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Abstract

Ultrasonic technologies pervade the medical field: as a long established imaging modality in clinical diagnostics; and, with
the emergence of targeted high intensity focused ultrasound, as a means of thermally ablating tumours. In parallel, the
potential of [non-thermal] intermediate intensity ultrasound as a minimally invasive therapy is also being rigorously
assessed. Here, induction of apoptosis in cancer cells has been observed, although definitive identification of the underlying
mechanism has thus far remained elusive. A likely candidate process has been suggested to involve sonochemical activity,
where reactive oxygen species (ROS) mediate the generation of DNA single-strand breaks. Here however, we provide
compelling new evidence that strongly supports a purely mechanical mechanism. Moreover, by a combination of specific
assays (neutral comet tail and staining for cH2AX foci formation) we demonstrate for the first time that US exposure at even
moderate intensities exhibits genotoxic potential, through its facility to generate DNA damage across multiple cancer lines.
Notably, colocalization assays highlight that ionizing radiation and ultrasound have distinctly different signatures to their
respective cH2AX foci formation patterns, likely reflecting the different stress distributions that initiated damage formation.
Furthermore, parallel immuno-blotting suggests that DNA-PKcs have a preferential role in the repair of ultrasound-induced
damage.
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Introduction

Ultrasound (US) is indispensable in most medical fields: (i) US at

very low intensities (,0.1 MPa acoustic pressure) far below the

thresholds for posing thermal and/or cavitational adverse effects is

used for medical diagnosis; (ii) high intensity focused US (HIFU,

.10 MPa acoustic pressure) is used for thermal ablation of

tumors; and (iii) non-thermal low-intensity US (0.1–1.5 MPa

acoustic pressure between the above two) as a potential candidate

for cancer therapy is currently under research [1]. Tissues exposed

to US energy can elicit a spectrum of biological response, each

with distinct therapeutic potential [1–6], including uptake of

exogenous molecules [7–14], necrosis, and apoptosis [1,3,6,15,16].

The biophysical modes of US are divided into three classes,

thermal, cavitational, and non-thermal non-cavitational effects.

Cavitation leads to a variety of mechanical stresses such as shear

stress, shock wave, high pressure, and chemical stress due to free

radicals formation, both of which have been inferred to act

simultaneously on all biological materials [15–17]. Accumulating

evidence indicates that intense US as well as low-intensity US

excluding thermal effect induce reactive oxygen species (ROS)

production, membrane fluidity, DNA single strand breaks (SSBs)

and several previous studies implied the importance of SSBs

arising from sonochemically produced ROS as DNA damage

initiating US-induced cell killing/death [2–4,6,15]. However, this

view is questionable, because numerous SSBs induced, for

example, by the mmol/L range of H2O2 lead to no or very few

double-strand breaks (DSBs), the most cytotoxic lesions of DNA

[18]. To date, however, there is no direct evidence on DSBs

induction and whether subsequent activation of DNA damage

response (DDR) pathways might occur after exposure to US. In

obvious contrast, data on the cellular response to ionizing

radiation (IR), including induction of DSBs and downstream

DNA damage response (DDR) have been more extensively

reported [19]. Here, we address this point evaluating the genotoxic

potential of low-intensity US. In our study, we assessed several

definitive endpoints associated with the formation and processing

of DNA damage, including DSBs, post exposure to US with a set

of experiment carried out in parallel with IR irradiation sering as

positive controls.

Results and Discussion

Neutral comet tail assaying (NCTA) was utilized to detect DNA

DSBs occurring in four different leukemia lines (U937, Molt-4,

Jurkat, and HL-60), that had been subjected either to IR (10 Gy,

unless specified otherwise), or US (as exposures using intensities of

0.3 or 0.4 W/cm2 lasting 1 minute). Positive results, in terms of
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extended comet tails compared with non-irradiated controls, were

observed across all cell lines measured in the period immediately

following exposure (t = 0) (Figure 1A). Quantitative comparison, in

terms of the average relative comet tail moment (RCTM) arising

(Figure 1B) produced the following trend across all cell lines:

RCTM0.4US.RCTMIR.RCTM0.3US, which underscores the

comparability of the respective US and IR doses chosen for this

investigation, in terms of their facility to induce similar levels of

DNA damage. Interestingly however, we noticed that IR produced

average RCTMs predominantly within the range 1.1–3, whereas

US exposures give rise to a wider range of resultant RCTM, the

distribution for which was also a function of US intensity

(Figure 1C and Figure S1).

