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Abstract

Solute carriers (SLCs) are the largest family of transmembrane
transporters in the human genome with more than 400 members.
Despite the fact that SLCs mediate critical biological functions and
several are important pharmacological targets, a large proportion
of them is poorly characterized and present no assigned substrate.
A major limitation to systems-level de-orphanization campaigns is
the absence of a structured, language-controlled chemical annota-
tion. Here we describe a thorough manual annotation of SLCs
based on literature. The annotation of substrates, transport mech-
anism, coupled ions, and subcellular localization for 446 human
SLCs confirmed that ~30% of these were still functionally orphan
and lacked known substrates. Application of a substrate-based
ontology to transcriptomic datasets identified SLC-specific
responses to external perturbations, while a machine-learning
approach based on the annotation allowed us to identify potential
substrates for several orphan SLCs. The annotation is available at
https://opendata.cemm.at/gsflab/slcontology/. Given the increasing
availability of large biological datasets and the growing interest in
transporters, we expect that the effort presented here will be criti-
cal to provide novel insights into the functions of SLCs.
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Introduction

Solute carrier (SLC) proteins are a large family of multi-pass

membrane transporters, counting 446 members divided in 70 fami-

lies. SLCs are responsible for the transport of a wide range of

substrates, including nutrients, ions, and waste products, across

plasma membrane and organellar membranes (Hediger et al, 2013;

César-Razquin et al, 2015). Several family members have been the

subject of extensive pharmacological research as both drug targets

and for their role in drug disposition and toxicology (Lin et al,

2015). Moreover, several drugs, including metabolite-like

compounds, “hitchhike” transporters of endogenous substrates,

a concept that can be exploited for tissue-specific drug delivery

(Kell, 2016).

Despite the clear biological relevance of this family, it is esti-

mated that approximately one-third of SLCs are still orphan, i.e.,

they lack known substrates or metabolic function (Perland &

Fredriksson, 2017). This realization has sparked calls and efforts to

systematically study and functionally characterize SLCs (Hediger

et al, 2013; César-Razquin et al, 2015; Superti-Furga et al, 2020).

With mounting interest in this family, it becomes pivotal to define

the current limits and gaps of our understanding of SLCs and orga-

nize our knowledge in a formally consistent annotation that can be

used to interrogate and integrate increasingly large biological

datasets.

Ontologies are a powerful tool for the annotation and organi-

zation of knowledge in biology and biomedicine. They provide a

controlled, hierarchical vocabulary for a specific domain of

knowledge, defining terms and the relationships between them

and facilitating findability and interoperability between databases

and data integration (Lambrix et al, 2007; Hoehndorf et al,

2015). Moreover, they enable computational methods to system-

atically investigate biological functions and processes, as in the

case of metabolic functions of proteins. Protein function predic-

tion methods typically rely on the identification of homologous

genes/proteins or use supervised machine-learning algorithms

trained with protein sequence or structure information (Cruz

et al, 2017).

Here we describe the creation of a manually curated annotation

of human SLCs defining their known substrates, transport mecha-

nisms, and subcellular localizations as well as the use of this infor-

mation to develop a substrate-based ontology of SLCs, which we

applied to identify patterns in SLC expression from biological data-

sets. We further employed this substrate annotation to train a

machine-learning model to predict substrates for orphan SLCs. An

interactive version of the annotation is available at https://openda

ta.cemm.at/gsflab/slcontology/.
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Results

A manually curated SLC annotation

With the goal of systematically characterizing human SLCs, we

manually annotated substrates, coupled ions, transport mechanism,

and subcellular localization of 446 human SLCs with data derived

from primary literature (Table EV1). Depending on the category,

25–51% of the SLCs have no known annotation (Fig 1A), highlight-

ing the large gaps in our knowledge about this protein family. We

found that for 126 SLCs no substrates were experimentally con-

firmed to be transported in human cells yet (28%, including two

accessory proteins), which is in line with the estimates of the

number of orphan SLCs described in literature (César-Razquin et al,

2015; Perland & Fredriksson, 2017). For the remaining 320 SLCs, we

annotated a total of 382 different transported molecules, which we

divided into substrates and coupled ions (Fig 1B and C), defining

coupled ions as ions whose gradients drive transport of the

substrates across the membrane (secondary active transport). The

mechanism of transport (symporter, antiporter, or uniporter) was

also annotated, if known (Fig 1D). In a first attempt to define

substrate-based subgroups, we assigned the SLCs to ten different

substrate classes, comprising major classes of biomolecules (Fig 1B)

