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Abstract
Introduction: Prior	studies	have	demonstrated	training-	induced	changes	in	the	healthy	
adult	brain.	Yet,	it	remains	unclear	how	the	injured	brain	responds	to	cognitive	training	
months-	to-	years	after	injury.
Methods: Sixty	individuals	with	chronic	traumatic	brain	injury	(TBI)	were	randomized	
into	either	strategy-	based	(N =	31)	or	knowledge-	based	(N =	29)	training	for	8	weeks.	
We	measured	cortical	thickness	and	resting-	state	functional	connectivity	(rsFC)		before	
training,	immediately	posttraining,	and	3	months	posttraining.
Results: Relative	to	the	knowledge-	based	training	group,	the	cortical	thickness	of	the	
strategy-	based	training	group	showed	diverse	temporal	patterns	of	changes	over	mul-
tiple brain regions (pvertex	<	.05,	 pcluster	<	.05):	 (1)	 increases	 followed	 by	 decreases,	
(2)	monotonic	increases,	and	(3)	monotonic	decreases.	However,	network-	based	sta-
tistics	 (NBS)	analysis	of	rsFC	among	these	regions	revealed	that	the	strategy-	based	
training	 group	 induced	 only	 monotonic	 increases	 in	 connectivity,	 relative	 to	 the	
knowledge-	based	 training	 group	 (|Z|	>	1.96,	 pNBS	<	0.05).	 Complementing	 the	 rsFC	
results,	the	strategy-	based	training	group	yielded	monotonic	improvement	in	scores	
for	 the	trail-	making	test	 (p < .05).	Analyses	of	brain–behavior	relationships	revealed	
that	 improvement	 in	 trail-	making	 scores	 were	 associated	 with	 training-	induced	
changes in cortical thickness (pvertex	<	.05,	 pcluster	<	.05)	 and	 rsFC	 (pvertex	<	.05,	
 pcluster	<	.005)	within	the	strategy-	based	training	group.
Conclusions: These	 findings	suggest	 that	 training-	induced	brain	plasticity	continues	
through chronic phases of TBI and that brain connectivity and cortical thickness may 
serve as markers of plasticity.
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1  | INTRODUCTION

A	traumatic	brain	injury	(TBI)	is	caused	by	external	force	(e.g.,	blast	or	
fall)	 to	 the	head,	 leading	 to	disruptions	 in	brain	 structure	and	 func-
tion.	TBI	is	a	substantial	threat	to	public	health	in	the	United	States,	
contributing	to	30%	of	all	injury	deaths	(Faul,	Xu,	Wald,	&	Coronado,	
2010).	 In	 2010,	 2.5	million	 emergency	 room	 (ER)	visits,	 hospitaliza-
tions,	or	deaths	were	associated	with	TBI	in	the	United	States	(http://
www.cdc.gov/traumaticbraininjury/get_the_facts.html).	 Individuals	 at	
the	chronic	stage	of	TBI	(>6	months	postinjury)	often	have	cognitive	
difficulties	 such	 as	 problems	 with	 attention,	 memory,	 or	 executive	
functions,	which	are	critical	to	carrying	out	daily	life	tasks	(Arciniegas,	
Held,	&	Wagner,	2002;	Rabinowitz	&	Levin,	2014).	As	the	devastating	
effects	of	TBI-	related	cognitive	challenges	persist	in	the	lives	of	mil-
lions	of	individuals,	a	recent	Center	for	Disease	Control	and	Prevention	
(CDC)	report	to	Congress	emphasized	the	need	for	more	TBI	rehabil-
itation research that will improve the lives of individuals with TBI and 
their	families	(Frieden,	Houry,	&	Baldwin,	2015).

TBI	rehabilitation	research	is	increasing,	which	has	revealed	some	
major challenges related to studying TBI populations. These challenges 
include:	 (1)	 the	 heterogeneity	 of	TBI	 and	 (2)	 limitations	 of	 conven-
tional behavioral measures and neuroimaging techniques to identify 
the	TBI-	related	abnormalities	and	changes	after	rehabilitation	in	this	
population.	TBI	 is	heterogeneous	 in	terms	of	causes	of	 injuries	 (e.g.,	
blast,	 fall,	 sports	 related,	blunt,	and	combinations	 thereof),	 locations	
of	injuries,	and	injury	types	(Saatman	et	al.,	2008).	Furthermore,	indi-
viduals with TBI frequently have comorbid psychiatric conditions such 
as	depression	and	posttraumatic	stress	disorder	(PTSD)	(Ashman	et	al.,	
2004;	Hibbard,	Uysal,	Kepler,	Bogdany,	&	Silver,	1998;	van	Reekum,	
Bolago,	 Finlayson,	 Garner,	 &	 Links,	 1996),	 and	 this	 comorbidity	 af-
fects	the	brain	and	neuropsychological	performance	(Han,	Chapman,	
&	 Krawczyk,	 2015;	 Hudak,	 Hynan,	 Harper,	 &	 Diaz-	Arrastia,	 2012;	
Hudak	 et	al.,	 2011;	 Lindemer,	 Salat,	 Leritz,	 McGlinchey,	 &	Milberg,	
2013;	 Lopez	 et	al.,	 2016;	 Spielberg,	 McGlinchey,	 Milberg,	 &	 Salat,	
2015),	exacerbating	the	heterogeneity	challenge.	Accordingly,	behav-
ioral	performance	of	individuals	with	TBI,	measured	by	neuropsycho-
logical	 tests,	 is	heterogeneous	 (Goldstein,	Allen,	&	Caponigro,	2010;	
Tellier	et	al.,	2009;	Thaler	et	al.,	2013).	In	the	context	of	rehabilitation,	
heterogeneity is further increased by variation in responses to reha-
bilitation.	 Regarding	 the	 sensitivity	 of	 conventional	measures,	 initial	
injury	severity	as	measured	by	instruments	such	as	the	Glasgow	coma	
scale	 (GCS)	 (Teasdale	&	Jennett,	1974)	has	 limitations	for	explaining	
the	functional	deficits	of	individuals	with	TBI	at	the	chronic	stage	(Katz	
&	Alexander,	1994;	Zafonte	et	al.,	1996).	CT	scanning	also	has	limited	
ability	 to	 identify	TBI-	related	abnormalities	 (e.g.,	Tellier	et	al.,	2009).	
Neuropsychological	tests	have	also	been	criticized	for	the	lack	of	eco-
logical	validity,	meaning	the	test	scores	do	not	adequately	reflect	daily	
function	levels	(Burgess	et	al.,	2006).

Advanced	 neuroimaging	 techniques	 using	 magnetic	 resonance	
imaging	 (MRI)	 such	 as	 morphometry	 (Ashburner	 &	 Friston,	 2000;	
Fischl	&	Dale,	2000)	and	resting-	state	 functional	connectivity	 (rsFC)	
MRI	 (Biswal,	 Yetkin,	 Haughton,	 &	 Hyde,	 1995)	 allow	 us	 to	 identify	
TBI	 with	 better	 sensitivity	 and	 precision.	 MRI-	based	 morphometry	

has revealed altered cortical thickness and volume within individuals 
who	have	sustained	a	TBI	(Bendlin	et	al.,	2008;	Gale,	Baxter,	Roundy,	
&	Johnson,	 2005;	Kim	 et	al.,	 2008;	 Sidaros	 et	al.,	 2009;	 Spitz	 et	al.,	
2013;	Tate	et	al.,	2014;	Turken	et	al.,	2009;	Warner	et	al.,	2010;	Zhou	
et	al.,	2013).	These	altered	cortical	morphometric	properties	are	fre-
quently	associated	with	functional	deficits	(Gale	et	al.,	2005;	Palacios	
et	al.,	2013;	Sidaros	et	al.,	2009;	Spitz	et	al.,	2013;	Warner	et	al.,	2010;	
Zhou	et	al.,	2013),	and	correspondences	between	MRI-	based	and	his-
tological morphometric data of TBI individuals have been reported 
(Maxwell,	MacKinnon,	Stewart,	&	Graham,	2009).	RsFC	MRI	measures	
the	temporal	coherency	of	blood	oxygenation	level-	dependent	(BOLD)	
signal at rest and it allows us to identify how the brain’s intrinsic func-
tional	 networks	 are	organized	 (see	van	Dijk	 et	al.,	 2010	 for	 review).	
Diffuse	axonal	injury	(DAI)	(Smith,	Meaney,	&	Shull,	2003)	is	a	primary	
injury	mechanism	of	TBI,	and	rsFC	has	been	a	promising	technique	to	
identify	DAI-	induced	higher-	order	cognitive	impairments	(e.g.,	reason-
ing,	decision	making,	and	selective	attention)	among	individuals	with	
TBI	 (Sharp,	 Scott,	&	 Leech,	 2014).	Notably,	 large-	scale	 network	 ap-
proaches	using	rsFC	in	TBI	have	effectively	revealed	the	complex	pat-
terns	of	the	injured	brain	(Han,	Chapman,	&	Krawczyk,	2016;	Mayer,	
Mannell,	Ling,	Gasparovic,	&	Yeo,	2011;	Sharp	et	al.,	2011).	The	large	
established	literature	in	large-	scale	networks	in	healthy	individuals	fa-
cilitates the interpretation of study findings as applied to individuals 
after a TBI.