Whereas NCTA analyses are regarded as DSBs, the presence of

distinct cH2AX foci can also represent a definitive signature for

DSBs [20]. We observed such cH2AX staining in all cells exposed

to 10 Gy (Figure 1F), and importantly, in all cell lines exposed to

US (Figure 1D) above a threshold intensity of circa 0.1–0.2 W/

cm2 (Figure 1E and Figure S2, S3), indicating, for the first time,

that US exposure might induce DSBs and thus present a tangible

genotoxic risk.

Post-exposure observation on cells exposed to IR compared

favourably with previous reports [21] in that cH2AX+ cells

exhibited discrete foci distributed across the nucleus (Figure 1F),

and also that subsequent temporal profiling of the cH2AX+
population exhibited peaking at 30 minutes post-exposure,

followed by gradual decay (Figure S4). Notably, this latter

reduction in total cH2AX+ populations tallied qualitatively with

trends also observed using NCTA (Figures 1H(ii) and 1I(ii)),

supporting the repair of IR-induced DSBs.

On US-exposed (insonated) cells, the relative fraction of

cH2AX+ was more pronounced, as confirmed by flow cytometry,

where cH2AX+ levels were approximately threefold higher

compared to IR exposed cells (Figure 1G). Affected cells also

exhibited a pan-nuclear cH2AX+ distribution, with occasional but

distinct foci superimposed (Figure 1F). Interestingly, the cH2AX+
population peaked at 60 minutes post-exposure for both the 0.3

and 0.4 W/cm2 US cases employed, followed by a recovery period

that plateaued after 6 h (Figure 1H(i) and Figure S4).

The obvious differences in typical cH2AX+ coverages arising

for IR and US exposed cells, together with their distinctive relative

comet tail moment distributions (Figure 1C), and significantly

different cH2AX+ peaking times, suggests that their respective

DDR signaling pathways are different in nature. Moreover, in

cases where US exposure was applied, employment of the pan-

caspase inhibitor z-VAD-fmk to suppress apoptosis appeared to

have negligible effect (Figure 1I(i) and Figure S5), whereas TRAIL-

induced cH2AX (caspase-mediated cH2AX) for example could be

abolished (Figure S5): persuasive evidence that the observed

induction and post-peak loss of cH2AX in all cases is likely

associated with DNA damage and repair.

To investigate, we undertook co-localization stains of cH2AX

with two major kinases responsible for H2AX phosphorylation,

ataxia-telangiectasia-mutated (ATM) and DNA-PKcs [22].

Figs. 2A–B show that the bulk of phospho-NBS1 and -ATM foci

colocalized to cH2AX foci after both US and IR exposures,

suggesting a general and coordinated recruitment of NBS1 and

ATM to stress-induced DSBs [23,24]. The pan-nuclear staining of

cH2AX that occurs only after US exposure may arise through

global ATM activation, perhaps via chromatin remodeling [25] in

response to the nature of the US stress.

