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Abstract: Neuronal cells are extremely vulnerable and have a limited capacity for  

self-repair in response to injury. For those reasons, there is obvious interest in limiting 

neuronal damage. Mechanisms and strategies used in order to protect against neuronal 

injury, apoptosis, dysfunction, and degeneration in the central nervous system are 

recognized as neuroprotection. Neuroprotection could be achieved through several classes 

of natural and synthetic neuroprotective agents. However, considering the side effects of 

synthetic neuroprotective agents, the search for natural neuroprotective agents has received 

great attention. Recently, an increasing number of studies have identified neuroprotective 

properties of chitosan and its derivatives; however, there are some significant challenges 

that must be overcome for the success of this approach. Hence, the objective of this review 

is to discuss neuroprotective properties of chitosan and its derivatives. 

Keywords: neuronal cells; neuroprotection; neuroprotective agents; neuroprotective 

properties; chitosan and derivatives 

 

1. Introduction  

The brain is an amazing and critical organ for our life [1]. It is surrounded by layers of tissue called 

meninges and encased by the skull. There are two broad classes of cells in the brain, which are neuron 

and glia [2–4]. Even though neuronal cells are among the longest-living cell types in mammals, unlike 

many other cells, they have a limited capacity for self-repair in response to injury [5,6]. This condition 
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is compounded by the fact that neuronal cells are extremely vulnerable [7]. For this reason, there is an 

obvious interest in limiting the cell damage caused by various insults that trigger endogenous repair 

mechanisms. The mechanisms and strategies used in order to protect them against neuronal injury, 

apoptosis, dysfunction and or degeneration in the central nervous system (CNS) are called as 

neuroprotection [8]. The goal of neuroprotection is to limit neuronal dysfunction or death after CNS 

injury in an attempt to maintain the highest possible integrity of cellular interactions in the brain, thus 

minimizing disturbance to neural function [9]. According to its mechanism, neuroprotection can be 

categorized into several mechanisms such as: antioxidant (free radical trapper/scavenger) [10,11];  

anti-inflammatory [12,13]; anti-exitotoxic [14]; apoptosis inhibitor [15]; gene expression modulator 

[16]; ion channel modulator [17,18]; metal ion chelator [19,20]; neurotrophic factor [21–23]; MMP 

inhibitor [24]; combined mechanism (combining two mechanisms or more) [25]. 

Many categories of natural and synthetic compounds have been reported to possess a 

neuroprotective activity. However, these synthetic neuroprotective agents are believed to have certain 

side effects such as dry mouth, tiredness, drowsiness, sleepiness, anxiety or nervousness, difficulty to 

balance, etc. [26]. Hence, nowadays researchers have a great interest to study natural bioactive 

compounds that can act as neuroprotective agents.  

The marine environment is been known as a rich source of bioactive chemical structures with 

promising biological activities such as neuroprotection [27]. Based on several studies, it is reported 

that chitosan, one of the biologically active compounds derived from the sea, has potent 

neuroprotective properties. 

Over the last three decades, there have been a growing number of publications on chitosan and its 

derivatives in the pharmaceutical industry. Chitosan is a linear polysaccharide that consists of  

β-(1→4)-2-acetamido-d-glucose and β-(1→4)-2-amino-d-glucose units derived from partial 

deacetylation of chitin [28,29]. However, this polysaccharide has poor solubility, making it difficult to 

be used in food and biomedical applications [30]. Considering this property limitation, some 

researchers are interested in converting chitosan into oligosaccharides [31]. Chitooligosaccharides 

(COS), oligosaccharides form of chitosan, are readily soluble in water due to their shorter chain 

lengths and free amino groups in D-glucosamine units [32]. Similar to chitosan, COS have positive 

charges resulting from removal of acetyl units from D-glucosamine residues. These properties enable 