In	 the	context	of	TBI	 rehabilitation,	morphometry	and	 rsFC	may	
also provide sensitive and precise measures to overcome aforemen-
tioned challenges in TBI research given the reported utility of these 
methods	 for	 studying	 training-	induced	 neuroplasticity	 (see	 Guerra-	
Carrillo,	Mackey,	&	Bunge,	2014;	Kelly	&	Castellanos,	2014;	May	&	
Gaser,	2006	for	review).	MRI-	based	morphometry	has	enabled	us	to	
noninvasively	 and	 quantitatively	 assess	 training-	induced	 structural	
changes	in	the	healthy	adult	brain	(Best,	Chiu,	Liang	Hsu,	Nagamatsu,	
&	 Liu-	Ambrose,	 2015;	 Bezzola,	 Merillat,	 Gaser,	 &	 Jancke,	 2011;	
Draganski	et	al.,	2004,	2006;	Engvig	et	al.,	2010;	Ilg	et	al.,	2008;	Kwok	
et	al.,	2011;	Landi,	Baguear,	&	Della-	Maggiore,	2011;	Schmidt-	Wilcke,	
Rosengarth,	 Luerding,	 Bogdahn,	 &	 Greenlee,	 2010;	 Takeuchi	 et	al.,	
2011,	2014;	Taubert	et	al.,	2010;	Woollett	&	Maguire,	2011).	For	ex-
ample,	Engvig	et	al.	(2010)	observed	that	memory	training	reversed	re-
ductions	in	cortical	thickness	in	older	adults.	Quantitative	MRI-	based	
morphometry	further	revealed	experience-	dependent	brain	plasticity	
in clinical populations such as balance training for Parkinson’s disease 
(Sehm	et	al.,	2014)	and	physical	activity	for	heart	failure,	Schizophrenia,	
and	 mild	 cognitive	 impairment	 (Alosco	 et	al.,	 2015;	 McEwen	 et	al.,	
2015;	 Reiter	 et	al.,	 2015).	Training-	induced	 changes	 in	 resting-	state	
networks in the healthy adult brain have also been reported following 
motor	 training	 (Lewis,	Baldassarre,	Committeri,	Romani,	&	Corbetta,	
2009;	Taubert,	Lohmann,	Margulies,	Villringer,	&	Ragert,	2011),	cogni-
tive	training	(Jolles,	van	Buchem,	Crone,	&	Rombouts,	2013;	Mackey,	
Miller	Singley,	&	Bunge,	2013;	Takeuchi	et	al.,	2013),	and	physical	ac-
tivity	in	the	elderly	(Voss,	2010).	In	clinical	populations,	rsFC	has	also	
been	used	 to	 identify	changes	 in	 resting-	state	networks	 induced	by	
rehabilitation	for	multiple	sclerosis	(de	Giglio	et	al.,	2016)	and	stroke	
(Fan	et	al.,	2015;	Varkuti	et	al.,	2013).
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In	our	previous	study,	we	reported	the	efficacy	of	strategy-	based	
reasoning	 training	 for	 chronic	 TBI	 (Vas	 et	al.,	 2016).	 Although	 that	
study	contributed	to	the	literature	in	rehabilitation	for	TBI,	it	primarily	
focused on assessing the neuropsychological performance of individ-
uals	with	chronic	TBI	following	the	strategy-	based	reasoning	training.	
Given	the	limited	sensitivity	and	heterogeneity	of	neuropsychological	
test	scores	of	individuals	with	chronic	TBI,	assessing	training-	induced	
changes	in	the	brain	utilizing	advanced	neuroimaging	techniques	such	
as	morphometry	and	rsFC	may	provide	better	sensitivity	and	higher	
precision.	 Furthermore,	 in	 light	 of	 previous	 morphometry	 and	 rsFC	
studies	 in	TBI,	 the	 use	 of	 these	methods	 could	 enable	 us	 to	 better	
understand	the	underlying	mechanisms	of	training-	induced	changes	in	
individuals with chronic TBI.

There is currently a limited literature addressing changes in the 
brain	 following	 rehabilitation	 for	 chronic	 TBI.	 Thus,	 multimodal	 ap-
proaches	 combining	 both	morphometry	 and	 rsFC	would	 strengthen	
the	efforts	to	elucidate	potential	mechanisms	of	training-	induced	neu-
roplasticity of individuals with chronic TBI. While changes in morphom-
etry following training can confirm that the adjustment of behavior 
modulates	brain	structure,	the	temporal	patterns	of	training-	induced	
changes	in	morphometry	are	often	complex.	As	such,	the	directionality	
of	these	changes	has	varied	across	previous	studies	(Draganski	et	al.,	
2006;	Maguire	et	al.,	2000;	Metzler-	Baddeley,	Caeyenberghs,	Foley,	&	
Jones,	2016;	Taubert	et	al.,	2010).	RsFC	can	complement	morphom-
etry to better understand the complex patterns of changes occurring 
after	 training.	 RsFC	 can	 also	 address	 a	 question	 whether	 spatially	
distributed morphometric changes are also accompanied by a reor-
ganization	 of	 the	 architecture	 of	 functional	 networks.	 For	 example,	
Taubert	 et	al.	 (2011)	have	 reported	changes	 in	gray	matter	volumes	
using	a	centrality	measure	of	 rsFC	 (i.e.	 strength	of	connectivity	of	a	
voxel	with	 rest	 of	 the	voxels)	 after	 balance	 training	 in	 the	 left	 sup-
plementary	and	presupplementary	motor	areas,	indicating	that	local-
ized	training-	related	changes	 in	the	gray	matter	accompany	changes	
in	rsFC	over	distributed	brain	regions	in	healthy	adults.	The	question	
whether spatially diffuse changes in morphometry are accompanied 
by	reorganization	of	networks	is	also	critical	in	the	context	of	TBI	as	
(1)	network	dysfunction	 is	one	of	 the	key	mechanisms	that	explains	
impairments	 in	 high-	order	 cognitive	 functions	 following	 TBI	 (Sharp	
et	al.,	 2014)	 and	 (2)	 a	TBI	markedly	disrupts	between-	network	con-
nectivity	of	the	brain,	yielding	less	efficient	brain	communication	after	
an	injury	(Han	et	al.,	2014,	2016).	These	characteristics	of	TBI	suggest	
that it would be interesting to determine whether structural changes 
following	 training	 accompany	 network	 reorganization	 in	 individuals	
with	TBI.	Taken	together,	 identifying	changes	 in	 rsFC	 in	conjunction	
with morphometry of individuals with chronic TBI following training 
would	improve	our	understanding	of	training-	induced	neuroplasticity	
in chronic TBI.

In	this	study,	we	utilized	structural	MRI	and	resting-	state	functional	
MRI	(rsfMRI)	to	identify	the	effects	of	a	strategy-		versus	a	knowledge-	
based	 training	 on	 cortical	 thickness	 and	 rsFC	 within	 individuals	 at	
the	chronic	stage	of	TBI.	Specifically,	we	randomized	individuals	with	
chronic	TBI	into	two	8-	week	training	groups	(strategy	based	vs.	knowl-
edge	based),	and	we	acquired	their	MRI	scans	over	three	time	points	

(prior	to	training,	after	training	and	at	3-	month	follow-	up	after	train-
ing	ended).	We	then	investigated	the	spatial	and	temporal	patterns	of	
training-	induced	changes	 in	cortical	thickness	and	rsFC	within	these	
individuals. Based on findings from previous studies in neuroplasticity 
in	 healthy	 adults	 and	 reported	 efficacy	 of	 strategy-	based	 reasoning	
training	for	chronic	TBI,	we	hypothesized	that	the	strategy-	based	rea-
soning training method would induce changes in cortical thickness 
relative	 to	 the	 knowledge-	based	 training.	We	 further	 hypothesized	
that	the	reasoning	training	would	also	induce	changes	in	rsFC	among	
regions where cortical thickness changes in chronic TBI cases.

2  | MATERIALS AND METHODS

2.1 | Participants

The data included in these analyses are a part of an ongoing study 
(Krawczyk	 et	al.,	 2013).	We	 analyzed	 60	 individuals	 at	 the	 chronic	
stage of TBI who ranged from lower moderate disability to lower good 
recovery	 (age	 20–65;	 >6	months	 postinjury;	 5–7	 on	 the	 Extended	
Glasgow	 Outcome	 Scale	 (GOS-	E;	 Wilson,	 Pettigrew,	 &	 Teasdale,	
1998),	who	completed	MRI	scans	that	passed	the	quality	assurance	
(QA)	 procedures	 described	 below.	We	 recruited	 these	 participants	
from	the	Dallas–Ft.	Worth	community	and	conducted	a	phone	screen-
ing interview before inclusion in the study. The primary causes of TBIs 
in	this	group	were	blasts,	blunt	force	trauma,	falls,	athletic	impacts,	ve-
hicle	accidents,	or	combinations	thereof.	Note	that,	given	the	number	
of	years	postinjury	time,	it	was	not	feasible	to	obtain	participants’	clin-
ical information on initial	injury	characteristics	such	as	Glasgow	coma	
scale	(GCS;	Teasdale	&	Jennett,	1974)	from	the	inpatient,	acute-	care	
facilities	where	they	were	hospitalized	several	years	ago.	Therefore,	
initial injury severity was retrospectively estimated	 utilizing	 the	Ohio	
State	 University	 TBI	 identification	 (OSU	 TBI-	ID)	 method	 (Corrigan	
&	Bogner,	2007).	The	OSU	TBI-	ID	method	has	good	 interrater	 reli-
ability	and	test–retest	reliability	(Bogner	&	Corrigan,	2009;	Corrigan	
&	 Bogner,	 2007).	 Furthermore,	 the	 OSU	 TBI-	ID	 method	 estimates	
initial injury severity based on participants’ recollections of the inci-
dents	including	the	estimated	duration	of	loss	of	consciousness	(LOC),	
and the CDC guidelines for the conceptual definition and identifica-
tion	of	TBI	(National	Center	for	Injury	Prevention	and	Control,	2003;	
Thurman,	Sniezek,	Johnson,	Greenspan,	&	Smith,	1995).	Specifically,	
the participants whose estimated	 LOC	duration	 <30	min,	 <24	hr,	 or	
>24	hr	were	considered	to	be	probable	mild,	probable	moderate,	or	
probable	 severe	TBI,	 respectively.	Both	 civilian	 and	veteran	partici-
pants	were	included	(See	Table	1	for	demographics).	No	participants	
had	 a	 history	 of	 any	 significant,	 clinically	 diagnosed	neurological	 or	
psychiatric comorbidities. We also confirmed that all participants’ 
brains	did	not	show	visible	focal	lesions,	contusions,	mass	shifting,	or	
extreme	degeneration	of	white	matter	on	structural	MRI	scans	 (see	
Figure	S1	for	an	example	scan	that	was	not	included	in	this	study	due	
to	white	matter	degeneration).	This	confirmation	should	minimize	the	
potential effects of such macrostructural injuries on preprocessing 
for	cortical	surface	reconstruction	and	rsFC	analyses.	All	participants	
provided	written	informed	consent,	and	this	study	was	conducted	in	
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compliance with the declaration of Helsinki. The study was approved 
by	the	Institutional	Review	Boards	of	the	University	of	Texas	at	Dallas	
and	University	of	Texas	Southwestern	Medical	Center.

