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Abstract: Steroid hormone signaling induces vast gene expression programs which necessitate
the local formation of transcription factories at regulatory regions and large-scale alterations of the
genome architecture to allow communication among distantly related cis-acting regions. This involves
major stress at the genomic DNA level. Transcriptionally active regions are generally instable and
prone to breakage due to the torsional stress and local depletion of nucleosomes that make DNA
more accessible to damaging agents. A dedicated DNA damage response (DDR) is therefore
essential to maintain genome integrity at these exposed regions. The DDR is a complex network
involving DNA damage sensor proteins, such as the poly(ADP-ribose) polymerase 1 (PARP-1),
the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), the ataxia–telangiectasia-mutated
(ATM) kinase and the ATM and Rad3-related (ATR) kinase, as central regulators. The tight interplay
between the DDR and steroid hormone receptors has been unraveled recently. Several DNA repair
factors interact with the androgen and estrogen receptors and support their transcriptional functions.
Conversely, both receptors directly control the expression of agents involved in the DDR. Impaired DDR
is also exploited by tumors to acquire advantageous mutations. Cancer cells often harbor germline or
somatic alterations in DDR genes, and their association with disease outcome and treatment response
led to intensive efforts towards identifying selective inhibitors targeting the major players in this
process. The PARP-1 inhibitors are now approved for ovarian, breast, and prostate cancer with
specific genomic alterations. Additional DDR-targeting agents are being evaluated in clinical studies
either as single agents or in combination with treatments eliciting DNA damage (e.g., radiation
therapy, including targeted radiotherapy, and chemotherapy) or addressing targets involved in
maintenance of genome integrity. Recent preclinical and clinical findings made in addressing DNA
repair dysfunction in hormone-dependent and -independent prostate and breast tumors are presented.
Importantly, the combination of anti-hormonal therapy with DDR inhibition or with radiation has the
potential to enhance efficacy but still needs further investigation.

Keywords: DNA repair; DNA damage response; hormone-dependent; prostate cancer; breast cancer;
radiation; PARP-1; ATR; ATM; DNA-PKcs

1. Introduction

Genomic stability is essential for all living organisms and is safeguarded by different complex
and coordinated DNA damage response (DDR) pathways. These mechanisms protect cells against
intrinsic insults such as reactive oxygen and nitrogen species or DNA replication errors as well
as against extrinsic insults, mainly ultraviolet light and ionizing radiation causing single-strand
breaks (SSBs) or the more severe double-strand breaks (DSBs) in the DNA [1–3]. Another essential
role of the DDR is the repair of damage originating from stress during DNA replication and gene
transcription [4–7]. Steady progress has been made in understanding the multistage response to DNA
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damage, which includes detection by sensor proteins, control of cell cycle progression, recruitment and
activation of effector proteins, and finally repair of the damage [3,8–11]. A role of microRNAs in this
process has additionally been recognized [12]. For instance, miR-34 family members are upregulated
following DNA damage and regulate the expression of checkpoint genes. Also, upregulation of
miR-146 which reduces BRCA1 expression has been reported. The DDR machinery is intimately linked
to cellular senescence and also regulates apoptotic pathways which will exit cells permanently from
the cell cycle or eliminate them by programmed cell death in case the DNA lesion cannot be repaired
and genome integrity is not safeguarded [10,13].

Cancer cells are characterized by genomic instability which favors the accrual of driver mutations
and the expansion of tumor heterogeneity [14]. This feature has been addressed for many years by
cytotoxic chemotherapy and radiation treatment which cause severe DNA damage in fast-dividing
cancer cells. Tumors frequently harbor alterations in DDR pathways leading to genomic instability
that can promote tumorigenesis and cancer cell growth, as reflected in the acquisition of driver
mutations [9,10,15–17]. Concurrently, defects in DDR signaling, such as alterations in essential DDR
genes [18,19] or changes in DDR gene expression, for instance, mediated by epigenetic silencing
mechanisms [20,21], may increase the dependence on other DDR actors for survival. The steadily
increasing knowledge about the mechanisms involved in these processes allowed the identification of
potential weaknesses in tumors that can be addressed with innovative targeted therapies following the
concept of synthetic lethality in which two pathway defects, that alone are non-toxic, become lethal
when combined [8,10,18,22].

