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Abstract. Chicken embryo fibroblast (CEF) cells were 
microinjected with several different monoclonal anti- 
bodies that recognize certain nonmuscle isoforms of 
tropomyosin. Immediately after injection, cells were 
recorded with a time-lapse video imaging system; later 
analysis of the tapes revealed that particles in cells in- 
jected with one of these antibodies (CG1, specific for 
CEF tropomyosin isoforms 1 and 3) showed a dra- 
matic decrease in instantaneous speed while moving, 
distance moved per saltation, and proportion of time 
spent in motion. Injection of Fab fragments of CG1 
resulted in similar changes in the pattern of granule 
movement. This inhibition of granule movement by 
CG1 antibody was reversible; at 2.5 h after injection, 
granules in injected cells had already reached three- 
fourths of normal speed. The speed of granule move- 
ment in cells injected either with antibody specific for 
tropomyosin isoforms not present in CEF cells, or 
with CG1 antibody preabsorbed with tropomyosin, was 
not significantly different from the speed of granules 

in uninjected cells. When cells were injected with CG1 
or Fab fragments of CG1, fixed, and counter-stained 
with rabbit antibodies to reveal the microtubule, 
microfilament, and intermediate filament systems, no 
obvious differences from the patterns normally seen in 
uninjected cells were observed. Examination of the ul- 
trastrncture of injected cells by EM confirmed the 
presence of apparently intact and normal microtubule, 
actin, and intermediate filament networks. 

These experiments suggest that tropomyosin may 
play an important role in the movement of vesicles and 
organelles in the cell cytoplasm. Also, we have shown 
previously that the CG1 determinant can undergo a 
motility-dependent change in reactivity, that may be 
important for the regulatory function of nonmuscle 
tropomyosin (Hegmann, T. E., J. L.-C. Lin, and J. J.-C. 
Lin. 1988. J. Cell Biol. 106:385-393). Therefore, in 
addition to postulated microtubule-based motors, 
microfilaments may play a critical role in regulating 
granule movement in nonmuscle cells. 

M 
ANY different types of movement can be observed 
in cells at the light microscope level, including 
translocation, cytoplasmic streaming, ruffling and 

blebbing, chromosome movement, cytokinesis, axonal trans- 
port, and saltatory movement ofintracellular particles. In the 
particular case of saltatory motion, it has long been sus- 
pected that filamentous systems of some sort are involved 
(Rebhun, 1964), but a general mechanism for this process 
has not yet been described. It appears unlikely that inter- 
mediate filaments play an important role in particle move- 
ment, since several microinjection studies have shown that 
even after the collapse of vimentin or keratin filaments, parti- 
cles in injected cells still demonstrate apparently normal sal- 
tatory movements (Gawlitta et al., 1981; Klymkowsky, 1981; 
Lin and Feramisco, 1981). It is generally believed that 
microtubules play the key role in saltatory motion of cyto- 
plasmic particles (Allen et al., 1985; McNiven and Porter, 
1984; Schnapp et al., 1985; Vale et al., 1986), but some con- 
vincing evidence for the participation of actin filaments also 
exists (Araki and Ogawa, 1987a; Euteneuer and Schliwa, 

1984; Goldberg et al., 1980; Sheetz and Spudich, 1983; 
Adams and Pollard, 1986). 

In this study, we present evidence for the involvement of 
tropomyosin in the saltatory movement of particles in chick- 
en embryo fibroblast (CEF) ~ cells. Tropomyosin is a rod- 
shaped protein that lies along actin filaments; in muscle cells, 
its role in the regulation of contraction has been well charac- 
terized (Ebashi et al., 1969; Lehman and Szent-Gyorgyi, 
1975), but in nonmuscle cells, its function has not been com- 
pletely determined. We have previously shown that CEF cells 
contain five isoforms (a, b, 1, 2, 3) of tropomyosin, as re- 
solved in SDS-PAGE (Lin et al., 1984). In the experiments 
described here, four different monoclonal antibodies that 
recognize different combinations of tropomyosin isoforms 
have been microinjected into CEF cells. The tropomyosin 
binding properties of these antibodies are: CG3, all CEF iso- 
forms; GG/~6, CEF isoforms a, b, 1, and 2; CG1 CEF iso- 
forms 1 and 3; and CH291, no CEF isoforms (Linet al., 

1. Abbreviations used in this paper: CEF, chicken embryo fibroblast. 
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1985). In addition, two rabbit polyclonal antibodies that 
recognize all CEF tropomyosin isoforms were also used for 
microinjection (Lin et al., 1988a). Of these six antibodies, 
only the monoclonal CG1 and the two polyclonal antibodies 
significantly inhibited intracellular granule movement. Dou- 
ble-label immunofluorescence experiments demonstrated 
that this inhibition appeared to take place in the absence of 
disruption to the microtubule and intermediate filament net- 
works. 