All	 participants	underwent	one	of	 the	 two	 training	groups:	 (1)	 a	
strategy-	based	reasoning	training	called	Strategic	Memory	Advanced	
Reasoning	 Training	 (SMART)	 group	 (N =	31)	 or	 (2)	 the	 knowledge-	
based	 training	called	Brain	Health	Workshop	 (BHW)	group	 (N =	29).	
To	 prevent	 any	 potential,	 systematic	 effects	 of	 out-	of-	scanner	 vari-
ables	 (such	as	 injury	characteristics	and	other	demographics)	on	our	
findings,	we	randomly	assigned	all	participants	into	either	the	SMART	
or BHW groups. Both training programs comprised of 12 sessions 
(1.5	h	per	session)	for	8	weeks	with	quizzes,	homework	assignments,	
and	 projects	 conducted	 in	 small	 group	 settings,	 comprising	 of	 4–5	
participants.	 Briefly,	 the	 SMART	 group	 focused	 on	 selective	 atten-
tion,	abstract	reasoning,	and	other	thinking	strategies	(Vas,	Chapman,	
Cook,	Elliott,	&	Keebler,	2011),	and	the	BHW	group	focused	on	edu-
cation regarding brain structure and function and the effects of sleep 
and	exercise	on	the	brain	performance	 (Binder,	Turner,	O’Connor,	&	
Levine,	2008).	More	specifically,	the	SMART	participants	were	trained	
to	(1)	manage	information	by	blocking	distractions	and	irrelevant	 in-
formation	 and	 avoid	 multitasking,	 (2)	 increase	 the	 ability	 to	 under-
stand	 main	 ideas	 and	 take-	home	 messages	 from	 information,	 and	
(3)		examine		information	from	different	perspectives.	This	set	of	strat-
egies is aimed to improve cognitive control and enhance information 
processing	(goal	management).	The	SMART	strategies	are	introduced	
in slides presented by a trained clinician. Each of the strategies was 
sequentially introduced and then reinforced throughout the training 

sessions. Example materials to practice the strategies included news-
paper	articles	 and	audio–video	clips.	The	BHW	participants	 learned	
about	brain	anatomy,	brain	function,	the	effects	of	a	TBI	on	cognitive	
function,	the	principles	of	neuroplasticity,	and	the	impact	of	diet,	phys-
ical	exercise,	sleep,	and	social	activities	on	brain	health	through	slides	
taught by a clinician. The participants were also encouraged to discuss 
applications of learned information to their daily lives. To control for 
the	effects	of	group-	based	social	activities	on	training	outcomes,	we	
maintained an equal number of participants for each training group 
during their training sessions. Both training programs were conducted 
at	The	University	of	Texas	at	Dallas	Center	for	BrainHealth®.	See	Vas	
et	al.	 (2016)	for	more	detailed	descriptions	of	the	SMART	and	BHW	
programs.

2.2 | Neuropsychological assessments

We administered a battery of neuropsychological tests to measure 
training-	induced	 cognitive	 changes	 in	 a	 variety	 of	 domains	 for	 the	
TBI	 subgroups.	 As	 the	 SMART	 is	 aimed	 at	 improving	 multiple	 do-
mains	of	cognitive	functions	of	individuals	with	TBI,	we	did	not	focus	
narrowly	on	assessments.	Rather,	we	administered	a	battery	of	neu-
ropsychological tests probing executive functions of the participants 
to	enable	a	more	exploratory	analysis.	These	tests	 include	full-	scale	
intelligent	quotient-	2	(FSIQ-	2)	from	the	Wechsler	Abbreviated	Scale	
of	 Intelligence	 (WASI)	 for	 estimated	 current	 IQ	 (Wechsler,	 1999),	
FSIQ	from	the	Wechsler	Test	of	Adult	Reading	(WTAR)	for	estimated	
premorbid	IQ	(Wechsler,	2001),	and	color–word,	verbal	fluency,	card	
sorting,	trail	making	from	the	Delis-	Kaplan	Executive	Function	System	
(D-	KEFS)	for	inhibitory	control,	switching,	verbal	fluency,	processing	
speed,	and	problem	solving	(Delis,	Kaplan,	&	Kramer,	2001).	We	also	
acquired tests that measure psychiatric symptoms of the individu-
als with TBI as there are relatively common concomitant psychiatric 
symptoms	after	TBI	 (Ashman	et	al.,	 2004;	Hibbard	et	al.,	 1998;	 van	
Reekum	 et	al.,	 1996).	 To	 quantify	 subclinical-but-residual depressive 
and	 posttraumatic	 stress	 disorder	 (PTSD)	 symptom	 severity	 of	 the	
participants,	we	measured	the	Beck	Depression	Inventory–II	(BDI-	II)	
(Beck,	Steer,	&	Brown,	1996)	and	PTSD	Check	List	Stressor–specific	
(PCL-	S)	(Weathers,	Litz,	Herman,	Huska,	&	Keane,	1993).	We	also	ad-
ministered	the	satisfaction	with	life	scale	(Diener,	Emmons,	Larsen,	&	
Griffin,	1985)	 to	measure	global	 cognitive	 judgments	of	 the	partici-
pants’ life satisfaction.

2.3 | MRI data acquisition

We	acquired	MRI	scans	of	the	participants	at	three	time	points:	prior	to	
training (TP1),	after	training	(TP2),	and	3	months	later	(TP3).	Participants	
underwent	 structural	 MRI	 scans	 in	 a	 Philips	 Achieva	 3T	 scanner	
(Philips	 Medical	 Systems,	 Netherlands)	 at	 the	 Advanced	 Imaging	
Research	 Center	 at	 the	 University	 of	 Texas	 Southwestern	Medical	
Center.	 In	each	 imaging	session,	T1-	weighted	sagittal	Magnetization	
Prepared	 Rapid	 Acquisition	 Gradient	 Echo	 (MPRAGE)	 images	 were	
acquired	 using	 a	 standard	 32-	channel	 head	 coil	 (Repetition	 Time	
(TR)/Echo	Time	(TE)	=	8.1/3.7	m;	Flip	Angle	(FA)		=	12°;	Field	of	View	 

TABLE  1 Participant demographics by group after quality 
assurance procedures

Demographics SMART BHW p- values

Number of subjects 31 29 –

Age	(years)a 40.1	±	13.5 39.9	±	11.1 .91

Education	(years)a 15.1	±	2.3 16.4	±	2.6 .08

Current IQ 108.6	±	9.5 113.3	±	9.7 .06

Premorbid IQ 109.6	±	8.5 112.0	±	8.5 .29

Gender	(male,	
female)

20,	11 16,	13 .60

Civilians,	Veterans 20,	11 20,	9 .79

Postinjury time 
(years)a

8.6	±	9.3 7.7	±	6.0 .53

Estimated injury 
severity	(mild,	
moderate,	severe)b

21,	5,	5 23,	1,	5 .26

Primary cause of 
injury	(blast,	blunt	
force	trauma,	fall,	
athletic	impacts,	
vehicle	accidents,	
combined)

3,	3,	3,	7,	9,	6 5,	7,	3,	5,	6,	3 .55

SMART,	 Strategic	 Memory	 Advanced	 Reasoning	 Training;	 BHW,	 Brain	
Health	Workshop;	IQ,	Intelligent	Quotient.
aMean	and	standard	deviation	values	were	reported.
bBased	on	the	OSU	TBI	screening	form	Corrigan	&	Bogner	(2007).
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(FOV)	 	=		 25.6	×	25.6	cm;	 matrix	=	256	×	256;	 160	 slices,	 1.0	mm	
thick).	In	this	imaging	session,	one	or	two	416-	s	runs	of	rsfMRI	scans	
were also acquired using the same head coil using a T2*-	weighted	image	
sequence	 (TR/TE	=	2000/30	ms;	 FA	=	80°;	 FOV	=	22.0	×	22.0	cm;	
matrix	=	64	×	64;	 37	 slices,	 4.0	mm	 thick).	 Total	 number	of	 rsfcMRI	
runs	was	different	across	the	participants	because,	at	the	early	stage	
of	 our	 study,	 we	 observed	 that	 the	 QA	 procedures	 with	 only	 one	
rsfMRI	run	yielded	high	rates	of	participant	exclusion.	Thus,	we	ad-
ditionally	acquired	two	rsfMRI	runs	for	the	remainder	of	the	data	col-
lection.	Refer	to	the	rsfMRI	data	analysis	section	for	our	strategy	to	
account	 for	 differences	 in	 total	 number	 of	 rsfMRI	 scans	 across	 the	
participants.	During	rsfMRI	acquisition,	the	participants	were	asked	to	
remain still with their eyes closed.

2.4 | Cortical thickness analysis

2.4.1 | Cortical surface reconstruction and cortical 
thickness measurement

We	 reconstructed	 the	 cortical	 surface	 from	 each	 of	 the	MRI	 scans	
with	 FreeSurfer	 v.5.3.0	 (RRID:SCR_001847;	 http://surfer.nmr.mgh.
harvard.edu/).	 The	 technical	 details	 of	 cortical	 surface	 reconstruc-
tion	 procedures	 have	 been	 described	 elsewhere	 (Dale,	 Fischl,	 &	
Sereno,	1999;	Fischl,	2012;	Fischl,	Sereno,	&	Dale,	1999).	After	we	
obtained the gray/white boundary and pial surface estimations (Dale 
&	Sereno,	1993;	Dale	et	al.,	1999),	cortical	thickness	was	calculated	
as the closest distance between these surfaces at each vertex across 
the	cerebral	cortex	(Fischl	&	Dale,	2000).	The	cortical	surfaces	were	
reconstructed	using	 spatial	 intensity	gradients	 across	 tissue	classes,	
thus the measurements were not simply dependent on absolute signal 
intensity.	Note	 that	 the	surface-	based	cortical	 thickness	maps	were	
not	restricted	by	the	voxel	size,	which	enabled	us	to	detect	changes	
in	cortical	thickness	at	submillimeter	 level.	Furthermore,	procedures	
to	measure	 cortical	 thickness	 using	 Freesurfer	 have	 been	 validated	
against	histological	analysis	(Rosas	et	al.,	2002)	and	manual	measure-
ments	 (Kuperberg	 et	al.,	 2003;	 Salat	 et	al.,	 2004).	 Lastly,	 Freesurfer	
morphometric procedures have been demonstrated to show good 
test–retest	reliability	across	scanner	manufacturers	and	field	strengths	
(Han	et	al.,	2006;	Reuter,	Schmansky,	Rosas,	&	Fischl,	2012).