Prostate cancer is originally dependent on androgen when diagnosed, and mainstay medications
used are androgen-deprivation therapy, androgen receptor (AR) antagonists, and androgen synthesis
inhibitors [23–25]. Unfortunately, resistance often follows, mainly due to the amplification of the AR
gene and overexpression, AR mutations and splice variants, and increased androgen synthesis [26,27].
Additional resistance mechanisms involving for instance the PI3K pathway have been reported [28].
Concerning breast cancer, approximately two-thirds of patients express estrogen receptor (ER) α and
are treated with ERα antagonists or aromatase inhibitors [29,30]. Treatment resistance linked to the
emergence of ERα-negative tumor cells may occur at some timepoint, necessitating the switch to
other therapies [29]. Prostate and breast tumors often have mutations affecting the DDR, both in
germinal and somatic tissues. Concerning the prostate, single-nucleotide polymorphisms (SNPs)
in different DDR genes have been linked with increased cancer risk. Germline mutations leading
to inactivation of DDR genes are found in up to 20% of primary tumors and are correlated to
early onset [31–35]. A survey of 131 primary and 37 metastatic prostate tumors detected changes
in many DDR genes with, however. A large variability among samples [36]. Mutations in genes
encoding ataxia–telangiectasia-mutated (ATM) kinase, BRCA2, and poly(ADP-ribose) polymerase
1 (PARP-1) represent the most frequent alterations and are associated with aggressive disease and
worse outcome. Additional mutations were reported in RAD51 and additional DDR genes [37].
Mutations in DDR factors generally increase during tumor progression and are found in 35–40%
of metastatic castration-resistant prostate cancer (mCRPC) [32]. Here, also, ATM and BRCA2 are
among the most frequently altered genes. Another study showed that expression of DNA-dependent
protein kinase catalytic subunit (DNA-PKcs) was reduced in 51% of prostate cancer biopsies [38].
Interestingly, defects in mismatch repair are associated with increased T-cell infiltration and immune
transcripts in a subgroup of prostate tumors [39]. Cyclin-dependent kinase 12 (CDK12) plays an
essential role in transcription regulation and mRNA splicing, and is mutated in 1–2% of localized
prostate cancer and 4–7% of mCRPC [40,41]. It controls proper expression of several genes involved in
homologous recombination (HR) such as BRCA1, BRCA2, and ATM and represents an important link
between transcription regulation and genome stability [42,43]. CDK12 biallelic inactivating mutations
define a distinct subtype in advanced mCRPC. Loss of CDK12 is associated with genomic instability and
focal tandem duplications, leading to increased gene fusions and marked differential gene expression,
especially in genes involved in cell cycle and DNA replication [40]. Tandem duplications have also
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been described for an enhancer of the AR potentially responsible for disease progression on androgen
pathway inhibitors [44,45].

Alterations in DDR genes have also been reported in breast cancer. Approximately 10% of cases
are linked to germline defects in BRCA1 or BRCA2, whereas mutations in other DDR genes, such as
those encoding CHK2 and RAD51, are rarer [46,47]. Another study detected germline or somatic
BRCA1 or BRCA2 inactivating mutations or BRCA1 promoter methylation in 90 out of 560 breast cancer
samples [48]. An observational study in human epidermal growth factor receptor 2 (HER2)-negative
breast cancer patients showed that germline BRCA mutations were associated with earlier age of
diagnosis and family history [49]. Importantly, not all variants of BRCA1 or BRCA2 have been linked
to pathogenicity, thus gene expression signatures to address this have been proposed [50]. Changes in
other DDR genes have additionally been found. Expression of DNA-PKcs was reduced in 57% of
early breast cancer cases [51]. In a subgroup of metastatic breast cancer patients expressing the ERα
and progesterone receptor (PR) but not HER2, somatic mutations in BRCA1, BRCA2 or ATM were
found in 4% of cases [52]. The CDK12 gene was amplified or mutated in over 10% of invasive breast
cancer samples [53]. Concerning triple-negative breast cancer (TNBC), a detailed survey where 56 DDR
genes were analyzed revealed a heterogeneous pattern, including mutations in BRCA, non-BRCA HR,
and non-HR genes [54]. The analysis of four TNBC cell lines showed overexpression of several proteins
involved in DNA repair including PARP-1 [55]. Another study indicated that several DDR genes were
regulated by CDK12 in a TNBC cell model [56].

All these findings led to extensive investigations to evaluate the potential of DDR-targeting drugs
for prostate and breast tumors which culminated in the approval of PARP-1 inhibitors for breast cancer
and, very recently, also for prostate cancer [57–59]. Compounds addressing several other essential
actors of the DDR are currently being evaluated in clinical studies both in hormone-dependent and
-independent stages of tumor growth, and are discussed below.

2. DDR and Steroid Hormone Receptor Pathways

2.1. General Aspects

Different repair mechanism pathways are activated, depending on the type of DNA damage.
A SSB is more frequently observed but comparatively less damaging to cells. It is resolved by base
excision repair (BER), mismatch repair (MMR) or nucleotide excision repair (NER) [10,60,61]. Intra- and
inter-strand crosslinks introduced by DNA-damaging factors are resolved by the Fanconi anemia
(FA) pathway [62]. DSBs are the most deleterious DNA lesions for living cells, especially when they
occur in clusters [63]. These lesions are repaired by two main mechanisms, namely, HR, where the
original DNA is resynthesized in a seamless way based on the sister chromatid template [10,61,64],
and non-homologous end-joining (NHEJ), where severed DNA ends are ligated together again,
but deletions are also introduced [65,66]. HR and NHEJ have essential but also overlapping roles in
the maintenance of chromosomal integrity during the cell cycle in vertebrate cells [66].

2.2. Transcription-Coupled DNA Repair

Regions where intense transcription takes place have a loosened chromatin structure and undergo
large-scale changes which make them more liable to DNA damage. Transcription-blocking DNA
lesions are sensed by the RNA polymerase II complex and lead to stalling, which is followed by cell
cycle arrest and apoptosis if it persists [4,6,7,67,68]. These processes are furthermore controlled by
epigenetic mechanisms, such as histone acetylation and methylation marks, which affect the recruitment
and stability of local protein complexes dedicated to DNA repair [69]. Prostate and breast tissues
are particularly liable to this stress due to the sustained transcriptional activity elicited by steroid
hormones [4,67]. Persistent signaling by the AR or ER requires numerous transcription factors and
cofactors to interact with gene regulatory regions, leading to topoisomerase II-induced DSBs which are
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efficiently repaired by the NHEJ pathway [70,71]. These breaks are recognized by Ku70 and Ku80,
leading to recruitment of PARP-1, DNA-PKcs, and ATM for repair.