Materials and Methods 

Cell Culture 
Primary cultures of fibroblast cells were prepared from the skin of 10-11-d- 
old chicken embryos by dissection and trypsinization, as described previ- 
ously (Lin et al., 1984). Cells were cultured in DME with 10% FBS, and 
were kept in a humidified incubator at 37°C and 5% CO2. Cells were used 
for microinjection and staining between the second and sixth passaging. 

Antitropomyosin Antibodies 
The preparation and characterization of antitropomyosin monoclonal anti- 
bodies CG1, CG3, CG/~6, and CH291 were reported previously (Lin ct al., 
1985). Antibody specificity was checked by both protein immunoblot analy- 
sis and immunoprecipitation. For immunoprecipitation, [3SS]methionine- 
labeled cells were lysed in buffer containing 50 mM "Iris, pH 8.0, 165 mM 
NaCi, 0.1 mM EGTA, 1% Triton X-100, and 1 mM PMSE Total cell ex- 
tracts were prepared and used for immunoprecipitation by CG3 and CG~6 
as reported previously (Linet al., 1988a). In the case of antibodies, CH291 
and CG1 (IgGi class), the addition of second antibody was omitted. Mono- 
clonal antibodies C9 and C21 against caldesmon were used as IgGl con- 
trois (Linet al., 1988b). Antibody CGI recognizes CEF tropomyosin iso- 
forms 1 and 3, antibody CG3 recognizes all CEF isoforms (a, b, 1, 2, and 
3), and antibody CG/~6 recognizes isoforms a, b, 1, and 2. Antibody CH291 
does not recognize any CEF tropomyosin isoforms, but reacts with chicken 
cardiac and skeletal muscle isoforms. Methods for preparing and charac- 
terizing rabbit antiserum against chicken gizzard or CEF tropomyosin have 
been described previously (Linet  al., 1988a). 

Production of Fab Fragments 
The preparation of Fab fragments from CG1 antibody was carried out ac- 
cording to the method described by Stanworth and Turner (1978). Purified 
antibody was mixed with papain at a protein to enzyme weight ratio of 100:1. 
This mixture was incubated for 2-3 h at 37°C and then dialyzed against 10 
mM sodium acetate buffer, pH 5.5. It was then passed over a CM-32 cellu- 
lose column and eluted with a linear sodium acetate gradient from 10 mM 
to 100 mM, at pH 5.5. SDS-PAGE was used to check the content of each 
fraction. Fractions enriched in Fab fragments were pooled and concentrated 
by 45 % saturated ammonium sulfate. Finally, Fab fragments were separated 
from Fc and whole antibody by passing the pooled fractions through a 
Sephadex G-100 column equilibrated with 20 mM Na2HPO4, 150 mM 
NaCI, 1 mM EDTA, pH 7.0. In some preparations, the CM-32 cellulose 
column chromatography was omitted. The purified Fab fragments were 
checked by SDS-PAGE to estimate the degree of contamination by whole 
antibody, and by immunofluorescence microscopy to determine activity. 

Microinjection 
Antibodies for microinjection were purified as described (Lin et al., 1985) 
and then dialyzed against injection buffer (10 mM KH2PO4, 75 mM KCI, 
pH 7.2) overnight. For preabsorption experiments, an excess (0.2 nmol) of 
purified TM isoforms 1 and 3 was lyophilized and then dissolved in 
rhodamine-conjugated CG1 antibody (0.05 nmol). This mixture was in- 
cubated for 30 min at 4°C, and then centrifuged at 12,000 g for 15 min be- 
fore microinjection. 

Glass microcapillary tubes were pulled into needles using a horizontal 
nendle-pulling machine as described by Graessmann et al. (1980). Needles 
were mounted in a Leitz micromanipulator, and loaded with antibody (10 
mg/ml for nnconjugated antibody and 1 mg/ml for conjugated antibody) by 
hack pressure. CEF cells were grown on glass coverslips in 35-mm tissue 
culture dishes, and were viewed with an inverted microscope (Diavert; E. 

Leitz, Rockleigh, NJ) with a 32x objective. The microscope and 
micromanipulator were both contained within a plexiglass box so that the 
cells could be maintained in a controlled environment at 37°C and 5% 
COz. 