Furthermore, staining investigations of the two major phos-

phorylation clusters (T2609 and S2056) available to DNA-PKcs

(for end-processing of DSB via non-homologous end joining

(NHEJ) [26–29]) revealed (Figure 2C), that DNA-PKcs-pT2609

foci were largely independent of cH2AX after US and IR

exposures, supporting earlier suggestions that NHEJ occurs

separately from homologous recombination HR [30,31]. Con-

versely, all IR-exposed cells displayed discrete, co-localized DNA-

PKcs-pS2056/cH2AX+ nuclear foci (Figure 2D), also confirming

previous reports that DNA-PKcs complements H2AX in response

to IR [22]. Interestingly, observations on US induced cH2AX+
populations also exhibited overlapping regions of co-localization

with DNA-PKcs, but additionally, a distinct signature of non-

colocalized peri-nuclear DNA-PKcs-pS2056 (Figure 2D). Thus,

preferential phosphorylation of DNA-PKcs-pS2056 may mediate

both NHEJ repair in bulk-nuclear US-induced DSBs, but also

signal to cH2AX presence around the nuclear periphery (see also

Figure S6). The mechanism by which DNA-PKcs S2056 is

distributed around the periphery of the nucleus remains unclear,

however, this localization patterns of the DNA-PKcs S2056 may

be one of the characteristic cellular responses to US-induced

DSBs.

We further evaluated the biochemical roles of ATM and DNA-

PK by applying the respective pharmacological kinase inhibitors

KU55993 (KU) and NU7026 (NU). Immuno-blots revealed that

IR elicited a greater ATM phosphorylation than did US

(Figure 3A), somewhat reflecting our earlier NCTA observation

(Figure 1A). Notably however, we found that KU, but not NU,

selectively reduced the phospho-ATM levels after US and IR

(Figure 3A). Here, phosphorylation of DNA-PKcs-S2056 (pS2056)

was greater after US than IR. As anticipated, NU inhibited S2056

phosphorylation significantly, whilst KU reduced ATM-depen-

dent T2609 phosphorylation [26], after US and IR. Moreover,

KU partially reduced US-induced DNA-PKcs-pS2056 in both

immuno-blotting and immuno-staining (Figure 3B, D), suggesting

crosstalk between ATM and DNA-PKcs-S2056 in response to US

exposure.

Given that US appears to activate DNA-PK in preference to

ATM, it is perhaps not surprising that NU was more effective in

reducing US-induced cH2AX protein levels than was KU (as

illustrated for the case of U937 cells (Figure 3B), and in the other

cell lines tested (Figure S7)) –an observation that was further

bolstered by complementary flow cytometry measurements

(Figure 3C and Figure S8), which also demonstrated complete

inhibition when using a KU/NU combination (Figure 3C(i)). Such

pharmacological inhibitions were also confirmed by immuno-

staining and reproduced in all cells (Figue 3D and Figures S7, S9).

The dependence of DNA-PKcs on US-induced H2AX phosphor-

ylation was also confirmed by comparing the US-response of

DNA-PKcs defective glioblastoma cell lines (M059J) with that of

its parental cell lines (M059K) (Figure S10). In summary, these

findings strongly support a preferential role for DNA-PKcs over

ATM, possibly without involvement of ATR, in the early signaling

from US-induced DSBs to cH2AX, but with the directly opposite

sense of signaling from IR-induced DSBs (Figure 3A, C) as has

been shown previously [22].

Finally, we wished to explore the physico-chemical mechanism

in US induced bio-effects by further testing the hypothesis that

sonochemistry plays a dominant role. Here, we evaluated the

relationship between US-induced OHN radicals and DSB induc-

tion. We found that US-induced OHN levels (DMPO-OH adducts)

in the aerobic DMPO solution increased in an intensity-, and

exposure time-, dependent manner (Figure 4A) where induction

rates of 1 and 2 DMPO-OH adducts per 0.3 and 0.4 W/cm2/

min, respectively, were an order of magnitude smaller than the 30

adducts per 10 Gy (Figure 4A) observed for the case of IR

exposure. Thus, the extracellular OHN level post-US was less than
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Figure 1. Induction and repair of DSBs and cH2AX foci after US or IR. (A) SYBR green-stained neutral comet tails immediately after exposure
of U937 (U), Jurkat (J), Molt-4 (M) and HL-60 (H) cells to US (0.3 or 0.4 W/cm2) or IR (10 Gy). (B) Relative tail moments (n = 100 cells, means 6 SD),
normalized to the respective untreated controls ( = 1.0). (C) Heterogeneous distribution to .3.0, 1.1,3.0 and 1 ( = control level) mean relative tail
moments after US, but a uniform distribution to 1.1–3 relative tail moment after 10 Gy in ,90% U937 cells (n = 100 cells). See Fig. S1 for other cell
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10% of that occurring post-IR, even though comparable doses