Distant regulatory regions, such as enhancers and super-enhancers. are essential for full,
sustained transcriptional activity. Super-enhancers are a newly described class of large-size
cis-regulatory elements responsible for cell-type identity which, however, can be converted into
oncogenic players [72–74]. They are highly loaded with the mediator complex and the bromodomain
protein BRD4, and they form long-range interactions by chromosomal looping and assemble into local
transcription factories [73,75,76]. Super-enhancers are inside stable cellular compartments and form
phase-separated liquid condensates with unique properties [76,77]. SNPs associated with prostate
or breast cancer are enriched at super-enhancer regions bound by BRD4 and marked by H3K27
acetylation [78]. Active gene regulatory regions often undergo DNA breaks, especially when they have
turned into oncogenic drivers as recently evidenced [79]. In steroid-dependent cells, these regulatory
elements are highly bound by ligand-activated AR or ERα for full transcriptional activity [80,81].
AR-loaded enhancers bound by DNA topoisomerase I for local DNA nicking and by components
of the DDR pathway have been identified [82]. In addition, there is recruitment of the ATM and
Rad3-related (ATR) kinase, the MRE11A/RAD50/NBS1 (MRN) complex and of other players of the
DDR process to ensure that DNA breaks are properly resolved [82]. Tissue-specific super-enhancers
with potentially increased sensitivity to DNA DSBs were identified as rearrangement hotspots in
breast cancer samples [83]. High occurrence of DSBs due to the presence of DNA topoisomerase I
activity was observed at super-enhancers of a breast cancer cell line. These sites are highly loaded
with transcriptional enhancer factor domain (TEAD) transcription factors which interact with the DNA
repair protein RAD51 to support local mending [84].

2.3. Cross-Talk between the AR and the DDR Pathways

Accumulating data show that the AR pathway regulates DNA repair factors. A total of 32 genes
associated with DNA repair are bound by androgen-stimulated AR as demonstrated in the LNCaP
prostate cancer cell line model [85]. Both androgen deprivation and AR antagonist treatment lead to
inhibition of DNA damage pathways. In another transcriptomics analysis of different prostate cancer
cell lines, a subset of DDR genes was also found to be regulated by androgen [36]. Androgen-dependent
recruitment of cyclin D1 and formation of a complex with RAD51 giving rise to DDR was shown
in another study [86]. Also, a positive regulation of DNA-PKcs, as well as of XRCC4 and XRCC5,
with essential functions in NHEJ, was reported [87]. Another study demonstrated that androgens
regulate the expression of NKX3.1, a tumor suppressor that activates ATM to recruit DNA repair
actors involved in HR [88]. In line with these observations, AR antagonists impair the DDR at several
levels. Blockade of AR function leads to reduced expression of several HR-associated genes such as
BRCA1, RAD54L and RMI2, so that sequential treatment of a prostate cancer xenograft with the AR
antagonist, enzalutamide, and the PARP-1 inhibitor, olaparib, strongly suppresses tumor growth [89].
Androgen deprivation results in elevated activity of the TLK1B/NEK1/ATR/CHK1 pathway in prostate
cancer cells [90] and enzalutamide treatment reduces CDC6/ATR/CHK1 signaling [91]. The AR
antagonist apalutamide reduces NHEJ-dependent recombination [85]. Also, decreased Ku70 levels
were found in prostate tissues from men having undergone androgen-deprivation therapy (ADT) [92].

Conversely, DNA repair proteins also modulate AR function. DNA-PKcs is found at regulatory
elements bound by the AR and stimulates its activity, thus eliciting changes in the transcriptional
program and enhancing tumor progression [87]. On the other hand, AR activity is reduced following
blockade of DNA-PKcs expression or activity. A recent study further elaborated on the cross-talk
between DNA-PKcs and the AR, and highlighted the potential of combining respective inhibitors in
patient-derived prostate cancer explants [93]. PARP-1 is also needed for full transcriptional activity of
the AR and favors interaction at target genes [94]. The mediator of DNA damage checkpoint protein
1 (MDC1) facilitates the interaction between the AR and the histone acetyltransferase GCN5 which
increases local histone acetylation and gene activation, thus promoting cell proliferation [95].
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2.4. Cross-Talk between the ERα and the DDR Pathways

Estrogens stimulate several DDR pathways protecting against DSBs, as demonstrated in breast
cancer models [96]. Estrogen-mediated DDR involving cyclin D1 and RAD51 has been reported [86].
ERα activates DNA-PKcs expression, thus increasing the ability of breast cancer cells to repair
DSBs [97]. ERα stimulates NBS1 expression which is involved in HR and NHEJ, and protects cells
from radiation-induced damage [98].