Immunofluorescence Microscopy 
Cells were grown on glass coverslips and microinjected as described above. 
After either 30 min or 3 h of recovery time, cells were fixed in 3.7% formal- 
dehyde in PBS (137 mM NaCI, 2.7 mM KCI, 1.5 mM KH2PO4, 8.0 mM 
Na2HPO4, pH 7.3), and permeabilized in -20°C acetone, as described 
previously (Lin and Feramisco, 1981). The coverslips were then incubated 
for 30 rain each in FITC-conjugated goat anti-mouse IgG (heavy and light 
chains), rabbit antisera to vimentin or tubulin, and finally TRITC- 
conjugated goat anti-rabbit IgG (heavy and light chains), with 30-rain 
washes in two changes of PBS between each of these steps. After a last wash 
in PBS, coverslips were dipped in distilled water, and then mounted on glass 
slides with 15 % gelvato120-30 (polyvinyl alcohol; Monsanto Polymers and 
Petrochemicals Co., St. Louis, MO), 33% glycerol, and 0.1% sodium azide 
in PBS. To visualize actin filaments, injected cells were fixed and permeabi- 
lized as before, incubated for 30 min in FITC-conjugated goat anti-mouse 
IgG, washed in PBS, incubated in rhodamine-conjugated phaUoidin (Molec- 
ular Probes Inc., Junction City, OR) for 20 rain, dipped into PBS and then 
distilled water, and mounted. Cells were viewed with an epifluorescence 
photomicroscope III with a 63 x phase-contrast objective (Carl Zeiss Inc., 
Thornwood, NY). Phase-contrast pictures were taken on Technical Pan film 
(Eastman Kodak Co., Rochester, NY), and fluorescence pictures were taken 
on Tri-X film (Eastman Kodak Co.). 

Conjugation of Antibodies to Lissamine Rhodamine 
2 mg of purified antibody were diluted in PBS to give a final volume of 0.5 
ml. Then, 100 t~l of 1 M Na2CO3 (pH 9.0) was added, and the solution 
mixed. 100 ~g of lissamine rhodamine sulfonyl chloride (Molecular Probes 
Inc.) was added directly to the protein solution, after which the solution was 
mixed for 2 h at 4°C. The mixture was then centrifuged at 12,000 8 to re- 
move dye aggregates and applied to a Sepbadex G-50 column (7 x 240 mm) 
previously equilibrated with PBS to separate free dye molecules. 

Electron Microscopy 
Small circles were scratched on the inside bottom of 35-ram tissue culture 
dishes, and all cells within the circles were microinjected with CGI Fab 
fragments at 10 mg/ml. After 3 h, the cells were rinsed in PBS and then 
fixed for 20 rain in 1% glutaraldehyde in 0.1 M phosphate buffer, pH 7.0. 
Cells were rinsed in phosphate buffer and then postfixed for 30 rain in 1% 
OsO4 in 0.1 M phosphate buffer. Afterwards they were dehydrated in etha- 
nol and embedded in Epon. Thin sections of the injected cells were cut with 
an ultracnt E microtome (Reichert-Jung, Vienna). Sections were stained 
with uranyl acetate and lead citrate, and then viewed and photographed with 
an electron microscope (300; Philips Electronic Instruments, Mahwah, NJ). 

Time-Lapse Photography and Analysis of 
Particle Movement 
Cells grown on glass coverslips were injected with rhodamine-conjugated 
antibodies, as described above. The coverslips were then quickly transferred 
to a perfusion chamber (Berg and Block, 1984) and viewed with the 
epifluorescence microscope (Carl Zeiss Inc.). Injected cells were located by 
fluorescence, and the phase-contrast image was videotaped with a camera 
(Dage/MTI 70; Nuvicon; Dage/MTl, Inc., Michigan City, IN) connected 
to a Panasonic time-lapse video cassette recorder. The videotape was played 
back at six times real speed. 

Granule speeds were calculated by measuring the duration and length of 
single saltations. Measurements were taken for eight randomly chosen mov- 
ing granules in each of at least 10 cells/treatment, chosen from 2-3 different 
cultures. The average distance moved in a single saltation was calculated by 
measuring 20 saltations in each of 4 cells/treatment. Saltation distances 
were measured by tracing granule movements on clear plastic overlays at- 
tached to the monitor screen. The proportion of time particles moved was 
calculated using a stop-watch precise to 0.2 s to measure the approximate 
amount of time individual granules spent in motion out ofa 120-s time inter- 
val. For each treatment, 10 granules in each of 4 cells were picked at random 
by using a random-number table to choose x and y coordinates on a trans- 
parent grid attached to the monitor. In all of these cases, uninjected control 
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cells were chosen from the same fields as the injected cells to control for 
differences such as temperature, cell crowding, chemical microenviron- 
ment, and age of the culture. 

Results 

Inhibition of  lntracellular Granule Movement by an 
Antitropomyosin Antibody 

Previous results from experiments involving CG1 antibody 
have suggested that the antigenic determinant recognized by 
this antibody may be critical to the function of nonmuscle 
tropomyosin, and that this function may in some way be con- 
nected to cell motility (Hegmann et al., 1988). To further in- 
vestigate these ideas, CG1 antibody and several other control 
antibodies were microinjected into CEF cells to determine 
whether antibody binding to nonmuscle tropomyosin would 
interfere with any normal biological function of the cell. 