as well as a class for orphan transporters. Exactly one class was

assigned per SLC, and substrates not belonging in any of those

classes were summarized as class “Other”. This classification con-

firmed that SLCs are involved with the transport of a broad range of

chemically diverse molecules, from amino acids to vitamins and

lipids. In particular, ions and amino acids were the most populated

classes with 81 and 54 members, respectively. Sodium, chloride,

and protons accounted for approximately half of the coupled ions,

while 39 transporters were annotated as uniporters. Individual cell

lines express 150–250 SLCs, in patterns similar to the tissue of origin

(César-Razquin et al, 2018; O’Hagan et al, 2018), with members on

virtually all intracellular membranes, as well as the plasma

membrane. We found that nearly two-thirds of annotated SLCs have

been reported to be localized, at least partially, on the plasma

membrane. The most frequently assigned annotation of intracellular

localization was mitochondria, with 61 mitochondrial SLC trans-

porters (Fig 1E).

Overall, this manual annotation provided subcellular localiza-

tions, transport mechanism, and a large number of different trans-

ported entities for human SLCs, while highlighting the fact that for

many transporters complete information is still missing.

A substrate-based SLC ontology

The manual annotation assigned at least one known cargo, i.e.,

substrate or coupled ion (in the following text referred to as

“substrate”) to 320 SLCs. However, out of 382 substrate terms, only

23 terms are shared by at least 10 SLCs. This poor overlap in

substrate annotation of different SLCs made the annotation unsuit-

able for enrichment analysis in high-throughput datasets and under-

lined the urgency for knowledge standardization and organization.

The Chemical Entities of Biological Interest (ChEBI) ontology

contains more than 46,000 manually curated entries, each of them

with assigned annotations, synonyms, chemical structure, and data-

base and literature links. By mapping the substrates from manual

annotation to ChEBI ontology terms (Table EV2), a controlled, hier-

archical vocabulary for substrate terms was introduced, which

included a large number of more general substrate terms with

increased overlap between substrate annotations of different trans-

porters. 2,266 ontology terms from the ChEBI ontology were

connected to annotated SLC substrates (Fig 2). In order to reduce

the number of terms, we filtered out redundant or irrelevant ontol-

ogy terms by application of two major reduction steps to the ontol-

ogy graph (Fig 2A): In the ChEBI ontology, chemical tautomers and

conjugate bases/acids (protonated and deprotonated forms of the

same molecule) are connected by circular relationships. By merging

terms connected by those relationships, we could remove 494 terms

and 1,516 relationships, making the ontology graph a directed,

acyclic graph. Moreover, we removed terms with only one sub-term

from the graph, as they represent additional levels of specificity that

do not provide further distinction between instances of this branch.

Another 742 ontology terms were thus removed, resulting in a final

reduced ontology of 1,030 terms connected by 3,458 relationships

(without SLCs) (Figs 2B–D and EV1, Tables EV1 and EV3). The

chemical sub-ontology consists of 818 terms, whereas the role sub-

ontology was reduced to 212 terms (Fig 2E).

Application of the substrate ontology for term enrichment
analysis in transcriptomic data

Next, we wanted to assess the performance of the SLC substrate

ontology in identifying patterns within SLC expression values

obtained from real-world datasets. We therefore measured transcrip-

tomics profiles of HEK293T cells upon single amino acid deprivation

as well as obtained published microarray-based transcriptional pro-

files of MCF7 breast cancer cells (Tang et al, 2015). Extracellular

availability of amino acids influences cellular metabolism, while the

specific lack of amino acids causes activation of the amino acid

response (AAR) pathway (Palii et al, 2009). We therefore expected

to see changes in SLC gene expression upon amino acid starvation,

as the cell attempts to compensate for the depletion of specific nutri-

ents. Depletion of methionine triggered a particularly large change

in the global transcription profile in both cell lines (Fig EV2A–D).

Depletion of methionine also led to the highest number of upregu-

lated SLC genes (Fig EV2B and D).