DNA repair proteins also control ERα function. PARP-1 directly binds and adds poly(ADP-ribosyl)
groups to the ERα, which is necessary for interaction with target regulatory regions and full gene
expression [99]. Following estrogen activation, DNA-PKcs forms a complex with ERα leading to
phosphorylation and stabilization [97,100]. MDC1 binds to ERα and is recruited at target genes,
thus increasing the transcriptional activity and ultimately breast cancer cell proliferation [101].

3. Targeting the DDR for Treatment of Prostate and Breast Cancer

3.1. PARP-1 Inhibitors

PARP-1 is the main member of the PARP family of nuclear proteins. It detects SSBs, induces a
post-translational poly (ADP-ribosyl)ation (PARylation) to modulate chromatin structure, and guides
the repair pathway by recruiting numerous factors to the damaged site [102,103]. It is also involved in
DNA replication by controlling the elongation process and detecting disrupted forks [104]. The high
frequency of tumors with BRCA1 or BRCA2 deficiency and their dependency on PARP-1 function
has prompted intensive research efforts towards the identification of specific inhibitors. Potent and
selective PARP-1 inhibitors, mostly acting as NAD+ competitors and blocking PARylation as well
as inducing PARP trapping at the DNA, have been described and used to validate the underlying
rationale [103,105]. Several PARP-1 inhibitors are now approved as monotherapy and additional
clinical trials, including combination studies, are ongoing (Table 1). Olaparib was the first PARP-1
inhibitor approved, initially for advanced ovarian cancer with mutated BRCA, and then later also for
breast cancer [106]. Very recently, olaparib and rucaparib have also received approval for mCRPC
patients with HR repair or BRCA mutations, respectively, based on successful clinical trials [106–108].
Numerous clinical studies evaluating olaparib or other PARP-1 inhibitors as a single agent or combined
with drugs, such as abiraterone, radium-223 or immune checkpoint inhibitors, are currently ongoing in
mCRPC cohorts [109,110]. Serious adverse events have, however, been reported in patients receiving
a combination treatment with olaparib and abiraterone [111]. The PARP-1 inhibitors rucaparib and
talazoparib are also approved for BRCA-mutated breast cancer, and more clinical studies are currently
ongoing in this indication [105,112]. Niraparib and veliparib are presently in late-stage clinical trials
for prostate and breast cancer [105]. Clearly, PARP-1 inhibitors represent a novel treatment option for
cancer patients with certain DDR alterations; however, upfront and acquired resistance, mainly due
to the restoration of HR repair, are frequently observed after treatment [113]. Described resistance
mechanisms include restoration of HR repair, protection of stalled replication forks caused by BRCA1/2
inactivation, and downregulation of 53BP1 gene expression [113,114].
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Table 1. Selected clinical trials evaluating poly(ADP-ribose) polymerase 1 (PARP-1) inhibitors in
prostate or breast cancer.

Compound Additional Treatment Condition Inclusion Criteria Phase Identifier

Olaparib Pembroli-zumab Prostatic neoplasms 3 NCT03834519
Olaparib Cediranib mCRPC 2 NCT02893917
Olaparib AZD6738 mCRPC 2 NCT03787680

Olaparib Durvalumab Castration-sensitive
nmPC DDR mutations 2 NCT03810105

Olaparib Radium-223 mCRPC Bone metastases 1/2 NCT03317392
Rucaparib mCRPC HR deficiency 3 NCT02975934

Rucaparib Enzalutamide mCRPC Resistance to
testosterone deprivation 3 NCT04455750

Rucaparib mCRPC
HR deficiency

Post-docetaxel and
carboplatin

2 NCT03442556

Rucaparib Non-metastatic
prostate cancer BRCAness genotype 2 NCT03533946

Niraparib mCRPC DNA repair anomalies 2 NCT02854436

Niraparib Abiraterone, leuprolide,
radiotherapy

High-risk and
node-positive prostate

cancer

1
2 NCT04194554

Veliparib Abiraterone mCRPC 2 NCT01576172

Olaparib mBC Germline BRCA positive 3 NCT02000622

Olaparib
Platinum-based

neoadjuvant
chemotherapy

TNBC Germline BRCA positive 2/3 NCT03150576

Niraparib TNBC HER2 negative
Germline BRCA positive 3 NCT01905592

Veliparib Carboplatin
Paclitaxel mBC HER2 negative 3 NCT02163694

Talazoparib mBC BRCA mutation 3 NCT01945775

Abbreviations: mCRPC, metastasized castration-resistant prostate cancer; nmPC, non-metastasized prostate
cancer; mBC, metastasized breast cancer; TNBC, Triple-negative breast cancer; DDR, damage response;
HR, homologous recombination; HER2, human epithelial growth receptor 2.