Fig. 1 shows a Western blot analysis of the four different 
rhodamine-conjugated monoelonai antibodies that were used 
in this study: CG1 and Fab fragments of CG1, against CEF 

Figure L Western blot analysis of monoclonal antibodies binding 
to CEF tropomyosin isoforms. Total extract of CEF cells was sepa- 
rated on 12.5 % SDS-PAGE. After electrophoresis, proteins were 
transferred to nitrocellulose paper and either stained with amido 
black (lane A) or reacted with CH291 (lanes B), CG1 (lanes C), 
CG3 (lanes D), or CGfl6 (lanes E) monoclonal antibodies, fol- 
lowed by 125I-labeled goat anti-mouse IgG (heavy and light chains). 
Bound antibody was detected by autoradiography. The set of auto- 
radiograms on the right was exposed 10 times as long as the one 
on the left. CEF tropomyosin isoforms are indicated by a, b, 1, 2, 
and 3. 

Figure 2. Fluorograms of immunoprecipitates analyzed by 12.5 % 
SDS-PAGE. Lane A, total extract of CEF cells labeled in vivo with 
[3~S]methionine; lane B, immunoprecipitate of total CEF extract 
by CH291 monoclonal antibody against skeletal muscle isoform of 
tropomyosin; lane C, immunoprecipitate of total extract by CG1 
monoclonal antibody against CEF tropomyosin isoforms 1 and 3 
(indicated by TM-1 and TM-3, respectively); lanes D and E, im- 
munoprecipitates of total extract by monoclonal antibodies C9 and 
C21, respectively, against caldesmon (CAD, Lin et al., 1988b). Mo- 
lecular mass markers were run in the same gel; their positions are 
shown on the left. 

tropomyosin isoforms 1 and 3; CG3, against isoforms a, b, 
1, 2, and 3; CGflt, against isoforms a, b, 1, and 2; and 
CH291, which recognizes tropomyosin isoforms from car- 
diac and skeletal muscle, but does not react with nonmuscle 
isoforms. Immunoprecipitation analysis of CG1 and CH291 
antibodies in which the antigen was presented in relatively 
native form confirmed that CH291 apparently does not rec- 
ognize any CEF tropomyosin isoforms (Fig. 2). A protein 
band with apparent molecular mass >200 kD, as well as mi- 
nor protein bands at 68 and 45 kD were found in all im- 
munoprecipitates and considered to be nonspecific bands. In 
our experience, a higher background is always obtained 
when immunoprecipitation is performed in the absence of 
ionic detergents, such as SDS. Two rhodamine-conjugated 
polyclonal antibodies (called R2 and R6) were also used for 
microinjection. Both of these antisera recognize all isoforms 
of CEF tropomyosin (Line t  al., 1988a). 
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Table L Characteristics of Particle Movement in Control and Antitropomyosin Antibody-injected CEF Cells 

Number of ~ s  speed (#m/min) Time moving* (s) 
Injected cells 
antibody analyzed n* mean + SEM n* mean + SEM (%) 

Distance§ (t~m) 

n* mean + SEM 

Uninjected 70 560 20.8 + 0.53 280 43.7 + 1.3 (36.4) 
CH291 10 80 17.3 + 1.04 40 36.9 + 1.1 (30.7) 
CG3 10 80 19.3 + 1,05 40 48.4 + 2.9 (40.3) 
CGB6 I0 80 17.9 + 1.13 40 41.9 + 3.0 (34.9) 
CG1 20 160 4.9 + 0.44 40 5.7 + 1.1 (4.8) 
CG1-Fab 20 160 2.9 + 0.33 40 7.1 + 1.1 (5.9) 
R2 10 80 2.3 + 0.21 40 2.3 + 0.3 (1.9) 
R6 10 80 7.4 + 0.87 40 6.3 + 1.3 (5.3) 

560 3.4 + 0.08 
80 3.2 + 0.15 
80 3.2 + 0.25 
80 3.2 + 0.19 
80 1.1 + 0 . 0 9  
80 1.1 + 0.11 
80 0.9  + 0. I1 
80 1.7 + 0.12 

* n, number of granules for which this quantity was measured, 
¢ Number of seconds that particles moved in a 120-s interval. 
§ Refers to distance moved in a single saltation, 

After antibody injection, treated cells were located by 
their fluorescence, and the phase-contrast image of the live 
cells was videotaped for later analysis. Microinjection did 
not appear to change normal cell morphology significantly 
except for a transient retraction that was also observed after 
injection of buffer; the only clearly identifiable effect of an- 
titropomyosin antibody injection that we have found so far 
is the inhibition of intracellular granule movement in the case 
of CG1 monoclonal antibody and both polyclonal antibodies. 