COS to interact with negatively charged polymers, macromolecules and polyanions in an aqueous 

environment [33,34]. Both chitosan and COS are known to possess many biological activities such as 

antibacterial [31,35], immunoenhancing [36], antioxidant [37], matrix metalloproteinase (MMP) 

inhibition [38–40], anti-diabetic [41], anti-HIV [42], anti-inflammatory activities [43], and drug 

delivery [44], etc. Not only restricted to those activities, chemical modification will enhance and open 

various ways to utilize chitosan and COS [29]. The rationale for this is that a chemical modification 

will keep the original physiochemical and biochemical properties of chitosan and COS and bring the 

new properties of the group introduced to them at the same time [45].  

Recent reviews have been published regarding the pharmaceutical effects of chitosan and its 

derivatives. This review, however, focuses specifically on neuroprotective properties of chitosan and 

its derivatives. 
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2. Suppressing Effect on β-Amyloid Formation 

The most common neurodegenerative disorder, Alzheimer’s disease (AD), is an irreversible, 

progressive brain disease affecting cognition [46]. The pathological hallmark of AD is the deposition 

of senile plaques (SPs) and neurofibrillary tangles (NFTs) [47]. SPs are composed of the β-amyloid 

(Aβ) peptides, which are cleaved from amyloid precursor proteins (APPs) by proteolysis enzymes such 

as β- and γ-secretase [48–50]. In APP proteolysis, it seems that the key enzyme is β-secretase, which is 

also known as β-amyloid cleavage enzyme (BACE-1), since it initiates the formation of Aβ [51]. 

Hence, BACE-1 represents a candidate biomarker, as well as a drug target for AD [52]. 

There have been some studies on BACE-1 inhibition activities and Aβ formation inhibition 

activities of chitosan and its derivatives for a decade.  

Scheme 1. Synthesis of chitosan derivatives. 
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AE-chitosan : R = (CH2)2NH2 : R1 = H, COCH3 

DMAE-chitosan : R = (CH2)2N(CH3)2 : R1 = H, COCH3 

DEAE-chitosan : R = (CH2)2N(CH2CH3)2 : R1 = H, COCH3 

BACE-1 inhibition activity of chitosan derivatives have been reported by Je et al. [28]. They 

prepared chitosan with two degrees of deacetylation (90% and 50%) and grafted amino functionality 

into chitosan to improve the solubility and bioactivity. The synthesized reaction of chitosan derivatives 

are presented in Scheme 1. Chitosan derivatives were designated as aminoethyl (AE-chitosan) (90%), 

dimethylaminoethyl (DMAE-chitosan) (90%), and diethylaminoethyl (DEAE-chitosan) (90%) 

prepared from 90% deacetylated chitosan, and AE-chitosan (50%), DMAE-chitosan (50%), and 

DEAE-chitosan (50%) prepared from 50% deacetylated chitosan. The potencies of chitosan 

derivatives are expressed as an IC50 value, which is the BACE-1 inhibitor concentration leading to 

50% inhibition of BACE-1 activity. AE-chitosan (90%) shows strongest inhibitory activity compared 

to other derivatives. Moreover, the inhibition modes of BACE-1 catalyzed by chitosan and its 

derivatives have been determined by Dixon plots. Based on the Dixon plots, the inhibition constant 

(Ki) of AE-chitosan (90%) is 85 μg/mL. They suggested that the free amino groups at the C-2 and C-6 

positions play an important role in BACE-1 inhibitory activity; however, the free amino group at C-2 

is a minor factor according to the above results. 