were applied (in terms of their potential to generate DNA damage

(viz Figure 1A). Furthermore, addition of the radical scavengers

DMSO and NAC at respectively high or low concentrations to

DMPO solution, either abolished, or partially reduced US-

induced OHN levels (Figure 4A; see caption, and Methods for

further details). Next, we determined the intracellular OHN levels

immediately after US using a hydroxyphenyl fluorescein (HPF)

assay [32]. Here, the mean fluorescence intensity (MFI) from a

shifted flow cytometry histogram was 1.5760.07 immediately after

exposure to 0.3 W/cm2 (Figure 4B), Thus, low levels of both

extra- and intra-cellular OHN arising in response to US cannot

fully account for the US induction of DSBs. Moreover, none of the

radical scavengers was effective at suppressing US-induced

cH2AX (Figure 4C). On the contrary, N2O gas, which is known

to suppress inertial cavitation of US [3], completely nullified the

induction of DMPO-OH adducts, cH2AX+ cells, and cell death

(Figure 4D–F). These observations taken in totality compel us to

the conclusion that US-mediated mechanical stress, rather than

any sonochemically generated radical activity, generates genomic

DSBs.

Here, we demonstrate for the first time that the mechanical

action of US using intermediate level intensities can induce DSBs,

which are announced by the presence of neutral comet tail and

cH2AX foci amongst a blanket pan-nuclear cH2AX with peri-

nuclear DNA-PKcs S2056. In addition, the present US intensities

of 0.3 and 0.4 W/cm2 , which gave rise to 0.132 and 0.144 MPa

peak acoustic pressures, respectively [16], are beyond the

diagnostic US range (,0.1 MPa) [1] and we confirmed that US

at 0.1 W/cm2 (0.082 MPa) could not induce DSBs (Fig. 1E).

These results emphasize the safety of diagnostic US, especially if

the following three points are taken into consideration: (i) very

short pulses (a couple of microseconds) used in diagnosis, (ii)

standing waves are unlikely to occur in in vivo exposures, and (iii)

the attenuation of acoustic waves in the human body. In

conclusion, we hope that these new and compelling observations

will provide not only a firm biophysical and biochemical basis for

understanding the genotoxic potential of US, but also guide future

translation in terms of safety thresholds.

Materials and Methods

Chemicals and Cells
The DNA-PK inhibitor NU7026 and ATM inhibitor

KU55933 were purchased from Calbiochem (Cambridge, UK).

Human leukemia cell lines U937, Molt-4, and Jurkat-T were

lines. (D) Green-fluorescentcH2AX images in U937, Jurkat, Molt-4 and HL-60 cells 30 min after 0.3 W/cm2 US (control cell images were not shown due
to no cH2AX+ cells). (E) Induction of cH2AX+ cells as a function of US intensity beyond a threshold of 0.1–0.2 W/cm2 (n = 3, mean 6 s.d.). (F) cH2AX+
cell images and (G) FCM histograms of cH2AX+ U937 cells 30 min after 0.3 W/cm2 and 10 Gy IR. Black, green, and red profiles are for control, US, and
IR, with MFIs of cH2AX+ cells (5–100 cH2AX log)). (H) Induction/decline of cH2AX+ U937 cells (FCM) with time after 0.3, 0.4 W/cm2 (i) and 10 Gy IR (ii).
(I) Reduction in tail moments during 3 h post- 0.3 W/cm2 US (i) or 10 Gy IR (ii). zVAD-fmk at 50 mmol/L was used to eliminate apoptotic DSBs.
doi:10.1371/journal.pone.0029012.g001