Table I summarizes the results of the first portion of the 
study. Three characteristics of granule movement were mea- 
sured: instantaneous speed, proportion of time moving in 
120 s, and distance moved in a single saltation (between 
pauses). The purpose of these measurements was not to pro- 
vide a detailed description of organelle movement; this has 
already been done by others (for example, Hayden et al., 
1983; Herman and Albertini, 1984). Rather, our goal was to 
try to elucidate something about the mechanism behind gran- 
ule movement by comparing the movement of particles in in- 
jected and uninjected cells. The mean instantaneous speed of 
moving granules in uninjected cells was 20.8 #m/min. Cells 
injected with CG3, CGB6, or CH291 had mean granule 
speeds that did not differ significantly from uninjected cells. 
Cells injected with CG1 antibody, however, showed a dra- 
matic decrease in instantaneous granule speed to ,~4.9 
#m/min with the whole antibody and 2.9 #m/min with Fab 
fragments of CG1. This effect was abolished by preabsorbing 
CG1 with purified tropomyosin isoforms 1 and 3 before 
microinjection. To control for the possibility that the de- 
crease in granule speed after injection of CG1 could be due 
to a cross-linking effect, Fab fragments of CG1 were also 
used for microinjection. These fragments appeared to have 
essentially the same effect as microinjection of the whole an- 
tibody (Table I). Injection of both rabbit antisera also 
resulted in a significant decrease in granule speed, but of 
differing magnitudes: R2 essentially stopped all movement, 
while R6 cut the speed of intracellular granule movement by 
about two-thirds (Table I). 

The decrease in granule speed observed after injection of 
CG1 antibody was not permanent, and did not appear to be 
lethal to the cells. Beginning ,,ol h after injection, the intra- 
cellular granules gradually resumed normal saltatory mo- 
tions, so that by 2.5 h after injection they were moving on 
average approximately three quarters of normal speed with 
no significant difference in the average length of saltations 
(Fig. 3). 

Fig. 4 provides a method for visualizing the effects of an- 
titropomyosin antibody injection on saltatory movement of 
cytoplasmic particles. Granules in cells injected with CG1 
(Fig. 4, A and B) show very little displacement over a 150-s 
time period, while the granules in the cell injected with CG1 
preabsorbed with tropomyosin (Fig. 4, C and D), and in the 
cell injected with CG/$6 (Fig. 4, E and F) display a pattern 
of movement indistinguishable from those in the uninjected 
cells. 

Along with the drastic decrease in speed, the general pat- 
tern of saltatory movements also changed dramatically in 
cells injected with CG1 or the rabbit polyclonals, R2 and R6. 
The mean distance moved in a single saltation decreased 
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Figure 3. Recovery of CEF cells after microinjection of rhodamine- 
conjugated CG1 antibody. Two aspects of particle motion are shown: 
mean instantaneous speed while in motion (A), and mean distance 
moved per saltation (B). The values represent means + SEM for 
8 particles in each of four independent cell cultures for A, and 20 
particles in each of four independent cell cultures for B. Both speed 
and distance of particle saltation gradually increased beginning 
'~1 h after injection, and approached control levels by 2.5 h after 
injection. 

The Journal of Cell Biology, Volume 109, 1989 1144 



Figure 4. Effects of antitropomyosin CG1 antibody on intracellular granule movements. Video images (camera; DAGE/MTI 70; Nuvicon) 
of uninjected control and antibody-injected CEF ceils are depicted in B, D, and E Actual tracings of granule movements from videotaped 
live CEF cells are illustrated in A (CGl-injected), C (preabsorbed CGl-injected), and E (CG/36-injected). Tracings were made over a period 
of 2.5 min, with 0.1-s frame intervals. The arrows in B, D, and F point to the injected cells. Long, linear excursions are characteristic 
of granule movements in uninjected control cells, CG/36-injected cells, and cells injected with CG1 antibody preabsorbed with purified 
CEF tropomyosin. On the contrary, granules in CGl-injected cells exhibit very little movement within the 2.5-min time period. Bar, 10 #m. 

from 3.4 #m in uninjected cells to •1 ttm in cells injected 
with CG1, CG1Fab, R2, or  R6 antibodies. In addition, the 
particles in these cells tended to spend a much smaller 
proportion of time in motion: only 2 -6%,  as opposed to 
~ 3 6 %  in control cells and cells injected with CG3, or CG/36 