2.4.2 | Longitudinal analysis of cortical thickness

We	utilized	the	longitudinal	processing	stream	(Reuter	et	al.,	2012)	in	
FreeSurfer	to	obtain	a	reliable	 longitudinal	analysis	of	cortical	thick-
ness.	 Specifically,	 an	 unbiased	within-	subject	 template	was	 created	
using	robust,	inverse-	consistent	registration	(Reuter,	Rosas,	&	Fischl,	
2010).	Several	processing	steps,	such	as	skull	stripping,	Talairach	trans-
forms,	atlas	registration,	and	spherical	surface	maps	and	parcellations,	
were	 initialized	 with	 common	 information	 from	 the	 within-	subject	
template. This procedure yielded significant increases in reliability 
and	statistical	power	(Reuter	et	al.,	2012).	This	 longitudinal	process-
ing pipeline also prevented potential bias with respect to any specific 
point,	which	 is	 an	 important	 issue	 in	 longitudinal	 studies	evaluating	

training-	related	structural	changes	within	the	brain	(Thomas	&	Baker,	
2013).	For	group	analysis,	we	resampled	cortical	thickness	for	each	of	
the	scans	on	a	standard	template,	followed	by	surface	smoothing	with	
a	10-	mm	full-	width-	at-	half-	maximum	Gaussian	kernel.

With	 the	 preprocessed	 longitudinal	 data,	we	 performed	 the	 lin-
ear	mixed	effects	model	(LME;	Bernal-	Rusiel,	Greve,	Reuter,	Fischl,	&	
Sabuncu,	2013)	analysis	using	a	piece-	wise	linear	model	with	a	break-
point at TP2	and	a	randomly	varying	intercept.	Specifically,	the	cortical	
thickness of subject i at time point j,	yij, can be written as:

where tij is the time of measurement for subject i at time point j,	 t̃ is 
an average time of measurement at TP2,	Si is an indicator function 
for	 the	SMART	group	 for	 subject	 i,	bi	 is	 a	 subject-	specific	 intercept	
(cortical thickness of subject i at TP1),	Ai is the age for the subject i,	
̄B is the average BDI score over time for the subject i,	Bij is the BDI 
score for the subject i at time point j,	eij is the measurement error for 
subject i at time point j, and H(·)	represents	the	Heaviside	step	func-
tion. Previous studies reported the effects of comorbid psychiatric 
conditions	on	cortical	thickness	of	individuals	with	TBI	(Hudak	et	al.,	
2011;	Lindemer	et	al.,	2013).	Thus,	we	controlled	for	potential	effects	
of	depressive	symptoms	on	cortical	thickness	by	including	between-		
and	within-	subject	BDI	covariates	 in	the	model.	We	did	not	 include	
PCL-	S	covariates	in	the	model,	as	BDI	and	PCL-	S	scores	were	highly	
correlated.

We	utilized	the	LME	as	opposed	to	the	repeated	measures	analysis	
of	variance	(ANOVA)	because	the	repeated	measures	ANOVA	is	less	
optimal	for	analyzing	longitudinal	data.	A	repeated	measures	ANOVA	
does not properly model the covariance structure of serial measure-
ments when the covariance among repeated measurements and vari-
ance	are	not	constant	across	time	(i.e.,	the	violation	of	the	compound	
symmetry	assumption).	Furthermore,	the	repeated	measures	ANOVA	
cannot handle other common data characteristics present in a longitu-
dinal study. These include nonuniform data acquisition timing from the 
baseline	across	datasets	and	subject	attrition.	The	LME	is	an	extension	
of the general linear model to handle longitudinal data by incorpo-
rating	subject-	specific	random	factors	into	the	model.	The	LME	pro-
vides	both	flexible	and	parsimonious	models	for	the	covariance,	and	
it	is	more	appropriate	for	longitudinal	data	with	increased	specificity,	
sensitivity,	and	reliability	than	other	alternatives	(Bernal-	Rusiel	et	al.,	
2013;	Chen,	Saad,	Britton,	Pine,	&	Cox,	2013).

We performed subsequent statistical inferences for the with-
in-		 and	 between-	group	 contrasts	 of	 cortical	 thickness	 at	 (1)	 TP2 
relative to TP1	 (i.e.,	H0: y(TP2)–y(TP1)	=	0),	 (2)	 TP3 relative to TP2 
(i.e.,	H0: y(TP3)−y(TP2)	=	0),	 (3)	monotonic	 changes	 over	 three	 time	
points	 (i.e.,	H0: (y(TP2)−y(TP1))+(y(TP3)−y(TP2))	=	y(TP3)−y(TP1)	=	0)),	 
and	(4)	nonmonotonic	changes	over	three	time	points	(i.e.,	H0: (y(TP2)− 
y(TP1))	+	(y(TP2)−y(TP3))	=	0),	 respectively.	 See	 Figure	1	 for	
 illustrations of monotonic and nonmonotonic changes. We identi-
fied	 	statistically	 significant	 training-	induced	 temporal	 changes	 in	
cortical	 thickness	 from	 the	 between-	group	 contrast	 over	 all	 time	

yij
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)
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(

tij− t̃
)

⋅H
(
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)
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(
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points	 (i.e.,	 monotonic	 or	 nonmonotonic	 changes)	 at	 pvertex	<	.05	
and pcluster	<	.05.	 To	 determine	 which	 group(s)	 drove	 statistically	
significant	between-	group	differences,	we	then	used	the	results	of	
the	within-	group	contrasts	for	changes	over	all	three	time	points.	If	
the	 corrected	 version	 of	 the	within-	group	 contrast	 results	 did	 not	
clearly	reveal	which	group(s)	accounted	for	the	observed	between-	
group	 differences,	 we	 further	 assessed	 an	 uncorrected	 version	 
(pvertex	<	.05)	 of	 the	 within-	group	 contrast	 results.	 We	 assessed	
 contrasts for changes in two successive time points to confirm the 
patterns	of	training-	related	change	over	all	time	points.

2.4.3 | Post hoc regions- of- interest analysis of 
cortical thickness

To confirm that the statistically significant changes in cortical thickness 
following	 training	were	 not	 occurring	 due	 to	 outliers,	we	 identified	
training-	induced	 cortical	 thickness	 trajectories	 at	 the	 single-	subject	
level.	More	specifically,	we	obtained	an	average	cortical	thickness	of	
each participant within each of the cortical regions where statistically 
significant	between-	group	differences	in	overall	temporal	changes	in	
cortical thickness occurred at the vertex level. Within each of these 
cortical	regions,	we	also	counted	how	many	participants	showed	sig-
nificant changes in cortical thickness compared to the other training 
group.	We	 defined	 a	 significant	 training-	induced	 change	 in	 cortical	
thickness in a given region for a participant if the amount of corti-
cal thickness change fell outside of the 2 SD band obtained from the 
distribution of cortical thickness changes for the other training group. 
Note	that,	in	this	analysis,	we	did	not	perform	any	additional	statistical	
tests (thus no subsequent p-	values)	for	the	regions	identified	by	the	
group analysis as those statistical tests could yield a selection bias.

2.5 | rsfMRI data analysis

2.5.1 | Volumetric rsfMRI preprocessing

Volumetric	rsfMRI	data	were	preprocessed	in	a	subject-	native	space	
using a modified version of a shell script generated by afni_proc.py 
(http://afni.nimh.nih.gov/pub/dist/doc/program_help/afni_proc.
py.html)	 from	AFNI	 [RRID:SCR_005927;	 Cox,	 1996).	 Each	 subject’s	
whole-	brain	structural	images	were	first	skull	stripped	and	registered	

(affine	transform	with	12	parameters)	to	the	initial	frame	of	the	first	
rsfMRI	run.	For	each	rsfMRI	run,	the	initial	four	frames	were	discarded	
to allow T1	magnetization	saturation.	Standard	preprocessing	methods	
were	 then	 applied,	 including	 despiking,	 slice	 timing	 correction,	mo-
tion	correction,	spatial	resampling	(4	mm	isotropic),	normalization	to	
whole-	brain	mode	of	1000,	band-	pass	filtering	(0.009	<	f	<	0.08	Hz),	
and	 linear	 regression.	 At	 the	 motion	 correction	 stage,	 the	 six	 rigid	
body motion profiles were obtained for the linear regression. In the 
linear	regression,	the	rsfMRI	time	series	were	third-	order	detrended,	
and several sources of signal fluctuation unlikely to be of neuronal 
origin	were	 regressed	 out	 as	 nuisance	 variables:	 (1)	 six	 parameters	
for rigid body head motion acquired from the motion correction 
(Johnstone	et	al.,	2006),	(2)	the	signal	averaged	over	the	lateral	ventri-
cles	(Fox	et	al.,	2005),	(3)	the	signal	averaged	over	a	region	centered	
in	the	deep	cerebral	white	matter	(Fox	et	al.,	2005),	and	(4)	the	first	
temporal	derivatives	of	the	aforementioned	parameters.	After	the	lin-
ear	regression,	motion	‘scrubbing’	(Power,	Barnes,	Snyder,	Schlaggar,	
&	 Petersen,	 2012)	 was	 performed	with	 a	 frame-	wise	 displacement	
(FD)	 of	 0.5	mm	 and	 a	 standardized	DVARS	 (http://www2.warwick.
ac.uk/fac/sci/statistics/staff/academic-research/nichols/scripts/
fsl/DVARS.sh)	of	1.8	to	prevent	potential	motion	artifacts	(van	Dijk,	
Sabuncu,	&	Buckner,	 2012;	Power	 et	al.,	 2012;	 Satterthwaite	 et	al.,	
2012).	A	standardized	DVARS	of	1.8	corresponds	to	the	median	plus	
1.5	times	interquartile	range	of	the	standardized	DVARS	data	across	
all	 frames	 and	 runs.	 For	 participants	 on	whom	 two	 runs	 of	 rsfMRI	
scans	were	 acquired,	 the	 two	preprocessed	 rsfMRI	 runs	were	 tem-
porally concatenated. To account for the differences in total number 
of frames (subsequently different degrees of freedom for correlation 
coefficients)	after	motion	scrubbing	across	rsfMRI	scans,	all	remain-
ing	frames	were	trimmed	to	the	minimum	length	(121	frames;	242	s)	
across	all	rsfMRI	scans	as	suggested	in	Power	et	al.	(2014).