Applying our SLC substrate ontology to the set of upregulated

genes, a significant enrichment of various amino acid-related

substrate terms was detected (Figs 3A and B, and EV3). Interest-

ingly, depletion of several essential amino acids (including leucine,

tryptophan, and threonine) did not lead to broad enrichment within

the upregulated genes in MCF7 cells but showed strong enrichments

in HEK293T cells (Fig 3A and B). Transporters linked to methionine

uptake were significantly enriched within the significantly upregu-

lated SLCs during deprivation of cysteine, glutamine, arginine,

isoleucine, and histidine in MCF7 cells. Methionine has been shown

to act as growth signal in different organisms, inducing proliferation

even under nutrient-limiting conditions (Cavuoto & Fenech, 2012;

Sutter et al, 2013; Walvekar et al, 2018). To benchmark the perfor-

mance of the SLC substrate ontology against the most commonly

used alternative, we performed a term enrichment analysis within

the upregulated gene set using Gene Ontology (GO) annotations

(The Gene Ontology Consortium, 2019). “Amino acid transmem-

brane transport activity” was significantly enriched for several
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different conditions (Fig 3A and B), a lower (for MCF7) or equiva-

lent (for HEK293T cells) number than the ones identified using the

SLC ontology. Moreover, the SLC ontology provided a finer distinc-

tion via the specific amino acid sub-terms that were enriched in the

set of upregulated SLCs.

Overall, the SLC ontology allowed detection of upregulation of

amino acid transporters under amino acid starvation conditions

across different cell lines and delivered a more precise classification

of results than GO.

Substrate predictions for orphan SLCs

A major challenge in the solute carrier field remains assigning

substrates for the nearly 30% of human SLCs that are still entirely

orphan. We trained a machine-learning model to predict probabili-

ties of selected substrate terms for the 124 orphan SLCs in our set

using the systematic substrate annotations previously described. We

characterized SLCs using protein sequence-derived, numeric

features, including sequence and physicochemical properties for

four annotated and predicted topological domains: the cytoplasmic

domain, the non-cytoplasmic domain, the transmembrane domain,

and the signal peptide (see Materials and Methods). Those features

were used to train independent random forest binary classifiers for

18 selected substrate terms (Table EV4). Resulting classifiers were

found to have high predictive performance, in particular for metal

cation and sub-terms (Fig 3C and D). All classifiers were then

employed to predict probability of substrate terms for orphan SLCs

(Figs 3E and EV4). In many cases, the predictions matched the

expected substrate(s) based on family or orthologues in other

species. For example, SLC39A11, which in mouse acts as a zinc

importer (Yu et al, 2013), was also predicted to transport zinc with

the highest score within our set. SLC6 family members transport

amino acids, neurotransmitters or creatine (SLC6A8) and are all

annotated to have sodium, and most of them also chloride, as

coupled ions. Accordingly, the orphan transporters SLC6A16 and

SLC6A17 were both predicted to transport sodium ions, with the

latter also predicted to transport amino acids. Among the large

number of associations identified, we further predicted an associa-

tion with divalent metal cations for the transporters TMEM165,

reported to be involved in Ca2+ homeostasis (Demaegd et al, 2013),

NIPAL3—possibly involved in Mg2+ transport, as well as the full

orphan SLC35F6. Finally, we predicted nucleobase-containing

substrates for the mitochondrial transporter SLC25A45 as well as for

SLC22A25 and SLC35E2B. Overall, our approach provides a large

set of experimentally testable, novel SLC substrate associations for

previously orphan SLCs.

0
50

100
150
200

Plas
ma m

em
bra

ne

Mito
ch

on
dri

a RE  Golg
i

Ly
so

so
me

Ves
icl

es

Othe
r (

Gran
ule

s, 
Pha

go
so

me e
tc)

