, for each type of model and condition, are given

in Fig 3, in which the difference in temporal pattern due to hypercapnia can be clearly appreci-

ated. In all cases, significant test correlation coefficients were obtained. Individual responses

can be found in S2–S5 Files. Fig 4 illustrates a comparison of the actual CBFV with the pre-

dicted response by a NAR model for a representative subject. NFIR models reached similar

levels of correlation in both conditions (p = .198), which were significantly lower than the cor-

relations obtained by NAR models (p< .003). The best goodness-of-fit was achieved by NAR

models in hypercapnia (p< .001). A summary of the ν-SVR hyper-parameters used by the

models selected for each subject can be found in Table 2. Detailed information is provided in

S6–S9 Files. In addition, these models presented lower variance, reflected in lower coefficients

of variation for mfARI, ranging from 25.4% (NAR, baseline) to 75% (NFIR, hypercapnia).

ROC curves produced by the non-linear models (Fig 5A) and by TFA (Fig 5B) are clearly

distinct. AUC values for each approach are summarized in Table 3. mfARI was significantly

better than ARI (p = .022) to detect changes in dynamic CA induced by hypercapnia with

NAR models, but not with NFIR model (p = .431). Neither autoregulation index (p = .178 for

mfARI, p = .748 for ARI) showed significant differences in AUC between NAR and NFIR

structures. For TFA, the coefficient with the largest AUC was phaseVLF, followed by gainLF and

phaseLF (Table 3). Nonetheless, phaseVLF AUC value still resulted significantly lower than for

both types of non-linear models using mfARI (p = .007 with NFIR, p< .001 with NAR). Nota-

bly, GainVLF was very close to the line of indifference (AUC = 0.506).

Table 1. Grand mean ± SD of physiological variables, TF coefficients and predicted dynamic CA index values in

baseline and hypercapnia.

Variable Baseline Hypercapnia p-value

BP (mmHg) 94.5 ± 18.4 99.4 ± 19.4 .012

EtCO2 (mmHg) 40.6 ± 3.1 45.8 ± 2.9 < .001

CBFV (cm s-1) 57.4 ± 2.9 65.8 ± 14.8 < .001

TF gainVLF (cm s-1 mmHg-1) 1.1 ± 0.6 1.0 ± 0.4 .287

TF gainLF (cm s-1 mmHg-1) 1.6 ± 0.7 1.2 ± 0.4 < .001

TF PhaseVLF (rad) 0.7 ± 0.2 0.5 ± 0.2 < .001

TF PhaseLF (rad) 0.4 ± .4 0.4 ± 0.3 .462

NAR (mfARI) 5.9 ± 1.5 2.5 ± 1.2 < .001

NAR (ARI) 4.7 ± 1.7 2.1 ± 1.2 < .001

NFIR (mfARI) 5.7 ± 1.8 2.4 ± 1.8 < .001

NFIR (ARI) 4.7 ± 2.0 1.3 ± 1.2 < .001

BP: Arterial blood pressure, EtCO2: End-tidal carbon dioxide, CBFV: Cerebral blood flow velocity, LF: Low

frequency (range), VLF: Very low frequency (range), NFIR: Non-linear Finite Impulse Response (model), NAR:

Non-linear autoregressive (model), ARI: (dynamic) Autoregulation index, mfARI: Model-free ARI. p-values from

paired Student’s t-test or Wilcoxon signed-rank test for difference between baseline and hypercapnia.

https://doi.org/10.1371/journal.pone.0191825.t001
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Fig 2. Signals in spontaneous fluctuations. Recordings of spontaneous BP (solid line, mmHg), CBFV (dotted line,

cm/s), and EtCO2 (dashed line, mmHg) from a female 29-years-old volunteer, in baseline (A) and hypercapnia (B). An

increase in all signals can be observed in the latter after 50 seconds.

https://doi.org/10.1371/journal.pone.0191825.g002
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Discussion

Main findings

Hypercapnia has often been adopted as a safe and convenient maneuver to reduce the efficacy

of CA, which could be regarded as a surrogate of CA impairment as observed in many clinical

conditions [1, 10, 17, 19, 32–33]. A number of studies have adopted the ROC as a ‘gold stan-

dard’ for assessing the classification effectiveness of dynamic CA parameters between these

two conditions [19, 34]. Compared to values of ROC AUC previously reported, the proposed

methods showed considerable improvements in the ability to detect changes in dynamic CA

efficiency due to hypercapnia, reaching AUC values over 0.9.