Figure 2. Differential ATM and DNA-PK signaling to cH2AX in response to US or IR. (A) Colocalization of distinct NBS1 pS343 foci to
distinct cH2AX foci; (B) Colocalization of ATM pS1981 foci to cH2AX foci; (C) DNA-PKcs pT2609 foci largely independent of cH2AX foci. (D) US- and IR-
induced DNA-PKcs pS2056 and cH2AX foci. US induced peri-nuclear high-fluorescent DNA-PKcs pS2056 foci (right) or were pan-nuclear with discrete
foci (left), whereas both foci after IR were distinct and colocalized. Fluorescent images were acquired 30 min after 0.3 W/cm2 US and 3 Gy IR in U937
cells.
doi:10.1371/journal.pone.0029012.g002
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commercially obtained (Japanese Collection of Research Bior-

esources (JCRB) Cell Bank [32]. HL-60 was also obtained from

JCRB Cell Bank (IFO50022). Cells were cultured in RPMI 1640

supplemented with 10% fetal bovine serum. Recombinant

TRAIL/Apo2L was from PeproTech (London, UK); a pan-

caspase inhibitor zVal-Ala-DL-Asp-fluoromethyl ketone (zVAD-

fmk) was from Peptide Institute (Osaka, Japan); N-acetyl-L-

cysteine (NAC) and propidium iodide (PI) were from Wako Pure

Chemical (Tokyo, Japan); 49,6-diamino-2-phenylindole (DAPI)

and 5,5-demethyl-1-pyrroline-N-oxide (DMPO) were from Do-

jindo (Kumamoto, Japan).

Sonication and Irradiation
Low-intensity-pulsed US with 100 Hz fixed pulse repetition

frequency and 10% duty factor (thereafter designated as US) was

generated using a 1.0 MHz acoustic setup [16,33]. In insonation

experiments, a 2 mL-aliquot at a fixed density of 16106 cells/mL

in a 35-mm polyethylene culture dish (Corning, NY) was sonicated

at 0.1–0.4 W/cm2 (devise-indicated intensities) for 1 min. These

four intensities corresponded to 0.061, 0.105, 0.132 and

0.144 MPa peak acoustic pressures, respectively [16]. A rise of

medium temperature during insonation was below 1uC [16]. For

IR treatment, cells were irradiated with 3 Gy (to produce discrete

IRIFs) or 10 Gy (a near-isoeffect dose for neutral comet tails

induced by 0.3 and 0.4 W/cm2) at a dose rate of 5 Gy/min using a

Model MBR-1520R-3 X-ray unit (Hitachi Medico Technology,

Kashiwa, Japan).

Neutral comet assay
Neutral comet tails (DSBs) were assessed in US-exposed cells

using a Comet assay kit and electrophoresis unit (Trevigen)

according to the manufacture’s instruction. At least 50 cells per

samples were analyzed by using a Comet Assay IV software (Leica

Microsystems). The relative tail moment was given by the ratio of

comet tail moments (mean 6 SD) of treated cells to those of

controls (ratio = 1.0).

Immunodetection
For immunofluorescent images, paraformaldehyde-fixed control

and treated cells were permeabilized/blocked with 2% BSA/

0.05% Triton X-100/Tris-buffered saline, and immunostained for

2 h with primary monoclonal antibody (mAb): anti-phospho-

H2AX S139 (cH2AX, Milipore), 1:400 or anti-ATM pS1981,

1:250 (Upstate Biotechnology) or primary polyclonal antibody

(pAb), anti-phospho-H2AX S139 (cH2AX, Active Motif), 1:500,

anti-NBS1 pS343, 1:1000 (Novus Biologicals), or anti-DNA-PKcs

pT2609 or pS2056, 1:250 or 1:600 (Abcam), respectively. Then,

cells were stained for 1.5 h with the secondary antibody: Alexa

Fluor 488 anti-mouse F (ab9) IgG or Alexa Fluor 555 anti-rabbit

F(ab9) IgG (Cell Signaling Technology), 1:400. Finally, the nuclei

were counterstained with 2 mg/mL DAPI, and the samples were

mounted in AntifadeTM (Molecular Probes). Fluorescent images

were acquired using a BX-50 fluorescence microscopy (Olympus

Optics).