End
os

om
e

Subcellular localization

Tr
an

sp
or

te
r c

ou
nt

0
25
50
75

100

    
Ion

    
 O

the
r

Amino
 ac

id

  H
ea

vy
 m

eta
l

Nuc
leo

sid
e/N

uc
leo

tid
e

Carb
oh

yd
rat

e
Lip

id

Vita
min

Pep
tid

e

Acc
es

so
ry 

Prot
ein

Substrate class

Tr
an

sp
or

te
r c

ou
nt

0
25
50
75

100

Anti
po

rte
r

Sym
po

rte
r

Unip
ort

er

Sym
po

rte
r; A

nti
po

rte
r

Inc
om

ple
te 

tra
ns

po
rte

r

Unip
ort

er;
 Anti

po
rte

r

Transport  mechanism
Tr

an
sp

or
te

r c
ou

nt

A

C D E

B

Transport
system

Coupled ions

Substrate

Subcellular
localization

0 100 200 300 400
Transporter count

Annotated Unknown

49 %

49 %

72 %

75 % 25 %

28 %

51 %

51 %

0
25
50
75

100

Na+ H
+

Othe
r (

ADP, C
MP et

c)
Non

e Cl- K
+

Coupled ions

Tr
an

sp
or

te
r c

ou
nt

Figure 1. Manually curated annotation of 446 human SLC transporters.

A Frequencies of unknown annotations for 446 SLCs in four annotation categories.
B–E Distribution of annotated terms for substrate class, coupled ions, transport mechanism, and subcellular localization. Terms annotated to less than ten SLCs were

summarized as “Other” in (C) and (E).
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Discussion

Computational methods for the analysis and interpretation of high-

throughput omics data in biology rely heavily on the availability of

well-structured metadata complementing the increasingly large

experimental datasets available. Existing classifications of SLCs,

such as the HUGO Gene Nomenclature Committee (HGNC), the clas-

sification proposed in Schlessinger et al (2010), and the Transporter

Classification Database (TCDB), are based on phylogenetic, struc-

tural or functional information but lack systematic substrate annota-

tion. In order to address this, we created a systematic SLC

annotation for substrate, transport mechanism, and subcellular

localization, as well as an ontology based solely on substrates trans-

ported by human SLCs. As SLCs mediate transport of essential nutri-

ents into cells or subcellular compartments, acting as interface

between cells and their environment, it follows that it should be

possible to infer a cell metabolic state from their activity profile. The

SLC substrate ontology described here guides interpretation and

comparison of SLC expression levels across different cell lines and

upon perturbations, allowing the identification of interesting

patterns and transporter-substrate associations worthy of further

investigation. Regular updates to the annotations are expected to

follow, incorporating newly published data, possibly in conjunction

with other SLC-focused resources already available such as the

knowledgebases developed by Bioparadigms (www.bioparadigms.

org) or ReSOLUTE (www.re-solute.eu).

In conclusion, we are convinced that, given the growing efforts

and interest in SLCs and the ever-increasing availability of datasets,

SLC-specific annotations and ontologies such as the ones described

here will be an essential part of the toolbox required for the system-

atic understanding of SLC function and organization on a cellular-,

tissue- and organismal-level as well as for the de-orphanization of

SLCs by orthogonal methods (Kory et al, 2018; Yee et al, 2019).

Moreover, in due time, this annotation will empower the regular

enlargement of metabolic charts to encompass the cognate trans-

porters, allowing a cellular and spatial dimension to metabolism to

be further captured. Ultimately, one can imagine this to represent a

small but important contribution to modeling pathophysiology.

Materials and Methods

Manual annotation of SLCs

Substrates, coupled ions, transport mechanism, and subcellular

localization for each of the 446 human SLCs were manually anno-

tated from the primary literature. Substrates were defined as mole-

cules showed to be transported by the SLC in a transport assay

using reconstituted protein or gene overexpression experiments in

human cells. 11 substrate classes were defined: accessory protein,

amino acid, carbohydrate, ion (defined as charged small molecules

or atoms), lipid, heavy metal (Cd2+, Co2+, Cu2+, Fe2+, Mn2+,

Ni2+, Pb2+, V3+, VO2+, Se2+, Zn2+), nucleoside/nucleotide,

orphan, peptide, vitamin and other (the latter including all

substrates not fitting in one of the previous categories). For sympor-

ters or antiporters, coupled ions were defined as small ions required

for the transport of substrates. Subcellular localization was taken

from primary literature, when immunofluorescence data obtained in

human cells were available. Whenever conflicting results were

reported, precedence was given to localization data obtained by co-

staining with known organelle markers.