ν-SVR has been widely used in many different fields, but more often in the form of ‘static’

models. To allow the representation of dynamic behavior, as is the case of dynamic CA, we

had to add either a moving average or a recursive structure, as described in Eqs (1) and (2). Of

considerable relevance is the demonstration that, although higher values of AUC were

obtained with the autoregressive form (NAR), it was not significantly better to corresponding

mfARI values derived with the moving average structure (NFIR). Since NAR are computation-

ally much more demanding due to the need to optimize an additional parameter (nv in

Table 2), the NFIR alternative represents an easier and faster approach to non-linear modeling

using the SVM formalism. On the other hand, the superiority of the new mfARI, in compari-

son with the classical ARI [4], was only manifested when extracted from NAR models. This is

an intriguing finding that deserves further investigation. Moreover, given the limited repro-

ducibility of the ARI reported in previous studies, the improved intra-session reproducibility

of mfARI warrants further investigation in inter-session reproducibility studies [7, 24].

Fig 3. Mean step responses. Each curve shows the averaged step responses generated for each subject by NAR models

(solid line) and NFIR models (long dashed line) in baseline, and NAR models (dashed line) and NFIR models (dotted

line) in hypercapnia. Error bars represent ± SD.

https://doi.org/10.1371/journal.pone.0191825.g003
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Non-linear models of dynamic CA

CBFV variability using EtCO2 as a co-variate has already been studied, especially relevant are

the works of Mitsis et al. [10–11] and Chacón et al. [17], in which the influence of both BP and

Fig 4. Comparison of the actual and predicted CBFV signals. The CBFV signal predicted by a non-linear NAR

model (dotted line) compared with the actual CBFV signal (solid line) of a 26-years-old male volunteer, in baseline (A)

and hypercapnia (B).

https://doi.org/10.1371/journal.pone.0191825.g004
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EtCO2 on CBFV was analyzed using non-linear models. However, none of these studies

attempted the evaluation of the discriminatory ability of these models to detect changes in

dynamic CA efficiency during hypercapnia. Neither did they compare the non-linear models

with linear methods such as TFA. Chacón et al. also used models based on the SVM formalism

and demonstrated that the NAR structure was able to capture a complex interaction between

the two input variables, namely BP and EtCO2, on the generation of the output CBFV signal,

something that linear models cannot achieve. Specifically, the quality of the autoregulatory

responses from the NAR models decreased as the levels of EtCO2 increased (see figure 6 in

[17]), in concordance with previous direct observations on subjects. In contrast, non-linear

models in this study are univariate and, thus, only captured the relationship between the BP

signal and the CBFV signal. Nonetheless, they were able to detect alterations in the CBFV

dynamics and produce the expected patterns for autoregulatory responses after introducing

changes in EtCO2, as depicted in Fig 3.

The best linear discriminator was mean TF phaseVLF with an AUC of 0.749, which coin-

cided with the value of 0.746 obtained using classic ARI values estimated from the step

responses of transfer functions for subjects in the same conditions [19, 32] (of which we shared

29 cases). This attribute of the TF phase was already described by Birch et al. [35], who

reported a significant reduction of this coefficient during hypercapnia in contrast to baseline

values.

In respect to discriminatory ability, the great superiority of using non-linear models could

be demonstrated, as the two structures tested, in combination with mfARI, were significantly

better than any TF coefficient.

Study limitations

Although we have consistently used the term ‘hypercapnia’, capnography is just an indirect,

noninvasive measurement of the levels of arterial CO2. Nonetheless, its reliability for measure-

ments performed supine at rest has been well established and it has become an essential part of

patient care worldwide [36].

Despite inspiration of 5% CO2 in air being a well-established method to induce a deteriora-

tion in CA, the participants were healthy subjects, and it would be of great interest to evaluate

the discriminatory ability of these methods with patients suffering from diseases known to

impair dynamic CA. For this purpose, it would also be relevant to broaden the age range of the

control group.

The classification of subjects in baseline and hypercapnia was much superior to all previous

studies that can currently be found in the literature. Regardless of the great discriminatory

Table 2. ν-SVR hyper-parameters and validation correlations coefficients exhibited by the models selected for both non-linear structures in both conditions.