For flow-cytometry (FCM), cells were fixed with 70% cold

methanol overnight, then blocked with 2% BSA/0.05% Triton X-

100/Tris-buffered saline and reacted with cH2AX mAb/Alexa

Fluor 488 anti-mouse IgG (1:400) to stain cH2AX+ cells, followed

by incubation with 1 mg/mL RNase A and 50 mg/mL PI for

allocating cH2AX+ cells to each of the PI-based cell-cycle phases.

The samples were finally run on an Epics XL flow cytometer

(Beckman Coulter).

For immunoblot analysis, whole-cell extracts were prepared in

RIPA lysis buffer containing sodium orthovanadate and cocktail

of protease inhibitors (Nacalai Tesque). High molecular weight

molecules of ATM and DNA-PKcs were separated in 5% precast

SDS-PAGE gels, whereas other lower molecular weight proteins

were separated in 15% precast SDS-PAGE gels. After transfer,

proteins on the Immobilon-P membranes (Millipore) were

western-blotted by using the primary antibodies: cH2AX mAb,

ATM pAb (Santacruz), ATM pS1981 mAb (Epitomics), DNA-

PKcs pAb (Epitomics), DNA-PKcs pS2056 pAb, DNA-PKcs

Figure 3. Effects of KU55933 (KU) and NU7026 (NU) on US- or
IR-induced cH2AX signaling. (A) Immunoblots of U937 cell extracts
30 min after US or IR and effects of KU and NU on ATM pS1981 and
DNA-PKcs pS2056/pT2609. (B) Greater suppression of US-induced
cH2AX by NU than KU up to 6 h after US in U937 cells in WB analysis.
(C) Effects of KU and/or NU: a greater suppression of US-induced
cH2AX+ cells by NU than KU, and abrogation by KU-plus-NU in FCM
analysis. (n = 3, mean 6 s.d.). *, P,0.05; **, P,0.01; ***, P,0.001. Cells
were treated with KU and/or NU (10 mmol/L) for 1 h before and after
exposure to 0.3 W/cm2 US (i) or 10 Gy IR (ii). (D) DNA-PK preceded ATM
for cH2AX induction by US: a preferential role of DNA-PK in cH2AX
induction was determined by immunostaining. Cells were treated as
Fig. 4C. ATM pS1981 (AT), DNA-PKcs pS2056 (PK), and cH2AX (H2)
positive/negative cells were counted at least 100 cells in each
experiment. The data shows the averages from 2 independent
experiments.
doi:10.1371/journal.pone.0029012.g003
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pT2609 mAb, caspase 3 pAb (Cell signaling) or GAPDH mAb

(loading reference, Organon Teknika), and the secondary HRP-

conjugated anti-mouse or anti-rabbit IgGs (Cell Signaling).

Protein expression levels were visualized by an enhanced

chemiluminescence (ECL) detection system (Nacalai Tesque),

and images were acquired by a LAS-4000 luminescent image

analyzer (Fuji Film).

Detection of extra- and intra-cellular ROS
The levels of US- or IR-induced OHN in extracellular fluids

were quantified by the electron paramagnetic resonance (EPR)

spin-trapping method [3,16]. For these, 2-mL aliquots of 10 mM

DMPO were dispensed into 35-mm dishes and exposed to 0.3 and

0.4 W/cm2 for 1 to 5 min or to graded IR doses (5–20 Gy),

followed by the immediate detection of DMPO-OH adduct signals

using a RFR-30 EPR spectrometer (Radical Research). DMPO-

OH adducts (OHN) were expressed as relative amounts to an

internal reference (Mn2+). To detect intracellular OHN, cell-

permeable hydroxyphenyl fluorescein (HPF) (Sekisui Medical) was

used, which detects mainly OHN and marginally ONOO— (,1/10

the OHN amount) [31]. Cells were loaded with 5 nM HPF for

15 min at 37uC, and exposed to 0.3 W/cm2, followed by the

immediate FCM analysis of US-induced intracellular OHN. Mean

fluorescence intensity (MFI) of the oxidized probe was quantified

to assess its fold increase over the control.