Construction of SLC substrate ontology

SLC substrate terms (obtained from merging the substrate and

coupled ion entries) from the manual annotation were mapped to

ChEBI identifiers with Ontology Lookup Service (OLS) from the

European Bioinformatics Institute (EMBL-EBI)(Jupp et al, 2015).

The search was conducted using exact term matching, extracting

ChEBI identifiers, labels, and term description for every hit. Terms

without match were additionally translated with The Chemical

Translation Service (CTS) (Wohlgemuth et al, 2010). For cases

where both automatic mappings could not find matching entries,

ChEBI entries were manually selected (Table EV2).

The ChEBI ontology was downloaded in OBO format

(“Chebi_core.obo,” September 2019) from the ChEBI portal (ftp://

ftp.ebi.ac.uk/pub/databases/chebi/ontology/). The oboe R package

was used for parsing of the ontology (Lindholm, 2019). A subset of

the ChEBI ontology related to SLC substrates was extracted, by only

considering terms reachable within the ontology from the SLC

substrate nodes via directed paths. For the extraction, only five

types of relationships between terms (“is a,” “has role,” “is

tautomer of,” “is conjugate acid of,” and “is conjugate base of”)

were considered and other types of relationships were ignored.

Terms belonging to ChEBI’s subatomic particle sub-ontology were

excluded from the analysis.

The number of ontology terms was reduced by two steps

(Fig 2A): At first, terms connected by circular relationships (“is

tautomer of” or “is conjugate acid of”/”is conjugate base of”) were

aggregated into one term. Secondly, non-substrate terms with

exactly one incoming edge were removed from the graph. In order

to maintain the original connectivity, a new relationship is intro-

duced between parent and child terms of the removed terms.

In a final step, SLC terms are added to the ontology graph. The

newly defined type of ontology relationship, “transports,” connects

SLC terms to chemical entity terms. Ontology terms annotating a

◀ Figure 3. Application of SLC substrate ontology and prediction of substrates for orphan SLCs.

A, B Ontology term enrichment analysis in set of SLCs upregulated in (A) HEK293T and (B) in MCF7 cells after amino acid (aa) deprivation conditions using SLC ontology
terms and GO terms (TMT: transmembrane transporter). Enrichments were calculated using Fisher’s exact test. For simplification, only enrichment of the most
specific terms is shown in (A,B), for complete version see Fig EV3.

C Area under the receiver operating characteristic (AUROC) and under the precision recall curve (AUPRC) derived from out-of-bag (OOB) error estimates for random
forest classifiers for the 18 selected SLC substrate terms.

D Statistical performance measures for the binary classifiers from OOB estimates.
E Predicted substrate term probabilities for orphan SLCs, normalized to a decision threshold of 0.5.
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specific SLC are defined as all ontology terms reachable from the

SLC term via directed paths.

Published amino acid starvation data

Gene expression intensities for MCF7 cells after single amino acid

starvation were obtained from ArrayExpress (E-GEOD-62673) (Tang

et al, 2015). The microarray data was processed, and differential

expression determined as described in the original publication. SLCs

differentially expressed at 5% FDR at the 24 h time point were

determined for all conditions.

Transcriptomics

HEK293T were obtained from ATCC and their identity and lack of

contamination with mycoplasma confirmed by STR profiling and

PCR, respectively. Cells were seeded in triplicate in full media

(DMEM Gibco, 10% FBS Gibco, antibiotics). After 24 h, media were

removed and, after a wash with PBS, substituted with DMEM starva-

tion media lacking the indicated amino acid supplemented with 10%

(v/v) dialyzed FBS (Gibco cat. 26400-044). Starvation media each

lacking a single amino acid were prepared by complementing amino

acid-free DMEM media (i.e. devoid of all 15 amino acids normally

present, custom made by PAN Biotech) with the other 14 amino

acids (from individual amino acid powders, SIGMA). DMEM media

reconstituted with all 15 amino acids and 10% dialyzed FBS as well

as full media served as controls. After 16 h, media were removed,

and cells were harvested in cold PBS. Total RNA was isolated using

the Qiagen RNeasy Mini kit including a DNase I digest step. RNA-

sequencing (RNA-seq) libraries were prepared using QuantSeq 30

mRNA-Seq Library Prep Kit FWD for Illumina (Lexogen) according

to the manufacturer’s protocol. Libraries were subjected to 50-bp

single-end high-throughput sequencing on an Illumina HiSeq 4000

platform at the Biomedical Sequencing Facility (https://biomedical-

sequencing.at/). Raw sequencing reads were demultiplexed, and

after barcode, adaptor, and quality trimming with cutadapt

(https://cutadapt.readthedocs.io/en/stable/), quality control was

performed using FastQC (http://www.bioinformatics.babraham.ac.