3.2. DNA-PKcs Inhibitors

The DNA-PKcs is recruited and activated by the Ku70/80 heterodimer bound to DSBs and
promotes NHEJ [8]. In this process, direct ligation of DNA breaks without the requirement of
a sister chromatid or homologous chromosome is performed. A diverse collection of damaged
ends is thereby repaired with efficient kinetics, but this mechanism has the disadvantage of being
error prone. Increased DNA-PKcs expression is observed in a large fraction of late-stage tumors,
including prostate and breast cancer [51,87], and is associated with poor outcome and resistance to
radiation treatment or chemotherapy [115]. Several reversible and irreversible DNA-PKcs inhibitors
with different chemical structures have been described [115]. NU7441 has strong anti-proliferative
activity in different prostate cancer models, also in the absence of exogenous DNA damage, and exhibits
synergy with enzalutamide [93]. The compound increases sensitivity to radiation of different tumor
types, including breast cancer models [116]. Several selective DNA-PKcs inhibitors have reached the
clinic (Table 2). Nedisertib (M3814) is currently in phase 2 for different indications, including mCRPC
where a combination with radium-223 is evaluated. AZD7648 is a selective and potent DNA-PKcs
inhibitor which increases the anti-tumor effects of chemotherapy and radiation [117,118]. It is currently
tested in monotherapy and in combination with olaparib or with doxorubicin in patients with advanced
cancer in a phase 1/2 study. VX-984 was already evaluated in a dose–escalation study in solid tumor
subjects several years ago but no ongoing clinical study has currently been reported [115]. CC-115 is a
dual DNA-PKcs and mTOR inhibitor displaying additive-to-synergistic efficacy with enzalutamide
in different cell lines and explants derived from prostate cancer [93]. It is presently evaluated in
combination with enzalutamide in a phase 1b study in CRPC patients [119].
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Table 2. Selected clinical trials evaluating DNA-dependent protein kinase catalytic subunit (DNA-PKcs),
ataxia–telangiectasia-mutated (ATM) or ATM and Rad3-related (ATR) inhibitors in solid tumors
including prostate or breast cancer.

Compound Target Additional Treatment Condition Inclusion Criteria Phase Identifier

Nedisertib DNA-PKcs Radium-223
Avemulab mCRPC 1/2 NCT04071236

AZD7648 DNA-PKcs Doxorubicin
Olaparib Advanced cancers 1/2 NCT03907969

VX-984 DNA-PKcs Chemotherapy Advanced solid
tumors 1 NCT02644278

CC-115 DNA-PKcs Enzalutamide CRPC 1 NCT02833883
Berzosertib ATR Radiation therapy Breast cancer 1 NCT04052555
Berzosertib ATR Carboplatin mCRPC 2 NCT03517969
Ceralasertib ATR Olaparib mCRPC 2 NCT03787680
Ceralasertib ATR Olaparib TNBC 2 NCT03330847

Ceralasertib ATR Olaparib Advanced breast
cancer

Germline BRCA
mutation 2 NCT04090567

M4344 ATR Chemotherapy Advanced solid
tumors 1 NCT02278250

BAY 1895344 ATR

Advanced solid
tumors and
lymphomas 1 NCT03188965

BAY 1895344 ATR Chemotherapy Advanced solid
tumors 1 NCT04491942

BAY 1895344 ATR Niraparib Advanced solid
tumors 1 NCT04267939

BAY 1895344 ATR Pembrolizumab Advanced solid
tumors 1 NCT04095273

AZD0156 ATM

Olaparib
Irinotecan

Fluorouracil
Folinic acid

Advanced cancer 1 NCT02588105

M3541 ATM Radiotherapy Solid tumors 1 NCT03225105

Abbreviations: DNA-PKcs, DNA-dependent protein kinase catalytic subunit; ATM, ataxia–telangiectasia-mutated
kinase; ATR, ATM and Rad3-related kinase; CRPC, castration-resistant prostate cancer; mCRPC, metastasized CRPC;
TNBC: triple-negative breast cancer.

3.3. ATR Inhibitors

ATR plays a central role in DNA repair, senses stressed replication forks, and orchestrates a
multifaceted response to DNA replication stress [8,120]. This response is essential to ensure completion
of DNA replication and maintenance of the integrity of the genome as indicated by the embryonic
lethality observed in mice upon ATR depletion [121]. ATR is activated by various genotoxic stresses
including stalled replication forks at single-strand DNA regions coated by replication protein A (RPA)
or RAD17 [10]. This elicits activation of CHK1, degradation of CDC25A, and cell cycle arrest to
allow DNA repair. Besides replication stress response, ATR also operates during HR-mediated DSB
repair as well as at inter-strand and cross-link repair [122,123]. As ATR is essential for cell survival,
it represents a valuable target for cancer treatment, especially in the context of ATM mutations [124].
Several ATR inhibitors are currently in early clinical testing (Table 2). Berzosertib (M6620) was initially
profiled in lung xenograft models, where it showed strong efficacy when combined with cisplatin [125].
It was evaluated in solid tumor subjects following intravenous infusion as a single agent or combined
with the DNA-damaging agent carboplatin, and an objective response was observed for one patient
in each group [126]. Several phase 2 studies are currently ongoing with one focusing on mCRPC
and one on breast cancer [125]. Ceralasertib (AZD6738) has preclinical anti-tumor activity mainly in
combination therapy in several tumor types of different indications, especially in those with p53 or
ATM deficiencies [120,127,128]. Clinical studies show that ceralasertib combined with carboplatin,
olaparib or durvalumab leads to objective responses in all groups; however, no single-agent efficacy
was reported [10]. The compound is currently being evaluated in several phase 1 or 2 trials in
prostate and breast cancer including combination studies with olaparib in mCRPC patients [125].
M4344 shows strong anti-tumor efficacy in preclinical tumor models as a single agent or combined
with talazoparib [129]. Two phase 1 clinical trials have recently been initiated for evaluation of
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this compound in solid tumors including ovarian cancer [125]. BAY 1895344 is a highly potent and
selective oral ATR inhibitor [130]. It possesses strong monotherapy efficacy in different preclinical
solid tumor and lymphoma models with DDR deficiencies [130,131]. Concerning prostate cancer,
potent single-agent anti-tumor activity was demonstrated in vivo. Furthermore, additive to synergistic
effects were observed in preclinical in vitro and in vivo models when combining BAY 1895344 with the
AR antagonist darolutamide [131]. In addition, a triple combination of BAY 1895344, darolutamide,
and radiation therapy achieved better activity than the respective dual combinations and even
castration [132]. Furthermore, synergistic effects of BAY 1895344 in combination with radium-223
were reported in an in vivo prostate cancer model mimicking bone metastases [133]. Several phase 1
clinical trials have been initiated to evaluate BAY 1895344 in patients with advanced tumors either
in monotherapy or in combination with the PD-1 immune checkpoint inhibitor pembrolizumab or
with the PARP-1 inhibitor niraparib (Table 2). In the monotherapy first-in-human trial, BAY 1895344
was well tolerated at biologically active doses and showed promising anti-tumor activity in heavily
pre-treated patients with different histologies and DDR defects, including ATM aberrations [134].