Statistics
Data were presented as means 6 s.d. Statistical significance

between any two data sets was analyzed using unpaired Student’s

t-test with Microsoft Excel 2007.

Supporting Information

Figure S1 Assay for neutral comet tails in Jurkat, Molt-4
and HL-60 cells immediately after 0.4 W/cm2 US
revealed the uneven broader distribution of 25–30, 35–
50% and 10–23% cells to ranges of .3, 1.1–3, and 1
relative tail moments, respectively, compared to a
rather uniform distribution of 80–90% majority cells to
a smaller range of 1.1–3 relative moments after 10 Gy
IR. Relative tail moment of 1.0 represents no induced DSBs as in

the control cells. After 0.3 W/cm2, similarly, 10–25, 30–40% and

,50% cells incurred .3, 1.1–3 and 1 (no DSBs) relative tail

moments, respectively. These results recapitulate the findings in

U937 cells (Fig. 1A, C).

(PDF)

Figure S2 Fluorescence images showed pan-nuclear
cH2AX pattern 30 min after 0.4 W/cm2 US, but no
cH2AX+ cells after 0.1 W/cm2 in U937 cells. Cells with

10 Gy of IR were used as positive control for cH2AX staining.

(PDF)

Figure 4. Linking mechanical US effect withinduction of cH2AX+ cells. (A) EPR detection of US- or IR-induced extra- and intracellular levels of
OHN as DMPO-OH adducts (see Methods); Increase of OHN levels in DMPO solution (10 mmol/L) as a function of insonation time at 0.3 (left) and 0.4
(middle) W/cm2 US, or at IR dose of 5–20 Gy (right, closed circle). Induction of DMPO-OH adducts by 0.3 or 0.4 W/cm2 were reduced partially by
50 mmol/L DMSO (upward triangle) or 5 mmol/L NAC (downward triangle), and nullified by a 10-fold higher concentrations: 50 mmol/L NAC or
500 mmol/L DMSO (closed diamond for both). The insets show amplitudes of EPR signals of DMPO-OH. (B) FCM-based HPF assay for intracellular OHN
levels immediately after 0.3 W/cm2 US in U937 cells. The histogram shift toward high-HPF fluorescence by OHN oxidation was small, and thus, an
increase in mean fluorescence intensity (MFI) was 1.5760.07 fold the control (n = 3, mean 6 s.d.), with partial protection by pretreatment with
5 mmol/L NAC for 3 h before sonication. (C) No protective effects of 5 mmol/L DMSO or 5 mmol/L NAC (scavengers) added to cultures immediately
before 0.3 and 0.4 W/cm2 US, or other 3 h-pretreatment with 5 mmol/L NAC (NAC-pre) against the induction of cH2AX+ U937 cells 30 min post-US.
(n = 3, mean 6 s.d. ns means not significant). (D–F) Saturated N2O gas caused the abrogation of US-induced events as follows: (D) The US exposure-
time dependent induction of OHN in 10 mmol/L DMPO solution at 0.3 and 0.4 W/cm2 (n = 3, mean 6 s.d.). : (E) The induction of cH2AX+ U937 cells
30 min after 0.3 and 0.4 W/cm2 (n = 3, mean 6 s.d.). : (F) 20% non-viable cells (trypan blue dye exclusion test) and 30% loss in cell counts relative to
control U937 cells 6 h after 0.3 or 0.4 W/cm2 US (n = 3, mean 6 s.d.).
doi:10.1371/journal.pone.0029012.g004
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Figure S3 Fluorescence images of cH2AX in U937,
Jurkat, Molt-4 and HL-60 cells without US- or IR-
exposure. Quantified data are shown in Fig. 1E.