An investigation of BACE-1 inhibitory activity of COS was done by Byun et al. [53]. Nine kinds of 

hetero-COS with different degrees of deacetylation and molecular weight were prepared by using an 

ultrafiltration (UF) membrane reactor [35]. The deacetylated chitosan of 90, 75, and 50% were 

hydrolyzed and fractionated by passing them through three UF membranes of molecular weight cut-off 

(MWCO) 10, 5, and 1 kDa. The hetero-COSs were named 90-HMWCOSs, 75-HMWCOSs,  

50-HMWCOSs, 90-MMWCOSs, 75-MMWCOSs, 50-MMWCOSs, 90-LMWCOSs, 75-LMWCOSs, 

50-LMWCOSs respectively. 90-MMWCOSs which are 90% deacetylated COS with molecular weight 
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3–5 kDa, exhibited the highest BACE-1 inhibitory activity (25–42 mM) compared to the others. The 

inhibitor was found to have a noncompetitive by Dixon plot, and the Ki of 90-MMWCOSs was  

3.87–6.47 mM. The study of Byun and his colleagues indicated that degree of deacetylation and 

sulfations at the C-2 position of COS has an effect on BACE-1 inhibitory activity. A further amine 

group at C-2 position was shown to be beneficial for BACE-1 inhibitory activity. 

Based on the hypothesis that the increase of an important product of oxidation may induce Aβ 

formation, Khodagholi et al. [54] studied the effect of chitosan in NT2 neuron cells induced by H2O2 

and FeSO4. NT2 neuronal cells are a widely accepted experimental model to study the regulation of 

APP metabolism and the pathogenesis of AD [55]. In their study, they found that Aβ formation by 

NT2 neurons pretreated with chitosan was significantly lower than that of control cells exposed only to 

H2O2. The Aβ levels rose from 30.96 pg/mL in H2O2-treated cells to 22.2 and 18.35 pg/mL in the 

presence of 0.1 and 0.5% w/v chitosan, respectively. This study indicates that Aβ level can be 

controlled by treatment with this chitosan, suggesting a protective effect of chitosan in AD.  

Almost all currently available medications for AD are cholinesterase inhibitors. Considering these 

reasons, the suppression of β-amyloid formation by chitosan and its derivatives will enhance the 

medications for AD. However, further studies are needed with clinical trials for the application of 

chitosan and its derivatives in AD medications. 

3. Acetylcholinesterase Inhibitory Activity  

The pathogenesis of AD has been linked to a deficiency in the brain neurotransmitter
 
acetylcholine 

(ACh) [56]. This was stated in the cholinergic hypothesis which was raised three decades ago, that a 

serious loss of cholinergic function in the CNS contributes significantly to the cognitive symptoms 

associated with AD [57]. The inhibition of acetylcholinesterase (AChE) enzyme, which catalyzes the 

breakdown of ACh, may be one of the most realistic approaches to the symptomatic treatment of  

AD [56,58,59]. 

Recently, several studies on chitosan and its derivatives have identified their potential as 

acetylcholinesterase inhibitors (AChEIs). The AChEIs activity of COS and its derivatives is discussed 

below as well as summarized in Table 1. 

Table 1. Cholinesterase inhibitory activities of COS derivatives. 

COS IC50 Ref 

90-HMWCOS 2.59 mg/mL  [60] 

90-MMWCOS 1.67 mg/mL  [60] 

90-LMWCOS 3.52 mg/mL  [60] 

50-HMWCOS 1.98 mg/mL  [60] 

50-MMWCOS 2.93 mg/mL  [60] 

50-LMWCOS >4.00 mg/mL  [60] 

AE-COS 56.5 ± 0.26 μg/mL  [61] 

DMAE-COS 24.1 ± 0.39 μg/mL  [61] 

DEAE-COS 9.2 ± 0.33 μg/mL  [61] 

Eserine a 0.0089 ± 0.00005 μg/mL  [61] 

a positive control. 
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Lee et al. [60] studied AChEIs activity of six kinds of COS with different molecular weight and 

degrees of deacetylation. In their study, 90-COS and 50-COS were prepared from 90% and 50% 

deacetylated chitosan and further fractionated into three kinds of COS, high molecular weight (HMW) 