3.4. ATM Inhibitors

ATM has a central function in DSB repair and is recruited by the MRN complex. It phosphorylates
numerous downstream substrates, including CHK2, MDC1, and the histone H2AX [8,135]. Several ATM
inhibitors have been described and first clinical trials were initiated [135] (Table 2). AZD0156 is a potent
ATM inhibitor with efficacy in several mouse tumor models, especially in combination with olaparib or
irinotecan [136]. Treatment with AZD0156 and olaparib leads to improved efficacy in patient-derived
TNBC models [137]. A clinical phase 1 study to evaluate AZD0156 alone or in combination
with olaparib or irinotecan in subjects with advanced tumors has just been started. AZD1390 is
a potent and selective ATM inhibitor which was optimized to exert high brain penetration [138].
It radiosensitizes glioma and lung cancer cell lines in vitro, especially those with a p53 mutation and
induces tumor regression in vivo in an orthotopic lung cancer model with brain metastases [138].
AZD1390 combined with radiation therapy is currently being evaluated in glioblastoma patients.
Another ATM inhibitor, M3541, sensitizes tumor cells to radiation and topoisomerase inhibition,
showing synergistic anti-tumor effects with radiotherapy in tumor xenograft models [139]. It is
currently under investigation in combination with radiotherapy in a dose–escalation study in subjects
with solid tumors. Generally, only few data are published concerning the impact of ATM inhibitors
on prostate cancer. ATM deficiency due to complete protein loss or mutation has been observed in
approximately 5–10% of advanced mCRPC tumors [140]. Defective ATM activity alters the DDR and
sensitizes to ATR inhibition as demonstrated in preclinical prostate cancer models [141]. The ATM
inhibitor KU-60019 significantly reduces growth of a PTEN-deficient prostate cancer xenograft [142].
Also, a combination of KU-60019 with an AR antagonist results in cell death in androgen-sensitive as
well as CRPC cell lines and synergistically inhibits growth of the 22Rv1 tumor xenograft model which
does not respond to the respective single-agent treatments [143,144].

3.5. CHK1 Inhibitors

CHK1 and CHK2 are the respective downstream targets of the two major signaling cascades
driving the DDR, namely, the ATR and ATM kinase pathways. Cross-regulation in the case of deficiency
of either ATM or ATR has also been reported [145]. The first CHK inhibitors described were unspecific
and elicited significant side effects in the clinic [10]. Selective CHK1 inhibitors that are currently in
clinical evaluation include prexasertib (LY2606368), GDC-575, and CCT245737. Prexasertib is the
most advanced compound and is being tested in several phase 2 studies including trials focusing on
TNBC and on mCRPC (Table 3) [146]. The compound reduces HR efficiency and shows synergistic
antiproliferative activity in combination with olaparib in TNBC cell lines [147]. First clinical data
with prexasertib showed only limited monotherapy efficacy in TNBC patients with wild-type BRCA,
suggesting that combinations with other drugs will be needed for improved therapeutic activity [148].
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LY2880070 was evaluated in a phase 1b study in combination with gemcitabine for treatment of patients
with advanced cancers, including breast cancer, to determine the optimal dosing schedule, and a
partial response in an ovarian cancer patient was reported [149]. MU380 strongly blocks the growth
of docetaxel-resistant prostate cancer xenografts, either as a single agent or when combined with
gemcitabine [150].

Table 3. Selected clinical trials evaluating CHK1 or WEE1 inhibitors in solid tumors including prostate
or breast cancer.

Compound Target Additional Treatment Condition Inclusion Criteria Phase Identifier

Prexasertib CHK1

mCRPC
TNBC

Ovarian
cancer

BRCA mutation 2 NCT02203513

Prexasertib CHK1 LY3023414 TNBC 1 NCT04032080
LY2880070 CHK1 Gemcitabine Solid tumors 1 NCT02632448

Adavosertib WEE1 Prostate
cancer 2 NCT03385655

Adavosertib WEE1 Olaparib TNBC 2 NCT03330847
AZD1775 WEE1 Cisplatin TNBC 2 NCT03012477

Abbreviations: mCRPC, metastasized breast cancer; TNBC, triple-negative breast cancer.