(Table I). In cells injected with CH291, the mean speed, 
proportion of time in motion and distance moved by particles 
are slightly smaller than that in control uninjected cells. 
However, these differences are not statistically significant (t 
test). 
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Figure 5. Effect of monoelonal antibody on the binding of tropo- 
myosin to rabbit F-actin filaments. F-actin (100 #g) and tropomyo- 
sin (15 #g of skeletal tropomyosin or 8 #g of CEF tropomyosin) 
were mixed in 100 #1 of a buffer solution of 10 mM Tris, pH 8.0, 
30 mM KCI, and 10 mM MgCI2. To this mixture, purified mono- 
clonal antibody CH1 (100 #g), CH291 (100 #g), CG1 (100 #g), 
CG3, (200 #g) or CGfl6 (400 #g) was added. After 30-min incuba- 
tion at room temperature, samples were centrifuged at 26 psi in an 
airfuge (Beckman Instruments, Inc., Palo Alto, CA) to pellet the 
F-actin filaments. Aliquots of supernatants (S) and pellets (P) were 
analyzed on SDS-PAGE gel. Under this condition, skeletal tropo- 
myosins (indicated by c~ and/~) or CEF tropomyosins (1, 2, and 3) 
were completely cosedimented with F-actin filaments when there 
was no antibody added (data not shown). Monoclonal antibody CHI, 
specific to skeletal tropomyosin (Lin et al. 1985), was included as 
a positive control to show a significant displacement of skeletal 
tropomyosin from F-actin filaments. A slight effect on the binding 
of CEF tropomyosin was also observed with 400 #g of CG/~6 anti- 
body. However, lower amounts of CG/~6 (300 #g or less) had no 
detectable effect. Arrowheads indicate the positions of light and 
heavy chains of each monoclonal antibody. 

Tropomyosin Localization in Injected Cells 
An actin binding assay and immunofluorescenee studies 
were used in an attempt to determine whether the injection 
of antitropomyosin antibodies had an effect on tropomyosin 
localization in the cell. None of the four monoclonal antibod- 
ies used for injection showed a significant ability to interfere 
with the ability of CEF tropomyosins to bind to actin fila- 
ments in in vitro binding assays (Fig. 5). As a positive con- 
trol, CH1 antibody at 1 mg/ml was able to significantly inter- 
fere with the binding of skeletal tropomyosin to actin 

filaments under the same binding conditions. Although 
CG#6 antibody at high concentration (4 mg/ml) had a slight 
effect on the binding of CEF tropomyosin to actin filaments, 
this effect could not be detected at concentrations lower than 
3 mg/ml. Furthermore, injection of CG1 antibody at 1 mg/ml 
was sufficient to cause a significant inhibition of granule 
movement. Thus, these results suggest that the antibodies 
used in this study do not act to strip tropomyosin molecules 
from actin filaments. 

Indirect double-label immunofluorescence experiments 
confirmed the results of the actin-binding assays. When CEF 
cells were injected with CG1 antibody at high concentration 
(20 mg/ml), fixed, and stained with rabbit antitropomyosin 
antibody (R2), the in vivo localization of tropomyosin did 
not appear to be disrupted significantly by the presence of 
CG1 antibody (Fig. 6). Apparently, the inhibition of granule 
movement in CEF cells after injection of CG1 antibody is not 
because of dissociation of tropomyosin molecules from actin 
filaments. 

Microtubule, Microfilament, and Intermediate 
Filament Networks in Cells Injected with CGI 

Saltatory movements ofintracellular particles have long been 
associated with the cytoskeletal elements in the cell, so it 
might be expected that inhibition of granule movement could 
be related to an alteration or rearrangement in one or more 
of the cell's filamentous networks. To examine such an effect, 
CEF cells injected with mouse monoclonal CG1 antitropo- 
myosin antibodies were double-labeled with rabbit antibod- 
ies against vimentin or tubulin, or else stained with rhoda- 
mine-conjugated phalloidin to label actin filaments (Fig. 7). 

Microinjection of CG1 Fah fragments does not appear to 
have any disruptive effects on the microtubule, microfila- 
ment, or intermediate filament networks in these cells. Simi- 
larly, cells injected with whole CG1 antibody or CH291 anti- 
body did not show any differences from control cells at the 
light microscope level. These experiments were repeated 
with a 3-h (rather than 30-min) recovery time after injection, 
with identical results (Fig. 8). However, it should be noted 
that there appears to be more CG1 antibody associated with 
stress fibers in cells that have recovered for 3 h than in cells 
that were fixed only 30 min after injection. With more time 
after injection, the antigenic determinants of the tropomyosin 
molecules may become more available for CG1 antibody. 

CEF cells microinjected with Fab fragments of CG1 were 
also fixed for 20 rain in 1% buffered glutaraldehyde and 
processed for transmission electron microscopy. Fig. 9 
shows that intact intermediate filaments, microtubules, and 
microfilament bundles were visible at the ultrastructural 
level. 

