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Interventions to improve cardiopulmonary
resuscitation: a review of meta-analyses

and future agenda

Athanasios Chalkias'” and John P. A. loannidis®**®”"
Hardly any other medical intervention is as directly rele-
vant for life-and-death outcomes as cardiopulmonary
resuscitation (CPR). One would have expected, there-
fore, extensive evidence from rigorous randomized con-
trolled trials (RCTs) for fine-tuning best approaches that
maximize CPR effectiveness. However, this is not the
case. Professional guidelines reflect little tangible pro-
gress, and recommendations are not driven by strong
effects seen in RCTs.

To map the landscape of meta-analyses of RCTs on
CPR, we searched PubMed (April 8, 2019) for “car-
diopulmonary resuscitation AND meta-analysis AND
(randomized OR randomised).” We screened 114 re-
trieved items for meta-analyses of RCTs in real pa-
tients (not education or simulation/manikins),
addressing aspects pertaining to CPR per se rather
than interventions done afterwards (e.g., hypothermia)
and using survival and/or neurologically intact sur-
vival as outcomes. Whenever multiple overlapping
meta-analyses existed, we kept all of them if they
were published after 2013, to examine consistency of
results.

The available evidence (Table 1) suggests that we
have a dearth of interventions that improve survival
rates at hospital discharge and, even less so, neuro-
logical outcomes [1-12]. All benefits, if any, pertain to
out-of-hospital cardiac arrest circumstances, while no new
technology or improvement seems to work for in-hospital
arrests. For out-of-hospital cardiac arrests, continuous
(versus interrupted) chest compressions, epinephrine, and
use of endotracheal tube intubation (versus supraglottic
airway devices) may achieve modest increases in survival
at hospital discharge. However, the lower 95% confidence
intervals of the risk ratios in the most recent, inclusive
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meta-analyses on these interventions reach down to
1.00-1.02. Therefore, we cannot exclude that even
these benefits are negligible or even non-existent. Survival
with neurologically intact outcome is not conclusively in-
creased by any of the interventions listed in the Table 1;
epinephrine achieves a nominally statistically significant
modest benefit over pooled control treatments, but this is
less clear in separate comparisons against different
control options. Epinephrine saves some patients who
are admitted to the hospital, but they are not dis-
charged neurologically intact. Other interventions also
have disappointing results, e.g., no clear benefit is seen
with mechanical devices for chest compression (they
are even harmful for in-hospital cardiac arrest) and the
order of chest compression versus defibrillation may
not matter.

This rather disheartening evidence pertains largely to
short-time follow-up. Longer-term outcomes are essen-
tial to make informed choices, but these data are rarely
available from RCTs. One can try to supplement the
evidence gap with observational datasets, and this is be-
coming increasingly convenient as large datasets become
routinely available. However, for what are likely to be
modest or subtle differences, it is unlikely that observa-
tional data will be sufficiently error-free to be conclusive.
Many observational studies in this field claim sizeable
survival differences, but their credibility is question-
able—they need to be validated in carefully done RCTs
[13]. For example, a highly cited observational study has
found that endotracheal intubation is harmful for in-
hospital arrest [14]. The availability of data on over 100,
000 patients results in a very tight 95% confidence inter-
val for neurological outcome and an astronomically low
p value. However, this precision is misleading because
potential bias may completely invalidate this conclusion.

In contrast to massive observational datasets, the
RCTs done to-date and even their meta-analyses have
usually had rather limited sample sizes. Clinically mean-
ingful differences between the tested interventions may
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Comparison (setting)

N randomized  Outcome measures (timing) [N]  Relative risk (95% Cl)

Heterogeneity

Chest compressions

Meier et al. [1]

Brooks et al. [2] and

updated 2014 [3]

Gates et al. [4]

Tang et al. [5]

Li et al. [6]

Zhan et al. [7]

Adrenaline

Lin et al. [8]

Kempton et al. [9]

Chest compression-first vs. 1503
defibrillation-first (OHCA)

Mechanical vs. standard 868 and 1166"
manual chest compressions

(OHCA and IHCA)

Mechanical vs. standard
manual chest compressions
(OHCA)

12,206

Mechanical vs. manual chest
compressions (OHCA)

12,510

Mechanical vs. manual chest
compression (OHCA and IHCA)

11,162

Continuous (+/— rescue 26,742"
breathing) vs. interrupted
chest compression with

pauses for breaths (OHCA)

SDA vs. placebo (OHCA) 12,246

SDA vs. HDA (OHCA)

SDA vs. vasopressin (OHCA)

SDA vs. vasopressin/
adrenaline (OHCA)

Epinephrine vs. 17,635

placebo (OHCA)