(5,000–10,000 dalton), medium molecular weight (MMW) (1,000–5,000 dalton), and low molecular 

weight (LMW) (below 1,000 dalton) using an ultrafiltration membrane system as described by Kim et 

al. [35]. 90-COS has stronger AChEIs activity than 50-COS. Among 90-COS, 90-MMWCOS (90% 

deacetylated COS with molecular weight 1000–5000 Da) showed the strongest AChEIs with IC50 

value of 1.67 mg/mL (Table 1). Moreover, Lee et al. also investigated the level of AChE protein 

expression and AChEIs activity in PC12 cell lines using Ellman’s evaluation. The results showed that  

90-MMWCOS suppressed the AChE protein expression and increased the AChEIs in a dose dependant 

manner. These findings suggest that degree of deacetylation of COS is the key factor for the  

AChEIs activity. 

Furthermore, Yoon et al. [61] synthesized COS derivatives with different substitution groups. In 

their study, the synthesis of COS derivatives was accomplished by the displacement of the hydroxyl 

group at the C-6 of the pyranose ring and replaced with aminoethyl (AE), dimethylaminoethyl 

(DMAE) and diethylaminoethyl (DEAE) groups. The chemical structures were determined as  

AE-COS, DMAE-COS and DEAE-COS, in sequence. Eserine, a parasympathomimetic and a 

reversible cholinesterase inhibitor, was used as the positive control in their study. Among three COS 

derivatives, DEAE-COS has the strongest AChEIs activity with IC50 values of 9.2 ± 0.33 μg/mL. 

DMAE- and DEAE-COS were identified as competitive AChEIs according to the Lineweaver–Burk 

plot. These findings suggest that the chemical modification will enhance the utilization of COS as 

AChEIs, and their inhibitory activity depends on the hydrophobic nature of the group that is 

introduced to them. 

AChEIs, which provide modest symptomatic improvement and are able to delay the loss of 

functional abilities, is a promising medication for AD patients. The AChEIs activity of COS and its 

derivatives indicate that COS derivatives might be a beneficial material in the prevention or treatment 

of AD. Furthermore, mechanistic studies, particularly those that investigate how these compounds 

inhibit AChE activity in cellular systems, will be required in the future. 

4. Anti-Neuroinflammatory  

In principle, inflammation is the first response of a human body’s immune system to pathogens or 

irritation [62,63]. A growing number of studies are discovering intriguing links between chronic 

inflammation and a number of neurodegenerative disorders [62]. The neuroinflammation process plays 

a pivotal role in the initiation and progression of various neurodegenerative diseases. Recently, a 

number of studies have found anti-neuroinflammatory activity of chitosan and its derivatives. 

Kim et al. [64] reported that high molecular weight water soluble chitosan (WSC) inhibits the 

production of pro-inflammatory cytokine in human astrocytoma cells activated by Aβ peptide 25–35 

(Aβ25–35) and interleukin-1β (IL-1β). In their study, they used the human astrocytoma cell line  

(CCF-STTG1) as an in vitro AD model. The effects of WSC on pro-inflammatory cytokines such as 

tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were evaluated by enzyme-linked 

immunosorbent assay (ELISA) and western blotting. The secretion and expression of TNF-α and IL-6 
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were significantly inhibited by pretreatment with 1 and 10 µg/mL of WSC. Moreover, the expression 

of inducible nitric-oxide synthase (iNOS) induced by Aβ25–35 and IL-1β was partially inhibited by 

treatment with WSC. However, those findings need further investigation to find whether WSC 

regulates the transcription factor and signaling molecules with concerns to the production of 

inflammatory cytokines and neurotoxic components. 