2.5.2 | Surface mapping

We	used	SUMA	(Saad,	Reynolds,	Argall,	Japee,	&	Cox,	2004)	for	sur-
face	 mapping	 and	 surface	 standardization.	 The	 preprocessed	 volu-
metric functional time series were projected onto mesh surfaces of 
each subject by averaging the time series across the voxels belonging 
to five equally spaced coordinates along the line between two match-
ing nodes of 1 mm inside of the white surface and the outside of the 

F IGURE  1  Illustrations of monotonic 
(a)	and	nonmonotonic	(b)	changes	over	
three time points. H0 represents the null 
hypothesis of statistical inferences for 
contrasts at monotonic and nonmonotonic 
changes over three time points in the linear 
mixed	model,	respectively.	TP1,	prior	to	
training; TP2,	after	training;	TP3,	3	months	
after training
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pial	 surface.	 In	 the	 same	way,	 the	 voxel-	based	 subject	masks	were	
converted	 into	surface-	based	subject	masks.	For	group	analysis,	we	
standardized	 surface	meshes	 (36,002	 nodes	 per	 hemisphere	with	 a	
2-	mm	spatial	resolution)	of	each	individual.	We	also	obtained	an	inter-
section	mask	for	the	mesh	nodes	in	which	fMRI	signals	existed	across	
all subjects and time points.

2.5.3 | Network- based statistics of longitudinal 
rsfMRI data

We obtained a connectivity matrix for each of the scans by calculating 
the Pearson correlation coefficients for average time series from each 
of	the	ROIs	where	statistically	significant	between-	group	differences	in	
overall	temporal	changes	in	cortical	thickness	occurred.	After	perform-
ing	a	Fisher’s	Z-	transform	to	ensure	the	normality	of	correlations	and	
scaling to Z-	scores	(i.e.,	zero	mean	and	unit	variance),	we	performed	
the	LME	analysis	with	the	same	model	used	for	the	cortical	thickness	
analysis,	additionally	including	between-		and	within-	subject	FD	covari-
ates.	The	FD	covariates	were	included	because	the	LME	analysis	on	(1)	
the	percentage	of	motion	censored	volumes	and	(2)	FD	after	censor-
ing	and	trimming	revealed	statistically	significant	changes	in	FD	from	
TP2 to TP3 and from TP1 to TP3	(nonmonotonic)	within	SMART	(Table	
S1).	Statistically	significant	changes	in	connectivity	were	identified	at	
|Z| > 1.96 (p < .05	at	the	connection	level)	with	correction	for	multiple	
comparisons at p < .05	using	network-	based	statistics	 (NBS;	Zalesky,	
Fornito,	&	Bullmore,	2010).	Note	that	we	modified	the	original	NBS	
MATLAB	 script	 (https://sites.google.com/site/bctnet/comparison/
nbs)	for	our	LME	analysis	as	the	original	script	was	written	for	the	T-	
test.	Although	the	original	NBS	utilizes	permutation	tests	to	estimate	
the	null	distribution	of	maximal	component	size,	the	permutation	tests	
are	invalid	in	longitudinal	data,	as	the	exchangeability	assumption	does	
not	hold	for	such	data.	Thus,	we	performed	a	parametric	bootstrap-
ping method by generating a bootstrapped sample from the estimated 
covariance	matrix	and	subsequently	performing	LME	analysis	on	the	
bootstrapped	 sample	 (Joo,	 Hormozdiari,	 Han,	 &	 Eskin,	 2016).	 Ten	
thousand instances of bootstrapped samples were generated to esti-
mate	the	null	distribution	of	maximal	component	size	for	each	of	the	
contrasts.	NBS-	corrected	changes	in	connectivity	were	visualized	on	
anatomical	space	using	BrainNet	Viewer	(Xia,	Wang,	&	He,	2013).

2.5.4 | Analysis of connectivity patterns according to 
large- scale networks

To	further	understand	training-	induced	functional	connectivity	among	
the	specified	ROIs	from	the	perspective	of	large-	scale	networks,	we	
first	determined	which	were	the	most	affiliated	resting-	state	networks	
to	the	ROIs.	We	used	the	seven	network	version	of	the	resting-	state	
cortical	parcellation	(Yeo	et	al.,	2011),	which	is	a	large-	scale	network-	
based	 atlas	 of	 the	 cerebral	 cortex.	 The	 seven	 large-	scale	 networks	
from	the	Yeo	atlas	include	the	visual,	somatomotor,	dorsal	attention,	
salience	(or	ventral	attention),	limbic,	frontoparietal,	and	default	net-
works.	All	of	these	networks	are	frequently	reported	in	the	rsFC	lit-
erature. We overlaid the ROIs obtained from group comparisons of 

training-	induced	changes	in	cortical	thickness	over	time	onto	the	Yeo	
atlas	to	identify	which	ROI	affiliates	with	which	large-	scale	network.	
We then identified the number of connections with statistically sig-
nificant group contrasts according to connectivity within and between 
the	resting-	state	networks	that	each	of	the	ROIs	was	affiliated	with.	
We also assessed Euclidean distance of these connections according 
to	connectivity	within	and	between	 the	 resting-	state	networks	 that	
each of the ROIs was affiliated with.

2.6 | Analysis of effect sizes

As	there	are	no	standard	effect	size	statistics	for	the	LME	model,	we	
obtained	the	sizes	of	training-	related	effects	within	the	SMART	group	
in	the	following	way.	For	neuropsychological	tests	that	showed	sta-
tistically	significant	between-	group	contrasts	for	temporal	changes	in	
scores,	we	identified	average	scaled	scores	for	the	SMART	group	at	
TP1 and TP3,	and	corresponding	percentile	ranks.	For	cortical	 thick-
ness	estimates,	we	first	calculated	the	amount	of	change	in	average	
cortical thickness over time within each of the regions that showed a 
statistically	significant	between-	group	contrast	for	temporal	changes	
in	cortical	 thickness.	For	each	region,	we	then	normalized	the	over-
all	changes	by	average	baseline	cortical	thickness	within	the	SMART	
and	BHW	groups,	respectively.	Similarly,	we	calculated	the	amount	of	
change	in	rsFC	over	time	within	each	of	the	connections	that	showed	
statistically	significant	between-	group	contrasts	for	temporal	changes	
in	connectivity	strength.	For	each	of	 the	connections,	we	then	nor-
malized	the	amount	of	change	by	average	connectivity	strength	 for	
the	corresponding	connection	within	the	SMART	group.	Note	that	we	
obtained	effect	sizes	of	these	measures	after	adjusting	for	the	covari-
ates	that	were	included	in	the	LME	analyses	(e.g.,	the	BDI	covariates).

2.7 | Quality assurance

We	 visually	 inspected	 all	 structural	MRI	 scans	 to	 ensure	 that	 sub-
jects	 had	 no	 significant	 brain	 atrophy.	 In	 rsfMRI	 preprocessing,	 the	
quality of the preprocessed data was visually inspected at each step. 
After	motion	‘scrubbing’,	we	confirmed	that	the	total	time	of	remain-
ing	frames	after	the	‘scrubbing’	exceeded	4	min,	the	minimum	length	
required	to	reliably	estimate	rsFC	(van	Dijk	et	al.,	2010).	We	also	en-
sured	that	there	were	no	MRI	scans	or	neuropsychological	measures	
that	were	acquired	too	late	(i.e.,	outside	the	2	SD	band	from	the	mean)	
for	all	time	points.	Lastly,	we	excluded	MRI	scans	from	the	LME	analy-
sis	when	corresponding	BDI	scores	were	not	available.	See	Table	2	for	
the	number	of	MRI	scans	after	the	QA	procedure.

2.8 | Brain and behavior relationship

2.8.1 | Cortical thickness versus neuropsychological 
performance

To confirm whether improved neuropsychological performance 
after	training	was	related	to	changes	 in	cortical	 thickness,	we	per-
formed	 the	 LME	 analysis	 with	 a	 modified	 model	 by	 additionally	

https://sites.google.com/site/bctnet/comparison/nbs
https://sites.google.com/site/bctnet/comparison/nbs
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including	 within-		 and	 between-	subject	 factors	 from	 the	 number–
letter	switching	versus	motor	speed	scores	of	the	trail-	making	test	
from	 the	D-	KEFS.	We	 chose	 the	 trail-	making	 test	 scores	 because	
the	SMART	group	showed	statistically	significant	(p < .05)	improve-
ment	on	 this	 test	 relative	 to	 the	controls	 (see	 the	 results	 section).	
We	adjusted	for	age,	years	of	education,	estimated	current	IQ,	and	
BDI	 scores	 before	we	 included	 the	 covariates	 to	minimize	 poten-
tial	 effects	 of	 these	measures	 on	 the	 trail-	making	 test	 scores.	 As	
we	were	 interested	 in	how	and	where	training-	induced	changes	 in	
cortical thickness were associated with improved neuropsychologi-
cal performance within subjects,	we	focused	on	assessing	the	within-	
subject	covariate	for	the	trail-	making	test	in	the	revised	LME	model.	
As	temporal	patterns	of	cortical	thickness	change	within	the	SMART	
group	were	 often	 nonmonotonic	 (i.e.,	 returning	 to	 the	 baseline	 at	
TP3;	see	the	results	section),	we	also	assessed	associations	between	
nonmonotonic changes in cortical thickness and improvement in the 
trail-	making	test	scores.	Specifically,	we	performed	the	LME	analy-
sis on nonmonotonic components of cortical thickness by reflecting 
cortical thickness at TP3 over the axis of cortical thickness at TP2 
(see	Figure	S2	for	more	details).	This	made	the	reflected	thickness	
at TP3 artificially made overall changes appear monotonic when ac-
tual	 temporal	 pattern	 of	 changes	was	 nonmonotonic.	 As	with	 the	
cortical	 thickness	analysis,	we	 identified	statistically	 significant	as-
sociations between changes in the two measures at  pvertex <	.05	and	
pcluster <	.05.