Survival (HD) [N = 1503]
CPC 1-2 (HD) [N =402]

Long-term survival (1 year)
[N=1301]

Survival (HA) [N=164]

CPC 1-2 (HD) IN=767]
Survival (HD) [N =1063]
Survival (HA) [N =7208]

Survival (HD or 30 days)
[N=12,206]

CPC 1-2 or RS 0-3 (HD)
[N=12,206]

Survival (HA) [N=12,510]
Survival (HD) [N=12,510]

CPC 1-2 or RS 0-3 (HD)
[N=12,058]

Long-term survival (= 6 months)

[N =7060]

Survival (HA), OOH group
[N=9975]

Survival (HD), OOH group
[N =4688]

Survival (H
[N =200]

CPC 1-2 (HD), OOH group
[N=28885]

Survival (HA) [N =520]
Survival (HD) [N =3031]
CPC 1-2 (HD) [N=1286]

D), IH group

Survival (HA) [N =534]
Survival (HD) [N =534]
CPC 1-2 (HD) [N=534]
Survival (HA) [N = 5699]
Survival (HD) [N =5638]
CPC 1-2 (HD) [N=3883]
Survival (HA) [N =336]
Survival (HD) [N =336]
CPC 1-2 (HD) [N =336]
Survival (HA) [N =4877]
Survival (HD) [N =4877]
CPC 1-2 (HD) [N =4807]
Survival (HA) [N=9511]
Survival (HD) [N =9805]

CPC 1-2 or RS 0-3 (HD)
[N=9383]

OR 1.10 (0.70-1.70)
OR 1.02 (0.31-3.38)
OR 1.38 (0.95-2.02)

Not pooled
RR 041 (0.21-0.79)
Not pooled
OR 0.95 (0.85-1.07)
OR 0.89 (0.77-1.02)

OR 0.76 (0.53-1.11)

RR 0.94 (0.89-1.00)
RR 0.88 (0.78-0.99)
RR 0.80 (0.61-1.04)

RR 0.96 (0.79-1.16)
RR 0.97 (0.91-1.04)
RR 0.99 (0.82-1.18)
RR 0.54 (0.29-0.98)
RR 1.11 (0.95-1.30)

RR 1.18 (0.94-1.48)
RR 1.21 (1.01-1.46)
RR 1.25 (0.94-1.66)

RR 1.95 (1.34-2.84)
RR 2.12 (0.75-6.02)
RR 1.73 (0.59-5.11)
RR 0.87 (0.76-1.00)
RR 1.04 (0.76-1.42)
RR 1.20 (0.74-1.96)
Not pooled

RR 0.68 (0.25-1.82)
RR 0.68 (0.25-1.82)
RR 0.88 (0.73-1.06)
RR 1.00 (0.69-1.44)
RR 1.32 (0.88-1.98)
OR 2.52 (1.63-3.88)
OR 1.09 (048-2.47)
OR 0.81 (0.34-1.96)

1> =34%, p=0.206
> =75%, p=005
=00%, p=0647"

Studies not pooled
Single study
Studies not pooled
P?=00%, p=078
> =0.0%, p=049

> =68%, p=002

=00%, p=048
P=27%, p=024
> =65%, p=004

P =16%, p=0.28

> =60%, p=0015
2 =71%, p=0.004
>=00%, p=0.825
1> =59%, p=0032

Single study
=00%, p=068
Single study

Single study

Single study

Single study

> =34%, p=0.21

> =0.0%, p=066
=00%, p=033
Single study

Single study

Single study

> =56%, p=006

> =25%, p=0.26
=00%, p=085

> =84%, p < 0.0001
1> =77%, p=0.0002
1> =83%, p=0.0005
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Table 1 Meta-analyses of randomized controlled trials with survival and neurologically intact survival as outcomes (Continued)

Comparison (setting)

N randomized  Outcome measures (timing) [N]  Relative risk (95% Cl)

Heterogeneity

Finn et al. [10] SDA vs. placebo

(OHCA and IHCA)

21,704

SDA vs. HAD
(OHCA and IHCA)

SDA vs. vasopressin
(OHCA and IHCA)

SDA vs. SDA +
vasopressin (OHCA)

Vargas et al. [11] Epinephrine vs.

control (OHCA)

20,716

Airway management

White et al. [12] Endotracheal tube
intubation vs. supraglottic

airway devices (OHCA)

539,146

Survival (HA) [N = 8489]
Survival (HD) [N = 8538]

Neurological outcome (HD)
[N=28535]

Survival (HA) [N =5764]
Survival (24 h) [N=4179]
Survival (HD) [N =6274]

Neurological outcome (HD)
[N =5803]