3.6. WEE1 Inhibitors

Activation of the G2/M cell cycle checkpoint to allow time for the DDR process is controlled
by the WEE1 kinase. WEE1 inhibitors are expected to be efficacious in G1 checkpoint-deficient
tumors such as those carrying p53 mutations [151]. Adavosertib (AZD1775) is the most advanced
WEE1 inhibitor and has been evaluated in preclinical studies in diverse tumor types [152]. It shows
strong in vitro and in vivo efficacy in TNBC models, especially in combination treatment with
capecitabine [153]. Further, the combination of AZD1775 with a single high-dose gamma irradiation
delays growth of breast cancer models in vivo and reduces the radiation-induced PD-L1 expression [154].
Combination treatment with adavosertib and the BCL2 inhibitor navitoclax leads to inhibition of
tumor growth in a small-cell neuroendocrine patient-derived prostate cancer xenograft model [155].
Adavosertib is currently in clinical development for different tumor indications, including breast cancer.
Initial data from a phase 2 study assessing efficacy in tumors with p53 mutations in ovarian and small
cell lung cancer patients, however, showed only a limited benefit (Table 3) [156,157].

3.7. CDK12 Inhibitors

CDK12, acting in a complex with cyclin K, phosphorylates the C-terminal domain of RNA
polymerase II and plays an essential role in controlling the transcription of numerous central
DDR genes, including BRCA1 and ATR, as well as in the regulation of cellular CHK1 protein
levels [158–160]. CDK12 also has a central function in controlling the expression of centrosome,
centromere, and kinetochore proteins, underpinning its importance in the maintenance of genomic
stability [159]. Indeed, CDK12 inactivation is observed in different cancer types, including mCRPC
and breast cancer [45,161–163]. Conversely, amplification and oncogenic function of CDK12 have been
reported for a HER2-positive breast cancer model [164]. Prostate cancer patients with mutated CDK12
have a more severe disease progression [165]. It is hypothesized that patients with CDK12-deficient
tumors may benefit from immune checkpoint inhibitor treatment due to the increase in tumor
immunogenicity [166,167]. Loss of CDK12 also increases the anti-tumor activity of combination
treatments with PARP-1 and CHK1 inhibitors in TNBC models [168,169]. THZ531 is a selective
inhibitor of CDK12 and the related kinase CDK13 which covalently binds to a cysteine residue outside
of the ATP-binding pocket to inhibit enzymatic activity. This ultimately hinders the expression of
DDR and transcription factor genes, resulting in blockade of tumor cell proliferation as demonstrated
in leukemia cells [170]. SR-4835 is another selective but competitive CDK12 inhibitor which is able
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to downregulate the expression of DDR genes [56]. Synergistic anti-proliferative effects are seen
for SR-4835 when combined with cisplatin, irinotecan, doxorubicin or olaparib, as demonstrated in
TNBC models in vitro. Anti-tumor efficacy is furthermore observed in vivo following SR-4835 plus
cisplatin or irinotecan treatment of TNBC patient-derived models. Future clinical studies with selective
inhibitors will show the validity of this approach for cancer treatment.

4. Blocking DNA Repair in Prostate and Breast Cancer to Improve Chemotherapy, General Radiation,
and Targeted Radiation Therapy

Cytotoxic chemotherapy and radiation treatment are mainstay treatments of many cancer types.
They may cause severe DNA damage directly by induction of breaks or other lesions, or indirectly
due to the formation of reactive oxygen species, and this will mostly affect rapidly dividing cancer
cells [62,171,172]. For instance, platinum derivatives form intra-strand DNA cross-links that the cells
need to amend by NER, single-strand DNA repair or the Fanconi anemia pathway. Alkylating agents
bind to one or both DNA strands and cause them to break upon cell division. Antimetabolites lead to
stalling of the replication fork which may induce different DNA lesions. Topoisomerase inhibitors
cause DNA breaks and ultimately cell death.

Radiation therapy induces different DNA lesions, including base damaging, SSBs, and less
frequently DSBs [171,173]. DSBs can be indirect and occur during replication in case the initial damage
was not mended. In contrast, targeted alpha therapies like radium-223 predominantly act via the
induction of difficult-to-repair, clustered DSBs [174]. Repair of the induced damage can take place
via different cellular pathways so that a simultaneous targeting of the key DDR enzymes mentioned
above represents a promising approach currently under intensive evaluation [62]. Also, resistance to
radiotherapy is linked to enhanced DNA repair capacities so that a combination with DDR inhibitors
may significantly ameliorate the outcome [175]. Clearly, improved efficacy of radiotherapy should not
be deleterious to neighboring normal tissues and the therapeutic window needs to be carefully assessed.