Another study conducted by Khodagholi et al. focused on the anti-neuroinflammatory effect of 

chitosan and its derivatives on NT2 neuronal cells. Chitosan exerts anti-neuroinflammatory action by  

upregulation of heat shock protein 70 (Hsp-70) and inhibits the activation of NF-κB [54]. The  

anti-inflammatory mechanism of Hsp-70 is mediated by the binding of Hsp-70 to NF-κB and its 

subsequent inhibition [65]. A pre-treatment with 0.1 and 0.5% (w/v) chitosan prior to H2O2 and FeSO4 

exposure has been proved to increase the level of heat shock protein (Hsp-70) to 1.4- and 1.6-times, 

respectively.  

Several studies have shown anti-neuroinflammatory activity of chitosan and its derivatives; 

however, further studies about anti-neuroinflammatory activity of chitosan and its derivatives in other 

neuronal cells such as microglia are needed. Moreover, various intracellular signaling pathways also 

need to be investigated in order to obtain a better understanding of the underlying  

anti-neuroinflammatory mechanism of chitosan and its derivatives.  

5. Apoptosis Inhibitors 

The elimination of cells by apoptosis or programmed cell death is a fundamental event in 

development, whereby multi-cellular organisms regulate cell numbers or eliminate cells that are 

functionally redundant or potentially detrimental to the organism [66]. Many human diseases such as 

acquired immunodeficiency syndrome, neurodegenerative disorders, and cancer can be attributed 

directly or indirectly to a derangement of apoptosis resulting in either cell accumulation, in which cell 

eradication or cell turnover is impaired or cell loss, in which the apoptotic programs are inadvertently 

triggered [67]. In neurodegenerative disorders, apoptosis might be pathogenic, and targeting it might 

mitigate neurodegenerative disorders [68]. Some studies on chitosan have found biological activity of 

chitosan, COS and its derivatives in targeting apoptosis in brain cells.  

A study carried out by Koo et al. successfully showed that high molecular weight water soluble 

chitosan (WSC) was able to protect against apoptosis in human astrocytoma cells (CCF-STTG1) 

induced by serum starvation [69]. In their study, they used WSC, which has a molecular weight of  

300 kDa and degree of deacetylation over 90%, which was produced by using a multi-step membrane 

separation process. Based on the cytotoxicity test, WSC (10 μg/mL) was able to inhibit cell death 

significantly compared to the control group. Furthermore, in order to induce apoptosis by serum 

starvation, they incubated CCF-STTG1 cells for 48 h in medium supplemented with only 0.1% FBS. 

The serum starvation-induced apoptosis of CCF-STTG1 cells was determined by flow cytometry. 

Their results suggested that when the cells treated with WSC (10 μg/mL) were exposed to serum 

starved-medium, apoptosis of CCF-STTG1 cells was almost completely inhibited compared to the 

effect of serum starved-medium alone. Supporting the flow cytometry, they also showed that DNA 

fragmentation in a ladder pattern, which is characteristic of apoptosis, was not detected in  

CCF-STTG1 cells pre-treated with WSC (10 μg/mL). It is known that serum starvation induces 
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apoptosis through the activation of p53, based on their Western blot data; WSC can prevent serum 

starvation-induced apoptosis via blocking p53 activation. Although their study did not directly 

demonstrate general cell death of CCF-STTG1 astrocytoma cells because only morphological changes 

have been observed, their finding might suggest that WSC can promote neuroprotective properties in 

the brain. 

Recently, the protective effect of COS, with a molecular weight 800 Da, against glutamate-induced 

neurotoxicity in cultured hippocampal neurons has been reported [70]. In their study they used 

glutamate as a model, because glutamate accumulation in the CNS and excessive stimulation of 

glutamate receptors induces potent neurotoxic action, which is specifically referred to as excitotoxicity, 

and is involved in neuronal damage and degenerative disorders in the CNS. A glutamate concentration 

of 125 μM was chosen in their study. Hoechst staining and flow cytometry with annexin V/PI staining 

showed that in this concentration rat hippocampal neurons underwent extensive apoptotic-like cell 

death characterized by neuronal morphology. Based on the cell viability assessments, together with 