2.8.2 | Resting- state functional connectivity versus 
neuropsychological performance

We	 also	 performed	 the	 LME	 analysis	 on	 seed-	based	 connectivity	
additionally	 including	 within-		 and	 between-	subject	 covariates	 from	
the	number–letter	switching	versus	motor	speed	scores	of	the	trail-	
making	test	from	the	D-	KEFS	in	the	model.	We	defined	seeds	as	the	
regions that showed statistically significant associations between 
changes	in	cortical	thickness	and	improvement	in	trail-	making	scores	
(refer	to	the	result	sections).	The	LME	analysis	was	then	performed	for	
each of the seeds. We identified statistically significant associations 

between changes in the two measures at pvertex	<	.05	and	pcluster	<	.005	
(=.05/10)	by	additionally	correcting	for	the	number	of	seeds.

2.9 | Statistical analyses

All	statistical	analyses	were	conducted	in	MATLAB	R2013a.	First,	we	
performed	the	Shapiro–Wilk	test	at	α	=	0.05	to	assess	the	normality	
of	distributions	of	each	group’s	demographics	(age,	years	of	education,	
and	postinjury	time).	Age,	years	of	education,	and	postinjury	time	did	
not	pass	the	Shapiro–Wilk	normality	test.	Thus,	the	Mann–Whitney	
U-	test	was	used	to	compare	these	demographics	between	the	groups.	
The	Fisher’s	exact	test	was	used	to	compare	the	gender	distributions	
and proportion of civilians and veterans between the groups. The like-
lihood	ratio	chi-	square	test	was	used	to	compare	the	distribution	of	
estimated initial injury severity and primary cause of injury between 
the	groups,	 respectively.	We	performed	T-	tests	 to	compare	current	
and	premorbid	IQs	between	the	groups.	Similar	to	analyses	of	corti-
cal	thickness	and	rsFC,	we	performed	the	LME	analysis	on	the	other	
neuropsychological	measures	using	a	piece-	wise	linear	model	with	a	
breakpoint at TP2,	and	a	randomly	varying	intercept.	In	these	analy-
ses,	we	 included	years	of	education,	estimated	current	 IQ,	and	BDI	
covariates	for	age-	adjusted	scores	of	color–word	test,	verbal	fluency	
test,	card	sorting	test,	and	trail-	making	test.	The	age,	years	of	educa-
tion,	and	estimated	current	IQ	covariates	were	not	included	for	BDI,	
PCL-	S,	and	satisfaction	with	life	scale	as	we	did	not	predict	effects	of	
age	and	years	of	education	on	these	measures.	Indeed,	we	confirmed	
that there were no statistically significant effects of age and years of 
education	 on	 these	measures.	 However,	 the	 BDI	 covariate	was	 in-
cluded for satisfaction with life scale. Note that this portion of the 
study was carried out as an exploratory analysis to identify candidate 
neuropsychological	measures	 that	may	characterize	 the	 relationship	
between the brain and behavior in the context of cognitive training 
after	TBI.	As	such,	we	did	not	correct	for	multiple	comparisons	across	
the	 neuropsychological	 measures.	 Our	 previous	 study	 (Vas	 et	al.,	
2016)	reported	the	efficacy	of	the	SMART	for	chronic	TBI	based	on	
neuropsychological	 assessment	with	 larger	 sample	 sizes,	which	was	
the primary focus of that prior study.

Data type Time point SMART BHW
Weeks from 
baseline

Neuropsychological 
assessments

TP1 31 29 –

TP2 30 26 8.7	±	0.8

TP3 23 27 18.0	±	1.5

Structural	MRI	scansa TP1 29 28 –

TP2 27 24 8.8	±	0.8

TP3 17 23 20.7	±	1.6

Resting-	state	fMRI	scansa TP1 26 22 –

TP2 23 21 8.8	±	0.8

TP3 14 22 20.7	±	1.6

TP1,	Prior	to	training;	TP2,	After	training;	TP3,	3	months	later.
aOnly	MRI	scans	that	passed	the	quality	assurance	procedures	were	reported.

TABLE  2 The number and timing of 
neuropsychological	assessments	and	MRI	
scans per time point by group
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3  | RESULTS

3.1 | Demographics

All	participants	were	at	a	 long-	term	chronic	phase	of	TBI	 (approxi-
mately	8	years	postinjury	 time	on	average).	There	were	no	statisti-
cally	 significant	 group	 differences	 in	 age,	 estimated	 current	 and	
premorbid	IQs,	gender,	proportions	of	civilians	and	veterans,	postin-
jury	time,	distribution	of	estimated	initial	injury	severity,	or	distribu-
tion of primary injury types at α	=	0.05	 (Table	1).	 However,	 group	
differences in years of education and estimated current IQ were 
 marginally significant.

3.2 | Neuropsychological measures

The average times of assessments were 9 and 18 weeks from the 
baseline,	respectively	(Table	2).	Although	we	attempted	to	match	in-
jury characteristics and other demographics between the two train-
ing	 groups	by	 randomized	group	 assignment,	 statistically	 significant	
(p < .05)	group	differences	were	observed	in	performance	at	baseline	
in	test	scores	from	the	D-	KEFS	(Table	3).	These	differences	occurred	
as	 follows:	 inhibition	 and	 inhibition/switching	 scores	 of	 the	 color–
word	test;	free	sorting,	confirmed	correct	sorts,	sort	recognition,	de-
scription,	 and	 combined	description	 scores	of	 the	 card	 sorting	 test;	
and	visual	scanning,	number	sequencing,	motor	speed	scores	of	the	
trail-	making	 test	 (see	 the	 limitation	 section	 for	 relevant	 limitations	
of	 this	 study).	We	 focused	on	 reporting	between-	group	differences	
in	 training-	induced	 changes in neuropsychological measures (con-
ceptually	 same	 as	 group-	by-	time	 interactions	 in	 repeated-	measures	
ANOVA).

In	 this	 exploratory	 analysis,	 between-	group	 differences	 in	
changes in neuropsychological measures over multiple time points 
occurred	 in	 number–letter	 switching	versus	motor	 speed	 scores	 of	
the	trail-	making	test	from	the	D-	KEFS	(p = .01;	Table	3).	Within-	group	
contrast	 results	 (Table	4)	 revealed	 that	monotonic	 improvements	 in	
number–letter	 switching	 versus	 motor	 speed	 scores	 of	 the	 trail-	
making	test	scores	for	the	SMART	led	to	the	observed	group	contrast	
difference.

There were marginal (p < .1)	group	differences	in	training-	induced	
temporal	 change	 in	 the	word-	reading	 scores	of	 the	color–word	 test	
from	 the	 D-	KEFS	 and	 number–letter	 switching	 scores	 of	 the	 trail-	
making	test	from	the	D-	KEFS.	Marginal	results	may	be	explained	by	a	
small	sample	size	relative	to	individual	variability	in	the	neuropsycho-
logical measures. These marginal results should be interpreted with 
caution as these were not statistically significant at α	=	0.05.

3.3 | Cortical thickness analysis results

The	QA	procedure	 allowed	 us	 to	 include	 148	 structural	MRI	 scans	
from	58	participants	(N =	30	for	SMART	and	28	for	BHW)	in	the	corti-
cal	thickness	analysis	(Table	2).	The	average	timing	of	MRI	scans	that	
passed the quality assurance procedures were 9 and 21 weeks from 
the	baseline,	respectively	(Table	2).

3.3.1 | Whole- brain, group analysis results

The	 whole-	brain,	 LME	 analysis	 demonstrated	 temporal	 changes	
in cortical thickness for the training groups over three time points 
(Figure	2).	Overall,	 the	 patterns	 of	 group	 differences	 in	monotonic	
and nonmonotonic temporal changes in cortical thickness were 
	distributed	over	the	whole	brain.	Specifically,	statistically	significant	
(pvertex	<	.05,	 	pcluster	<	.05)	 group	 differences	 in	 nonmonotonic	 (in-
creases	 followed	by	 decreases	 back	 to	 the	 baseline)	 cortical	 thick-
ness changes over time were observed in the bilateral dorsolateral 
prefrontal	 cortex	 (DLPFC)	 and	 anterior	 medial	 prefrontal	 cortex	
(AMPFC);	 left	 subcentral	 gyrus	 (L	SCG);	 and	 right	dorsal	 prefrontal	
cortex	 (R	DPFC).	Within-	group	 contrast	maps,	 corrected	 for	multi-
ple	comparisons	(Figure	2a),	revealed	that	the	statistically	significant	
group	differences	were	attributable	to	(1)	increases	followed	by	de-
creases	 in	 cortical	 thickness	 of	 the	 SMART	 group	 in	 the	 L	DLPFC	
and	 R	AMPFC,	 and	 (2)	 decreases	 followed	 by	 increases	 in	 cortical	
thickness	of	the	BHW	group	in	the	L	SCG	and	L	AMPFC.	(Figures	2a	
and	S3a).	In	the	R	DLPFC	and	R	DPFC,	further	assessment	of	within-	
group contrast map at pvertex	<	.05	(Figure	S3a)	revealed	that	the	sta-
tistically significant group differences were attributable to increases 
followed	by	decreases	in	cortical	thickness	of	the	SMART	group.	We	
also observed statistically significant group differences in monotonic 
temporal	changes	in	the	left	precentral	gyrus	(L	PRCG)	and	left	lingual	
gyrus	 (LG),	 right	postcentral	gyrus	 (R	POCG),	 right	middle	temporal	
complex	(R	MT+),	right	anterior	prefrontal	cortex	(R	APFC),	and	right	
occipitoparietal	 lobe	 (R	 OCPL).	 Within-	group	 contrast	 maps,	 cor-
rected	for	multiple	comparisons	(Figure	2b),	revealed	that	monotonic	
increases	 in	cortical	 thickness	of	 the	SMART	group	 in	 the	R	POCG	
and	R	OCPL	led	to	the	group	differences	observed	in	these	regions.	
In	R	MT+	and	R	APFC,	monotonic	decreases	in	cortical	thickness	of	
the	 SMART	 group	 led	 to	 the	 observed	 group	 differences.	Within-	
group	contrast	maps,	uncorrected	for	multiple	comparisons,	further	
identified that statistically significant group contrasts were driven by 
(1)	a	combination	of	monotonic	decreases	in	cortical	thickness	for	the	
SMART	group	and	monotonic	 increases	 in	the	BHW	group	in	the	L	
PRCG	and	 (2)	monotonic	 increases	 in	 the	BHW	group	 in	 the	 L	 LG	
(Figure	S3b).	The	colormaps	for	within-		and	between-	group	contrasts	
for	two	time	points	(i.e.,	TP1 to TP2 and TP2 to TP3)	further	supported	
the observed cortical thickness changes over all three time points 
(Figure	3).