Model np nv C υ γ CC

NAR baseline 5 [1–8] 2 [1–6] 4602.7 ± 6419.0 0.48 ± 0.30 0.17 ± 0.34 0.74–0.80

NAR hypercapnia 3 [1–8] 1 [1–6] 4636.5 ± 6195.1 0.46 ± 0.28 0.40 ± 0.60 0.84–0.89�

NFIR baseline 8 [1–8] - 4604.6 ± 6644.5 0.44 ± 0.30 0.39 ± 1.27 0.67–0.75

NFIR hypercapnia 1 [1–8] - 4521.1 ± 6363.2 0.46 ± 0.33 1.19 ± 4.87 0.61–0.72

np: Mode [range] of the number of external delays of the BP signal used as model’s input, nv: Mode [range] of the number of external recurrences (CBFV) used as

model’s input, C: Mean ± SD of the values used as penalties of the error term, υ: Mean ± SD of the values used as lower bounds of the fraction of support vectors, υ:

Mean ± SD of the values used as lower bounds of the fraction of support vectors, γ: Mean ± SD of the values used as the radial base kernel scope, CC: Estimated

confidence interval for mean correlated coefficient, NFIR: Non-linear Finite Impulse Response (model), NAR: Non-linear autoregressive (model).

� Significantly higher (p < .001) compared to the other models.

https://doi.org/10.1371/journal.pone.0191825.t002
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ability offered by non-linear models, especially in combination with the model-free dynamic

autoregulation index, it continues to be a ‘black-box’ method, which contributes little informa-

tion to the understanding of the underlying mechanisms of dynamic CA.

The comparison with an established linear method showed that non-linear modeling

played a key role in achieving the high discriminatory ability of the proposed method. How-

ever, these ‘non-linear’ characteristics refer to the appropriate fitting of the model to the data,

and not necessarily to the characteristics of dynamic CA. For example, the non-linearity

adopted by the models with radial base functions could be a non-linear compensation to

numerically fit the data better from a more non-stationary than non-linear phenomenon.

Thus, with the type of SVM used in this study it is not possible to definitively establish the

characteristics that differentiate these models from the linear methods. Further studies, aiming

at discovering what valuable information can be obtained from these black-box methods,

would be necessary to shed light on these questions.

In a similar direction, to become a diagnostic tool with clinical applications, the proposed

method uses endpoint signals that have been demonstrated to be feasible to obtain in a clinical

setting, namely BP and CBFV. Unfortunately, state-of-the art technology does not yet allow

accessible and noninvasive measurements that could shed light on the underlying phenomena

implicated in deterioration of dynamic CA and further research in this direction is therefore

an important priority.

Conclusion

Non-linear models of the BP-CBFV relationship provided superior ability to detect changes in

dynamic cerebral autoregulation induced by hypercapnia, compared to the most commonly

used linear approach represented by transfer function analysis. Best results were obtained with

a new index of dynamic CA, that is ‘model free’ (mfARI) and hence does not depend on a pri-
ori conditions of the temporal pattern of the CBFV step response. The methodology used to

evaluate the approach clearly showed its clinical potential, demonstrating its ability to detect

diminished dynamic CA responses, even when the cause of the alteration is not being directly

observed. Further work is needed to validate this approach in a larger number of subjects,

Fig 5. ROC curves. In subplot (A) ROC curves achieved by non-linear models with classic ARI values for NFIR

(dotted line) and NAR models (dashed line), and with mfARI values for NFIR (long dashed) and NAR models (solid

line). ROC curves for TF are presented in subplot (B) with TF gainVLF (dotted line), TF phaseLF (dashed line), TF

gainLF (dot dashed line) and TF phaseVLF (solid line).

https://doi.org/10.1371/journal.pone.0191825.g005

Table 3. AUC values obtained by each approach when discriminating between baseline and hypercapnia.

Model/TF coef. mfARI ARI LF VLF p-value

NAR 0.955� 0.914 .022

NFIR 0.925� 0.909 .431

TF gain 0.667 0.506 < .001

TF phase 0.568 0.749 .023

p-value .178 .748 .321 .001

TF: Transfer function, ARI: (dynamic) Autoregulation index, mfARI: Model-free ARI, LF: Low frequency (range),

VLF: Very low frequency (range), NAR: Non-linear autoregressive (model), NFIR: Non-linear Finite Impulse

Response (model).

� Significantly higher than best AUC achieved by TF coefficients.

https://doi.org/10.1371/journal.pone.0191825.t003
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involving a wider range of ages and phenotypes, as well as to extend the reported findings to

alterations of cerebral hemodynamics introduced by other factors or pathological conditions.
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