Discussion 

Subeelhlar organelles and granules exist within a three-di- 
mensional cytoskeletal network of actin filaments, microtu- 
bules, and intermediate filaments, and have been shown to 
associate with many of these and associated proteins, such 
as tubulin (Pratt, 1986), actin (Burridge and Philips, 1975; 
Mehrabian et al., 1984), myosin (Burridge and Philips, 1975), 
MAPS (Gilbert and Sloboda, 1986), and caldesmon (Ber- 
goyne et al., 1986). The cytoskeleton not only defines the 
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Figure 6. Indirect immunofluorescence study on the localization of tropomyosin in CGI antibody-injected cells. CEF cells were microin- 
jected with CG1 monoclonal antibody and 30 min after injection were fixed and permeabilized. They were then incubated with rabbit an- 
titropomyosin antibody (R2) and subsequently with a mixture of rhodamine-conjugated goat anti-rabbit lgG and fluorescein-conjugated 
goat anti-mouse IgG. (A) Injected cells viewed selectively for fluorescein fluorescence, to allow the microinjected mouse antibody to be 
visualized. (B) Same field seen in A except they are viewed selectively for rhodamine fluorescence, to allow the distribution of tropomyosin 
to be visualized. (C) Phase-contrast micrograph. The arrow points to the injected cell. Bar, 10 #m. 

shape of a cell, but is also believed to be involved in diverse 
cellular processes. Locomotion (Clarke and Spudich, 1977; 
Gotlieb et al., 1983; Singer and Kupfer, 1986; Wehland and 
Willingham, 1983), endocytosis (Allison, 1973; Silverstein 
et al., 1977), secretion (Allison, 1973), organelle arrange- 
ment and movement (Araki and Ogawa, 1987b; Dabora and 
Sheetz, 1988; Freed and Lebowitz, 1970; Goldberg et al., 
1980; Lee and Cben, 1988; Matteoni and Kreis, 1987; Por- 
ter, 1973; Schliwa, 1984; Terasaki et al., 1986; Wang and 
Goldman, 1978), cytoplasmic streaming (Rebhun, 1972; 
Schliwa, 1984), and mitosis (Gorbsky et al., 1987; Mitchi- 
son, 1986) have all been linked to various cytoskeletal pro- 
teins. Given these observations, it is natural to suspect that 
at least some components of the cytoskeleton play a critical 
role in forming a pathway for, or providing the force for, sal- 
tatory movement of subcellular particles. 

Microtubules have been linked with saltatory motion of 
particles in the cytoplasm by many different investigators. 
Some of the lines of evidence include the existence of cross 
bridges between microtubules and membrane-bound or- 
ganelles (Hirokawa, 1982), the observation that in many cell 
types the occurrence and directionality of saltatory move- 
ments are highly correlated with the presence and position- 
ing of cytoplasmic microtubules (Freed and Lebowitz, 1970; 
Murphy and Tilney, 1974), and experiments in several differ- 
ent systems that have demonstrated that saltatory motion 
stops in the presence of microtubule inhibitors such as col- 
chicine, vinblastine, and podophyllotoxin (Murphy and Til- 
hey, 1974; Wang and Goldman, 1978). Observations that cy- 
toplasmic organelles in keratocytes (Hayden, et al., 1983) 
and in the squid giant axon (Allen et al., 1985; Schnapp et 
al., 1985) appear to travel along single microtubules served 

to spur a search for the motor responsible for generating such 
movement. Development of in vitro assays for microtubule- 
dependent motility made possible the identification and 
purification of a soluble plus-end directed motor protein, 
kinesin (Vale et al., 1985). Later, MAP 1C was identified as 
a cytoplasmic dynein analogue with microtubule-activated 
ATPase activity and minus-end directed microtubule trans- 
locating activity (Paschal et al., 1987). Thus, there is a great 
deal of evidence for the involvement of microtubules in at 
least some cases of cytoplasmic particle transport. 

The involvement of actin filaments in intraceHular granule 
movement has also been investigated in many different sys- 
tems, with varying results. However, some evidence does ex- 
ist to suggest that actin plays an important role. Both isolated 
chromaffin granules and lysosomal membranes have been 
demonstrated to interact with actin filaments in vitro (Araki 
and Ogawa, 1987a; Fowler and Pollard, 1982; Mehrabian et 
al., 1984), and chromaliin secretory granules have been 
shown to associate with actin-binding proteins such as cal- 
desmon (Bergoyne et al., 1986). In addition, cytochalasins, 
known to destabilize actin filaments, have been shown to in- 
hibit lysosomal movement in macrophages (Araki and 
Ogawa, 1987b). It has also been reported that microinjection 
of DNase I, which binds to and depolymerizes actin, inhibits 
fast axonal transport (Goldberg et al., 1980; Isenberg, 
1980), and that gelsolin in the presence of micromolar Ca ++ 
inhibits the movement of membranous organelles in isolated 
axoplasm (Brady et al., 1984). In the case of fast axonal 
transport, it has even been suggested by some investigators 
that microtubules may not be required, since transport has 
been observed to continue at control levels in nerve axons in 
which the microtubules have been depolymerized by prein- 
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Figure 7. Indirect double-label immunofluorescence of CG1 Fab fragment-injected cells. CEF cells were microinjected with Fab fragments 
of CGI monoclonal antibody and, 30 min after injection, were fixed and permeabilized. They were then incubated first with rhodamine- 
conjugated phalloidin (A-C), rabbit antitubulin antibody (D-F), or rabbit antivimentin antibody (G-I), and subsequently with a mixture 
of rhodamine-conjugated goat anti-rabbit IgG and fluorescein-conjugated goat anti-mouse IgG. (C, F, and 1) phase-contrast micrographs. 
(A and D, G) Injected cells viewed selectively for fluorescein fluorescence, to allow the microinjected mouse antibody to be visualized. 
(B, E, and H) Same fields seen in A, D, and G, respectively, except they are viewed selectively for rhodamine fluorescence, to allow the 
distribution ofactin (B), tubulin (E), and vimentin (H) to be visualized. Note that apparently normal distributions of microfilament bundles, 
microtubules, and intermediate filaments are observed in the CGl-injected cells. Bar, 10 tLm. 