Concerning prostate cancer, external and internal radiation therapy are commonly used in patients
with localized or locally advanced tumors [176,177]. Importantly, androgens cause radioresistance in
prostate cancer by upregulating DNA repair genes such as DNA-PKcs [178]. Numerous preclinical
studies have evaluated the potential of combining radiation with different targeted agents such
as antagonists of the AR [131,179,180] or inhibitors of PARP-1 [181], ATM [182] or ATR [131].
Several clinical studies evaluating the benefit of radiotherapy applied together or after sensitizing
agents are currently ongoing [177]. The shift towards targeted radiotherapy for precision rather than
systemic DNA damage bears great promise in cancer treatment as it will specifically target the tumor
while sparing other tissues, and a number of clinical studies are now ongoing to address this therapeutic
option. Beta emitters are characterized by low linear energy transfer and a long range, so that large
tumors can potentially be addressed, but adjacent normal tissue like bone marrow might be hit, too [62].
The beta emitter lutetium-177, coupled to PSMA-617, showed encouraging responses in mCRPC
patients and is currently under evaluation in a phase 3 pivotal clinical trial [183]. Alpha emitters
couple high linear energy transfer with short-range effects and lead to complex DSB formation in
close proximity to the radiation source [62]. Radium-223 was the first alpha emitter approved for
CRPC patients with bone metastases and no evidence of visceral metastases, based on a significant
prolongation of overall survival [184]. After its preferential uptake in osteoblastic bone metastasis,
it leads to DNA DSBs and ultimately to cell death of adjacent prostate cancer cells and cells of the
tumor microenvironment like disease-promoting osteoblasts [185]. Retrospective studies may indicate
that mCRPC patients with germline or somatic mutations in DDR genes have an improved response
and a longer overall survival following radium-223 treatment [186,187]. Several clinical trials are
currently ongoing in mCRPC patients where radium-223 is combined with different agents including
the PARP-1 inhibitors olaparib and niraparib [188]. The alpha emitter actinium-225, coupled to
PSMA-617, has been evaluated in mCRPC patients but limiting side-effects were observed [189,190].
For actinium-225, coupled to the anti-PSMA antibody J591, clinical dose–escalation data in progressive
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mCRPC patients are available and a recommended phase 2 dose was defined [191]. Thorium-227 linked
to a PSMA-targeting antibody has shown promising efficacy in preclinical prostate cancer models and
a phase 1 trial is now ongoing in mCRPC patients [192].

In the case of breast cancer, several clinical studies combining chemotherapy or radiation
therapy with PARP-1 inhibitors are ongoing but limiting adverse events have been reported in
several instances [193]. A study in TNBC patients with residual disease shows that sensitization to
radiation therapy occurs following treatment with the ATR inhibitor VX-970 [194]. Preclinical data
show that the radiosensitivity of TNBC cell lines increased after treatment with the CHK1 inhibitor
MK-8776 [195]. Concerning targeted alpha therapy, a number of clinical studies are ongoing in
breast cancer [196]. Thorium-227 coupled to trastuzumab showed encouraging preclinical efficacy in
breast cancer models [197] but no recent data are available. Actinium-225 conjugated to the IGF-1R
monoclonal antibody cituxumab prolongs the survival of mice bearing a TNBC xenograft [198].

Altogether, these results underline the potential of chemotherapy or targeted radiotherapy
conjugated with agents targeting DNA repair. The selection of the best combination regimens remains
a challenge and biomarker-driven approaches will be essential in this regard.

5. Conclusions and Perspectives

The major progress made in recent years in understanding the cellular machinery involved in
DNA repair and its role in tumors has led to the discovery of novel cancer targets and thereafter of
specific inhibitors. The PARP-1 inhibitors are now approved for ovarian, breast, and prostate cancer
harboring BRCA mutations, and more clinical studies are currently ongoing. Compounds targeting
other important DDR players, such as DNA-PKcs, ATM, ATR, CHK1, and WEE1, are now also in clinical
testing for different cancer types, including prostate and breast cancer, and this will hopefully lead to
additional drug approvals soon. Also, numerous studies combining anti-hormonal approaches with
DDR-targeting agents are being conducted in steroid hormone-dependent tumors and, here, also novel
successful therapeutic approaches should soon be identified. Concerning TNBC, there are currently
few treatment options available apart from chemotherapy and radiation, but clinical studies to evaluate
PARP inhibitors are currently ongoing [199,200]. In addition, agents targeting kinases involved in
the DDR, such as ATR, CHK1, and WEE1, are being tested for activity in preclinical TNBC models,
which will hopefully lead to novel therapeutic options soon [199]. As frequently seen for other cancer
therapies, toxicity linked to new therapies may be limiting and needs to be evaluated carefully by
testing specific dosing schedules to determine the optimal therapeutic window. Combinations with
targeted radiation therapy are furthermore being evaluated and also, here, the optimal treatment
schedule needs to be precisely defined in order to increase response while minimizing adverse events.
Intensive efforts are ongoing to identify biomarkers to ascertain that the target is selectively hit and
to predict and monitor the response to these novel agents [18,172,201,202]. Finally, the mechanisms
underlying treatment resistance, as already observed for PARP-1 inhibitors, need to be understood and
the steady progress made in different “omics” approaches to analyze tumor and blood samples from
patients along the treatment time will play an important role [23,203–205]. Proper integration of these
analyses will help to develop strategies to delay or even overcome resistance and ultimately improve
the outcome for prostate and breast cancer patients treated with drugs that address the DDR.
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