3.3.2 | Post hoc ROI analysis results

The	group	analysis	results	yielded	12	ROIs	(Figure	2,	Table	5).	We	fur-
ther identified individual patterns of cortical thickness changes within 
these	ROIs.	Overall,	patterns	of	changes	 in	cortical	 thickness	at	 the	
single-	subject	level	were	consistent	with	the	observed	patterns	at	the	
group	level,	confirming	that	observed	patterns	at	the	group	level	were	
not	 due	 to	 outliers	 (Figures	4	 and	 S4).	 For	 example,	 cortical	 thick-
ness	 in	 the	R	DPFC	of	 the	SMART	participants	was	 increased	 then	
decreased	back	to	the	baseline,	whereas	temporal	changes	in	cortical	
thickness of the BHW participants in this region were stable over time 
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(Figure	4a).	More	specifically,	from	TP1 to TP2	six	SMART	participants	
showed	changes	in	cortical	thickness	in	R	DPFC	that	exceeded	the	2	
SD	band	from	the	BHW	group	in	this	region.	From	TP2 to TP3 two of 
these	six	SMART	participants	exceeded	the	2	SD band from the BHW 
group	 in	 this	 region.	Across	 the	 three	 time	points,	 four	of	 these	six	
SMART	participants	showed	nonmonotonic	changes	in	cortical	thick-
ness greater than the 2 SD band from the BHW group. Note that one 
of	these	six	SMART	participants	did	not	undergo	an	MRI	scan	at	TP3. 
None of the participants would be expected to be outside of the 2 
SD	range	(5%)	if	these	changes	occurred	by	chance.	The	ROI	analysis	
also demonstrated large individual variability and a small magnitude 
(<0.5	mm)	of	training-	related	changes	in	cortical	thickness	across	the	
12 ROIs overall.

Slice	 views	 of	 the	 ROIs	 of	 the	 participants	 with	 the	 greatest	
amount of overall changes in cortical thickness in their respective ROIs 
(Figures	5	and	S5)	exhibited	more	detailed	patterns	of	training-	related	

changes	in	cortical	thickness.	For	these	subjects,	pial	surface	changes	
at sulcal banks primarily led to temporal changes in cortical thickness 
in	most	of	the	ROIs.	One	exception	occurred	in	three	participants’	L	
POCG	and	L	PRCG	where	the	gray/white	surface	of	the	gyral	blade	
induced	 temporal	changes	 in	cortical	 thickness	 (Figures	5b,	S5e	and	
S5f).

3.4 | rsfMRI analysis results

The	QA	procedure	 (i.e.,	motion	 scrubbing,	 timing	 of	 scans,	 and	 the	
presence	 of	 corresponding	 BDI-	II	 scores)	 allowed	 us	 to	 include	
128	 rsfMRI	 scans	 from	 57	 participants	 (N =	29	 for	 SMART	 and	 28	
for	 BHW)	 in	 the	 rsfMRI	 analysis	 (Tables	2	 and	 S1).	 At	 TP1,	 there	
were	no	 statistically	 significant	group	differences	 in	 rsFC,	which	al-
lowed	us	 to	compare	group	differences	 in	 rsFC	at	 later	 time	points	
(Figure	6a,b).	No	statistically	significant	changes	occurred	within	the	

TABLE  3 Neuropsychological assessment results

Neuropsychological measures

SMART (N = 31) BHW (N = 29) p- values  
(TP1, TP2–TP1, TP3–TP2, 
M, NM)TP1 TP2 TP3 TP1 TP2 TP3

CW:	Color	naming	(SS) 9.6	±	3.2 9.3	±	3.2 9.5	±	3.0 8.9	±	3.1 9.6	±	3.0 9.6	±	3.1 >.1,	>.1,	>.1,	>.1,	>.1

CW:	Word	reading	(SS) 9.5	±	3.3 9.3	±	3.5 9.2	±	3.1 9.8	±	2.3 9.9	±	2.7 9.2	±	3.5 >.1,	>.1,	>.1,	.10,	>.1

CW:	Inhibition	(SS) 10.1	±	2.5 11.1	±	3.0 11.3	±	3.1 8.7	±	3.7 9.6	±	3.1 9.9	±	3.1 .02,	>.1,	>.1,	>.1,	>.1

CW:	Inhibition/switching	(SS) 9.9	±	3.1 10.2	±	2.7 10.8	±	3.2 9.2	±	3.6 10.0	±	3.0 10.4	±	3.2 .02,	>.1,	>.1,	>.1,	>.1

VF:	Letter	fluency,	total	correct	(SS) 10.2	±	3.3 10.0	±	3.2 11.0	±	3.1 11.5	±	2.8 12.0	±	3.3 12.2	±	3.2 >.1,	>.1,	>.1,	>.1,	>.1

VF:	Category	fluency,	total	correct	
(SS)

11.0	±	3.6 9.6	±	3.5 11.4	±	3.0 11.1	±	4.1 9.2	±	2.6 10.7	±	2.5 >.1,	>.1,	>.1,	>.1,	>.1

VF:	Category	switching,	total	correct	
(SS)

10.8	±	3.7 10.6	±	3.6 10.3	±	3.6 10.8	±	3.3 10.1	±	3.5 10.7	±	3.7 >.1,	>.1,	>.1,	>.1,	>.1

VF:	Category	switching,	total	
switching	accuracy	(SS)

11.3	±	3.1 11.0	±	3.2 10.8	±	3.1 11.2	±	3.1 10.3	±	4.0 10.8	±	3.1 >.1,	>.1,	>.1,	>.1,	>.1

CS:	Free	sorting,	confirmed	correct	
sorts	(SS)

10.3	±	2.6 12.1	±	1.9 12.0	±	2.6 9.9	±	2.5 12.2	±	2.4 11.5	±	2.9 .03,	>.1,	>.1,	>.1,	>.1

CS:	Free	sorting,	description	score	
(SS)

10.2	±	3.0 11.8	±	2.2 12.5	±	2.4 10.4	±	2.8 11.8	±	2.9 11.9	±	3.0 >.1,	>.1,	>.1,	>.1,	>.1

CS:	Sort	recognition,	description	score	
(SS)

10.3	±	3.3 11.3	±	2.5 11.5	±	2.8 9.1	±	3.6 10.5	±	3.6 11.2	±	4.8 .01,	>.1,	>.1,	>.1,	>.1

CS:	Combined	description	score	(SSS) 20.5	±	5.7 23.1	±	4.3 24.0	±	4.6 19.6	±	5.9 22.4	±	6.0 23.1	±	7.3 .04,	>.1,	>.1,	>.1,	>.1

TM:	Visual	scanning	(SS) 12.2	±	1.5 12.1	±	2.7 12.3	±	1.7 10.9	±	2.8 11.1	±	2.8 11.3	±	2.7 .02,	>.1,	>.1,	>.1,	>.1

TM:	Number	sequencing	(SS) 11.5	±	1.8 11.9	±	1.8 12.5	±	2.4 10.4	±	2.9 11.7	±	2.6 11.6	±	2.8 .01,	.09,	>.1,	>.1,	>.1

TM:	Letter	sequencing	(SS) 11.7	±	1.9 12.2	±	1.8 13.0	±	1.2 10.9	±	2.8 10.6	±	3.2 11.0	±	3.1 >.1,	>.1,	>.1,	>.1,	>.1

TM:	Number–letter	switching	(SS) 10.5	±	2.6 11.4	±	2.7 12.1	±	1.4 10.4	±	2.9 10.7	±	2.9 10.8	±	3.2 >.1,	>.1,	>.1,	.06,	>.1

TM:	Motor	speed	(SS) 12.4	±	1.2 11.9	±	2.3 12.5	±	1.6 11.3	±	1.5 11.6	±	3.0 12.3	±	2.3 .02,	>.1,	>.1,	>.1,	>.1

TM:	Number–letter	switching	versus	
motor	speed	(SS)

8.1	±	2.6 9.6	±	2.6 9.7	±	1.7 9.1	±	2.5 9.0	±	2.7 8.6	±	2.4 >.1,	.05,	>.1,	.01,	>.1

BDI-	II 19.9	±	10.4 15.0	±	10.6 11.3	±	9.6 16.4	±	11.7 12.5	±	11.0 11.8	±	10.2 >.1,	>.1,	>.1,	>.1,	>.1

PCL-	S 42.4	±	16.5 40.8	±	17.6 33.9	±	15.8 43.9	±	17.2 39.1	±	17.6 37.8	±	19.3 >.1,	>.1,	>.1,	>.1,	>.1

Satisfaction	with	life	scale 16.6	±	9.2 20.0	±	9.1 21.3	±	7.6 19.1	±	7.3 19.0	±	7.0 20.2	±	7.9 >.1,	>.1,	>.1,>.1,	>.1