Survival (HA) [N =1953]
Survival (HD) [N=2511]

Neurological outcome (HD)
[N = 2406]

Survival (HA) [N =3249]
Survival (HD) [N =3242]

Neurological outcome (HD)
[N =2887]

Survival (HA) [N = 20,306]
Survival (HD) [N = 19,909]

CPC 1-2 or similar (HD)
[N =18458]"

Survival (HA) [N=51,756]
Survival (HD) [N = 440,564]

CPC 1-2 or RS < 3 [HD]
[N=438,261]

RR 2.51 (1.67-3.76)
RR 1.44 (1.11-1.86)
RR 1.21 (0.90-1.62)

RR 1.13 (1.03-1.24)
RR 1.04 (0.76-1.43)
RR 1.10 (0.75-1.62)
RR 0.91 (0.65-1.26)

RR 1.27 (1.04-1.54)
RR 1.25 (0.84-1.85)
RR 0.82 (0.54-1.25)

RR 0.95 (0.83-1.08)
RR 0.76 (0.47-1.22)
RR 0.65 (0.33-1.31)

RR 1.02 (0.75-1.39)
RR 1.16 (1.00-1.35)
RR 1.24 (1.05-1.48)

OR 136 (1.12-1.66)
OR 1.28 (1.02-1.60)
OR 1.16 (0.94-141)

P=77%, p=004
> =0.0%, p=045
> =00%, p=049

=00%, p=042
=39%, p=0.16
P =24%, p=0.23
P=00%, p=042

> =27%, p=0.25
P =29%, p=022
> =00%, p=046

=00%, p=055
> =00%, p=057
Single study

> =96.21%, p < 0.01
> =00%, p=049
=00%, p=094

> =91%, p=0002
> =96%, p=003
?=91%, p=0.16

HA hospital admission, HD hospital discharge, RS Rankin score, OHCA out-of-hospital cardiac arrest, IHCA in-hospital cardiac arrest, SDA standard dose adrenaline,

HAD high-dose adrenaline
IRandomized and quasi-randomized studies

¥From randomized controlled trials, cluster-randomized controlled trials, and quasi-randomized studies
£CPC 1-2, an overall performance category 1-2, a modified Rankin Scale score 1-2, and a normal or moderate disability

still have been missed, e.g., 20% relative risk differences
in survival cannot be completely excluded for anything
that has been tested to-date. This suggests that we need
much larger RCTs in this field. Given that CPR is so
commonly required, large simple trials should be feasible
to do in large enough health care structures. It is im-
portant to instill in the future research agenda a strong
element of pragmatism, so that the results would be
more directly applicable to real-life circumstances. CPR
is a good example where “point of care” randomization
should be feasible without obtaining consent first given
the nature of the intervention. Randomization should be
the default option for CPR encounters if a protocol has
been approved and set in place. RCTs with sample sizes in
the tens of thousands of participants should be the goal.

A challenge in conducting such large-scale pragmatic
RCTs is to avoid diluting the potential therapeutic ef-
fects by poor choices in the background management of
the resuscitated patients. For example, an intervention

may be effective by itself, but whatever benefit it produces
may be lost if the patients undergo low-quality chest com-
pressions or if they are then sub-optimally managed in the
intensive care setting, e.g., improper choices are made for
hypo- or hyper-ventilation. Meeting both pragmatism and
some essential quality standards needs careful design and
proper background training of the resuscitating and
managing teams.

Another challenge is selecting the proper dose of various
interventions to be tested. Several standard choices in the
CPR ritual have little evidence to support that the dose,
intensity, timing, or frequency used is optimized. For ex-
ample, the standard dose of adrenalin (1 mg) is largely
based on an experiment done over a century ago in 10-kg
dogs, in which adrenaline was given at a dose of 0.1 mg/kg.
While we have some randomized evidence on higher
doses, we have no evidence on lower than standard doses.
Timing may also be important. For example, another
high-profile recent trial [15] administered epinephrine
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in patients who were largely “dead” (at 20 min post-arrest)
and this may have affected its ability to be effective.

Finally, single interventions may have very limited effi-
cacy and effectiveness, but their combination may man-
age to achieve a breakthrough in success rates. Testing
this hypothesis would require running factorial trials,
where two randomizations are performed concurrently.
Then, one can assess both interventions as well as their
joint effect in a statistically efficient manner.

CPR may save lives, and optimizing it should not be
left to chance. A rigorous agenda of large pragmatic
RCTs is long due. With simple design, the cost of these
trials can be minimized, since data collection would per-
tain to only the most relevant information. Health care
systems, insurances, and public agencies could make ex-
cellent investments in funding such trials.
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