(PDF)

Figure S4 Representative FCM histograms showed the
induction and decline of cH2AX+ U937 cells with time up
to 6 h after 0.3 or 0.4 W/cm2 (1 min) US or 10 Gy IR.
Time-course changes in cH2AX+ cells after US or IR (Fig. 1h)

came from mean fluorescence of the histograms (shadowed). Note

maximal cH2AX+ fractions at 0.5 or 1 h, followed by their

decreases later, with some persistent cH2AX+ fractions around

6 h post-stress.

(PDF)

Figure S5 Different H2AX responses to US and death-
receptor ligand TRAIL in U937, Jurkat, Molt-4, and HL-
60 cells. (A) Time-dependent increases in cH2AX protein

expression and p17/p19 active forms of cleaved caspase-3, an

essential apoptotic marker, after addition of 0.1 mg/mL TRAIL.

(B) zVAD-suppressive caspase-3 cleavage in U937, Jurkat, Motl-4

and HL-60 cells: inhibition of caspase-3 cleavage by treatment

with zVAD-fmk for 6 h after 0.3 W/cm2 US (upper) or 3 h after

TRAIL (bottom). Z-VAD FMK were pretreated 1 h before

TRAIL treatement. (C) TRAIL-induced, apoptotic DSB-driven

cH2AX+ cells but not DSB-driven cH2AX+ cells early 30 min

after 0.3 W/cm2 US, were abrogated by treatment of all cell lines

with 100 mmol/L zVAD-fmk. Blue DAPI color was changed to

red for easy yellow visualization in the merge with green cH2AX

image by using Adobe PHOTOSHOP Elements 2.0. (Adobe

Systems).

(PDF)

Figure S6 Immunofluorescence analyses of US- and IR-
induced DNA-PKcs pS2056 and cH2AX foci. Pan-nuclear

green cH2AX foci and highly red-fluorescent DNA-PKcs pS2056

foci after US, but low-fluorescent distinct cH2AX and DNA-PKcs

pS2056 foci after IR. Red arrows indicated cells with peri-nuclear

DNA-PKcs pS2056 foci observed in sonicated cells but not in

irradiated cells. Magnified images were in Fig. 2D.

(PDF)

Figure S7 Western blot analyses showing effects of
Ku55933 (KU) and/or Nu7026 (NU) on cH2AX 1 h after

US in Jurkat, Molt-4, and HL-60 cells. Cells were pretreated

with 10 mmol/L of KU and/or NU 1 h before US.

(PDF)

Figure S8 Typical FCM histograms showing US-induced
cH2AX in the presence or absence of Ku55933 (KU) and/
or Nu7026 (NU). Distributions of cell-cycle phase were

determined by staining with propidium iodide. Note that US-

induced cH2AX were not restricted in S phase and suppressive

effects of KU and/or NU on cH2AX were identified throughout

cell-cycle phases.

(PDF)

Figure S9 Typical images showing US-induced cH2AX,
phospho-ATM at S1981, phospho-DNA-PKcs at S2056 in
the presence or absence of Ku55933 (KU) and/or Nu7026
(NU). The effect of KU or NU on expression of these proteins was

quantified as in Fig. 4D.

(PDF)

Figure S10 Typical FCM histograms showing US-in-
duced cH2AX in DNA-PKcs proficient M059K cells but
not in DNA-PKcs deficient M059J cells. These adherent cell

lines were resuspended by trypsinization and then sonicated at

0.4 W/cm2 for 60 sec in culture medium. Cells were collected in

plastic tubes immediately after sonication then incubated for

30 min followed by fixation. Note that cH2AX induction by US-

exposure was not restricted in leukemia cell lines and that DNA-

PKcs was involved in H2AX phosphorylation in glioblastoma cell

lines.

(PDF)
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