uk/projects/fastqc/). The remaining reads were mapped to the

GRCh38/h38 human genome assembly using genomic short-read

RNA-seq aligner STAR version 2.567. We obtained more than 98%

mapped reads in each sample with 70–80% of reads mapping to

unique genomic location. Transcripts were quantified using End

Sequence Analysis Toolkit (ESAT)(Derr et al, 2016). Differential

expression analysis was performed using three biological replicates

with DESeq2 (1.21.21) on the basis of read counts (Love et al, 2014).

Exploratory data analysis and visualizations were performed in R-

project version 3.4.2 (Foundation for Statistical Computing, https://

www.R-project.org/) with Rstudio IDE version 1.0.143, ggplot2

(3.0.0), dplyr (0.7.6), readr (1.1.1), gplots (3.0.1).

Enrichment analysis

Ontology term enrichment was conducted using one-sided Fisher’s

exact test. Benjamini–Hochberg procedure was used for multiple

testing correction (5% FDR cutoff). Testing was done for upregu-

lated (log2-fold change > 0.5, 5% FDR) SLCs.

For enrichment of SLC substrate ontology terms, only terms from

the “chemical entity” sub-ontology, which are associated with at

least five different but < 70% of annotated SLCs, were tested.

Results of the enrichment test were simplified by removing redun-

dant terms: For every condition, only the most specific enriched

terms of a branch were selected: e.g. if “sulfur-containing amino

acid” and “L-methionine” are both enriched, only “L-methionine” is

selected. The union of the most specific terms from all conditions

was used for plotting (Fig 3A and B); the unfiltered results are

shown in Fig EV3A and B. GO terms were assigned to SLCs using

the R BiomaRt package (Durinck et al, 2005, 2009). Enrichment

tests were done separately for the “Biological process”

sub-ontology.

SLC substrate classifiers

Features for every SLCs were derived from protein sequences as

previously described (Bausch-Fluck et al, 2018). Briefly, protein

sequences were obtained from UniProt (Bateman et al, 2015) and

divided into topological domains according to existing annotations

and predictions. Features including amino acid frequencies, glycosy-

lation sites, existence of motifs, and average length were defined

separately for four domains (cytoplasmic, non-cytoplasmic, trans-

membrane region, signal peptide).

Random forest binary classifiers were trained using the

randomForest R package version 4.6.14 (Liaw & Wiener, 2003).

In total, 18 substrate terms were selected from the SLC substrate

ontology which are generic enough to have a sufficient number

of annotated SLCs for training as well as specific enough to

allow hypothesis generation by subsequent prediction on orphan

SLCs. For each substrate term, an independent, binary classifier

was trained on the set of 304 SLCs with known substrates and

sequence features, using those SLCs with a known substrate

matching to the specific ontology term as a positive training set

and the remaining SLCs with a known substrate as a negative

training set. In total, 18 binary classifiers for different substrate

classes derived from the SLC substrate ontology were trained on

the set of 304 SLCs with known substrates and sequence

features. The parameters mtry (20–200), ntree (300–1,500), and

classwt (unweighted or class priors) were optimized using a grid

search maximizing F1-score for every classifier separately. Deci-

sion thresholds were set to the threshold that gives maximum

recall for a precision value of at least 75%. Predicted scores

were normalized to have a decision threshold of 0.5 by gamma

correction. Predictive performance of the classifiers was esti-

mated using “out-of-bag” estimates provided by the random-

Forest library.

Data availability

The HEK293T transcriptomics dataset is deposited at GEO

(GSE153034). Datasets are provided in Tables EV1–EV4 and are also

available at the accompanying web site at https://opendata.cemm.a

t/gsflab/slcontology/.

Expanded View for this article is available online.
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