cubation in buffer containing 75 mM Ca ++ (Brady et al., 
1980). 

Apparently, microtubules and actin filaments are some- 
how involved in particle transport in many different cell 
types. But the exact role of  these different cytoskeletai corn- 

ponents remains a mystery: do they provide the motor, form 
a scaffold, define low viscosity channels through the cyto- 
plasm, or act through some other mechanism yet to be pro- 
posed? 

In this report, we have presented evidence that nonmuscle 
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Figure 8. Indirect double-label immunofluorescence of CG1 Fab fragment-injected cells 3 h after injection. Staining protocol was identical 
to that of Fig. 4. (A, D, and G) Injected cells viewed selectively for fluorescein, to allow the microinjected mouse antibody to be visualized. 
(B, E, and H) Same fields seen in A, D, and G, respectively, except they are viewed selectively for rhodamine fluorescence, to allow the 
distribution of actin (B), tubulin (E), and vimentin (H) to be visualized. (C, F, and I) phase-contrast micrographs. Microfilament bundles, 
microtubules, and intermediate filaments still appear to be undisturbed. Bar, 10/~m. 
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Figure 9. Electron micrograph of CEF cells microinjected with CG1 monoclonal antibody. Cells were fixed for 20 min in 1% glutaraldehyde. 
mf, microfilaments; rot, mierotubules; if, intermediate filaments. Bars, 200 t~m. 
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tropomyosin, an actin-binding protein, may play an impor- 
tant role in motility at the subeellular level. This conclusion 
is supported by previous studies that have led us to believe 
that the CG1 antigenic determinant is important to the func- 
tion of nonmuscle tropomyosin. For example, we have shown 
earlier that CG1 preferentially stains the stress fibers of CEF 
cells that display a motile morphology (Hegmann et al., 
1988). In addition, the CG1 epitope contains a cysteine resi- 
due that may be analogous to the cys-190 residue in skeletal 
tropomyosin which has been shown to participate in a con- 
formational change in the tropomyosin molecule. This abil- 
ity to undergo a conformational change is thought to facilitate 
the regulatory role of tropomyosin in muscle contraction 
(Lehrer et al., 1981). Significantly, chemical modifications 
of nonmuscle tropomyosin at cysteine residues by performic 
acid oxidation or 5,5'-dithiobis-(2-nitrobenzoic acid) cross- 
linking drastically change the ability of CG1 to recognize 
tropomyosin isoforms 1 and 3 by immunoblotting (Hegmann 
et al., 1988). 

In the present study, inhibition of intracellular granule 
movement after injection of CG1 antibody appeared to be 
specifically because of the tropomyosin-binding capability of 
this antibody, since preabsorption with purified tropomyosin 
isoforms abolished the effect, and in vitro binding assays 
have shown that CG1 does not have the ability to interfere 
with the binding of tropomyosin to actin filaments. Further- 
more, inhibition of granule movement was observed only 
after injection of CG1 monoclonal antibody or rabbit poly- 
clonals against tropomyosin; other antitropomyosin mono- 
clonal antibodies had no effect. This result suggests that the 
particular epitope recognized by CG1 antibody is critical to 
the proper functioning of nonmuscle tropomyosin in the reg- 
ulation of intracellular motility. 

The results presented here certainly do not rule out the 
participation of microtubules in intraceUular granule move- 
ment. Rather, they provide strong evidence that at least some 
subset of intracellular motility requires actin filaments and 
their associated protein, tropomyosin, in addition to micro- 
tubules. This idea is further supported by preliminary results 
indicating that injection of a certain subset of monoclonal 
antibodies against caldesmon (a Ca++/calmodulin-binding 
and actin-binding protein found in smooth muscle and non- 
muscle cells; Bretscher, 1986; Sobue et al., 1981; Lin et all., 
1988b) also results in reversible inhibition of intracellular 
granule movement in CEF cells. Perhaps further research 
along these lines will help to elucidate the role of actin and 
actin-binding proteins in the regulation of motility at the cel- 
lular and subcellular levels. 
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