Hoechst 33342 staining and flow cytometry for cell apoptosis analysis, pre-treatment with COS was 

able to attenuate apoptosis in hippocampal neurons cells in a dose dependent manner. Moreover, they 

also measured the change in caspase-3 activity during cell treatment. A three- to four-fold increase in 

caspase-3 activity was found in cultured hippocampal neurons at 18 h after a 15-min exposure to 

glutamate, and pretreatment with 1.0 and 2.0 mg/mL of COS prevented cells from glutamate-induced 

increases in caspase-3 activity. The increase of [Ca
2+

] has been postulated to be associated with 

glutamate-induced cell death. In cultured hippocampal neurons exposed to 125 μM glutamate, [Ca
2+

] 

was promptly elevated, and then leveled off with significantly higher values compared to that for 

control group throughout a recording period of 15 min. In contrast, [Ca
2+

] in cultured hippocampal 

neurons pretreated with COS (1.0 mg/mL) showed significantly lower values than those for cultured 

hippocampal neurons without COS pretreatment over a recording period of 15 min, suggesting that 

COS pretreatment significantly inhibited the [Ca
2+

] increase. Since glutamate-evoked cell injury in 

hippocampal neurons is involved in many CNS disorders, their study may raise the possibility of 

developing COS as a potential agent for the prevention and treatment of some CNS diseases. 

Apoptosis inhibition activity of chitosan and COS might be extended to the intervention of 

neurodegenerative disorders. However, further studies, such as in vivo tests, are needed to clarify the 

neuroprotective properties of chitosan and COS.  

6. Other Activities 

The possible role of chitosan in preventing oxidative stress-induced by amyloid β formation in NT2 

neuron cells was investigated by Khodagholi et al. [54]. On the other hand, the evaluation utility of 

chitosan nanoparticles with an in-vitro model of acrolein-mediated cell injury using PC-12 cells was 

investigated by Cho et al. [71].The particles effectively, and statistically, reduced damage to 

membrane integrity, secondary oxidative stress, and lipid peroxidation. Their study suggests that a 

chitosan nanoparticle-based therapy to interfere with "secondary" injury is possible.  

Moreover, the development of an effective delivery system is needed to provide sufficient drug 

concentration into the brain to prevent cell death. Using avidin (SA)-biotin (BIO) technology, Aktas et 

al. [72] describe the design of chitosan (CS) nanospheres conjugated with poly(ethylene glycol) (PEG) 
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bearing the OX26 monoclonal antibody whose affinity for the transferrin receptor (TfR) may trigger 

receptor mediated transport across blood-brain barrier. Their findings indicate that this novel targeted 

nanoparticulate drug delivery system was able to translocate into the brain tissue after intravenously 

administration. Consequently, chitosan is a promising carrier for the transport of the anticaspase 

peptide Z-DEVD-FMK into the brain.  

7. Conclusions 

In recent years, the marine environment has shown to provide extremely rich biological active 

compounds. Chitosan, one of the bioactive compounds derived from the sea, has been shown to 

possess many biological activities. In fact, the interest in chitosan and its derivatives for the treatment 

of neurological disorders appear to be an emerging field. Some of the representative’s examples are 

presented in this review with a focus on neuroprotective properties of chitosan and its derivatives. 

According to presented data, it seems that chitosan and its derivatives are promising neuroprotective 

agents, as they showed neuroprotective properties such as: suppression of β-amyloid formation, 

AChEIs, anti-neuroinflammatory activity, apoptosis inhibitors, etc. Up until now, most neuroprotective 

activities of chitosan and its derivatives have been observed in vitro. Therefore, further studies are 

needed in order to investigate their activity in mouse model systems and/or human subjects. In 

conclusion, these results reveal the potential of chitosan and its derivatives as potential therapeutic 

candidates for neurodegenerative disorder and their involvement in the future pharmaceuticals are 

promising. 
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