CW,	Color–word;	VF,	Verbal	Fluency;	CS,	Card	Sorting;	TM,	Trail	Making;	BDI-	II.	Beck	Depression	Inventory–II;	PCL-	S,	Posttraumatic	Stress	Disorder	
Check	List	Stressor–specific;	SS,	Scaled	Scores;	SSS,	Sum	of	Scaled	Scores;	M,	Monotonic;	MN,	Nonmonotonic.	See	Table	2	for	the	other	abbreviations.
Bold face represents p < .05.
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BHW	 group,	 either.	 The	 SMART	 group	 showed	 statistically	 signifi-
cant (pNBS	=	0.0001)	monotonic	 increases	 from	TP1 to TP3 over the 
BHW	group	(Figure	6c,d).	Overall	increases	in	connectivity	of	SMART	
relative	to	BHW	primarily	occurred	at	connections	with	R	DPFC	and	
R	APFC,	and	 long-	range	connections	 (i.e.,	connections	that	are	 long	
enough	to	encompass	different	brain	regions,	lobes,	or	hemispheres).	
The	training-	related	monotonic	increases	in	rsFC	of	the	SMART	group	
yielded	greater	connectivity	 strength	of	 the	SMART	 than	 the	BHW	
at TP3 (pNBS	=	0.0004).	The	map	for	the	ROIs	overlaid	onto	the	Yeo	
atlas	(Yeo	et	al.,	2011)	revealed	that	the	ROIs	were	affiliated	with	the	
default-	mode	 network	 (DMN)	 (Greicius,	 Krasnow,	 Reiss,	 &	Menon,	
2002;	Raichle	et	al.,	2001),	somatomotor	network	(SMN)	(Smith	et	al.,	
2009),	 and	 visual	 network	 (VN)	 (Lowe,	 Mock,	 &	 Sorenson,	 1998)	

(Figure	 S6).	 The	 subsequent	 large-	scale	 network-	based	 assessment	
of	connectivity	increases	over	time	for	the	SMART	group	relative	to	
the BHW group exhibited that increases in connectivity primarily oc-
curred	between	the	DMN	and	SMN,	and	between	the	DMN	and	VN	
(Figure	7a).	 Connection	 distance	 of	 such	 between-	network	 connec-
tivity	was	long	(>70	mm;	Figure	7b),	encompassing	different	lobes	of	
the brain.

3.5 | The sizes of training- related effects

The	 SMART-	induced	 changes	 in	 scaled	 scores	 for	 the	 trail-	making	
number–letter	switching	versus	motor	speed	from	8.2	at	TP1 to 9.8 
at TP3 on average. These scaled scores at TP1 and TP3 correspond 
to	25%	and	50%	in	percentile	ranks,	respectively.	This	indicates	that	
the	SMART	group	participants	showed	average	performance	on	the	
trail-	making	 test	 compared	 to	 normative	 samples.	 SMART	 induced	
0.04–0.13	mm	of	cortical	 thickness	changes	within	 the	 regions	 that	
showed	 statistically	 significant	 between-	group	 contrasts	 (Table	5).	
These	 change	 ranges	 correspond	 to	 1.8~5.2%	 change	 compared	 to	
baseline	 thickness.	SMART	also	yielded	 training-	induced	changes	 in	
rsFC,	 ranging	 from	1.0	 to	2.8	 in	Z-	scores	and	 from	29.1	 to	172.6%	
(Figure	8).

3.6 | Training- induced changes in the brain versus 
improvement in neuropsychological performance

We observed statistically significant (pvertex	<	.05,	pcluster	<	.05)	 asso-
ciations	between	 training-	induced	changes	 in	 cortical	 thickness	and	
improvements	 in	neuropsychological	performance	after	 the	SMART	
(Figure	9a,	 Table	6).	 These	 associations	 occurred	 with	 both	 mono-
tonic	and	nonmonotonic	changes	 in	cortical	thickness	after	SMART.	
Statistically	 significant	 associations	 between	 changes	 in	 these	 two	
measures	 did	 not	 occur	 with	 the	 controls.	 Note	 that	 the	 SMART	
group showed statistically significant (p < .05)	 monotonic	 improve-
ment	 in	 scores	 on	 the	 trail-	making	 number–letter	 switching	 versus	
motor	 speed,	whereas	 the	control	 group	 showed	 trends	 in	 reduced	
scores	over	time.	Thus,	positive	association	in	the	given	region	shown	
in	 Figure	9a	 indicates	 that	 the	 participants	with	 the	 improved	 trail-	
making	scores	after	the	SMART	showed	monotonic	 increases	or	 in-
creases then decreases in cortical thickness in that region. Negative 
association indicates that improvement in the test scores was associ-
ated with monotonic decreases or decreases followed by increases 
in	 cortical	 thickness	 in	 the	 given	 region	 within	 the	 SMART	 group.	
Trajectories	of	cortical	thickness	and	the	trail-	making	test	scores	over	
time	(Figure	9b–c)	confirmed	the	observed	group	analysis	results.

Analyses	of	rsFC	with	seeds	identified	from	the	results	of	the	cor-
tical	thickness	analysis	from	SMART	exhibited	the	patterns	of	connec-
tivity	that	were	associated	with	the	improved	trail-	making	test	scores	
(pvertex	<	.05,	 pcluster	<	.005;	 Figure	10).	 Within	 the	 SMART	 group,	
positive associations between the two measures indicate that partic-
ipants	with	 training-	induced	 improvement	 in	 the	 trail-	making	scores	
showed	monotonically	increased	rsFC	between	the	given	seed	and	re-
gion. Note that most of the temporal patterns of associated functional 

TABLE  4 Within-	group	changes	in	neuropsychological	test	scores

Neuropsychological 
measures

p- values (TP2–TP1, TP3–TP2, M, NM)

SMART (N = 31) BHW (N = 29)

CW:	Color	naming	(SS) >.1,	>.1,	>.1,	>.1 .09,	>.1,	.04,	>.1

CW:	Word	reading	(SS) >.1,	>.1,	>.1,	>.1 >.1,	.08,	>.1,	>.1

CW:	Inhibition	(SS) .04,	>.1,	.02,	>.1 .02,	>.1,	.01,	>.1

CW:	Inhibition/switching	(SS) >.1,	>.1,	>.1,	>.1 .03,	>.1,	.02,	>.1

VF:	Letter	fluency,	total	
correct	(SS)

>.1,	.01,	.02,	>.1 >.1,	>.1,	>.1,	>.1

VF:	Category	fluency,	total	
correct	(SS)

.03,	.03,	>.1,	.01 <.01,	.02,	>.1,	<.01

VF:	Category	switching,	total	
correct	(SS)

>.1,	>.1,	>.1,	>.1 >.1,	>.1,	>.1,	>.1

VF:	Category	switching,	total	
switching	accuracy	(SS)

>.1,	>.1,	>.1,	>.1 >.1,	>.1,	>.1,	>.1

CS:	Free	sorting,	confirmed	
correct	sorts	(SS)

<.01,	>.1,	<.01,	<.01 <.01,	>.1,	<.01,	<.01

CS:	Free	sorting,	description	
score	(SS)

<.01,	>.1,	.05,	>.1 <.01,	>.1,	.01,	>.1

CS:	Sort	recognition,	
description	score	(SS)

.03,	>.1,	.05,	>.1 <.01,	>.1,	<.01,	>.1

CS:	Combined	description	
score	(SSS)

<.01,	>.1,	<.01,	>.1 <.01,	>.1,	<.01,	.10

TM:	Visual	scanning	(SS) >.1,	>.1,	>.1,	>.1 >.1,	>.1,	>.1,	>.1

TM:	Number	sequencing	(SS) >.1,	>.1,	.06,	>.1 <.01,	>.1,	<.01,	.03

TM:	Letter	sequencing	(SS) .09,	>.1,	.03,	>.1 >.1,	>.1,	>.1,	>.1

TM:	Number–letter	
switching	(SS)

.01,	>.1,	<.01,	>.1 >.1,	>.1,	>.1,	>.1

TM:	Motor	speed	(SS) >.1,	>.1,	>.1,	>.1 >.1,	.08,	.04,	>.1

TM:	Number–letter	
switching versus motor 
speed	(SS)

<.01,	>.1,	.02,	.03 >.1,	>.1,	>.1,	>.1

BDI-	II <.01,	>.1,	<.01,	>.1 >.1,	>.1,	<.01,	>.1

PCL-	S >.1,	.06,	<.01,	>.1 >.1,	>.1,	.02,	>.1

Satisfaction	with	life	scale .08,	>.1,	>.1,	>.1 >.1,	>.1,	>.1,	>.1

See	Table	3	for	the	abbreviations.
Bold face represents p < .05.
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connectivity were monotonic increases. These patterns of associations 
even occurred in seed regions where changes in cortical thickness 
were	nonmonotonic	(e.g.,	the	right	lateral	occipital	lobe	seed).

4  | DISCUSSION

We	 demonstrated	 changes	 in	 cortical	 thickness	 and	 resting-	state	
connectivity	of	individuals	at	chronic	stage	of	TBI	following	strategy-	
based	 reasoning	 training.	 To	 our	 knowledge,	 this	 is	 the	 first	MRI-	
based study to report brain plasticity as measured by both cortical 
thickness	and	rsFC	in	chronic	TBI	following	cognitive	training.	Novel	
methods employed in this study included comparing individuals un-
dergoing	 strategy-	based	 training	 with	 an	 active	 control	 condition	
matching	on	all	factors	except	training	content.	We	assessed	group-	
by-	time	interaction	effects,	considered	to	be	the	gold	standard	evi-
dence	for	training-	related	neuronal	and	behavioral	changes	(Thomas	
&	Baker,	2013).	Furthermore,	we	employed	an	LME	analysis	to	ac-
count for nonuniform data acquisition timing across the participants 
and	 participant	 dropouts,	 which	 frequently	 occurs	 in	 longitudinal	
studies.

4.1 | Changes in cortical thickness following training

Our cortical thickness findings supported our hypothesis that train-
ing could induce changes in brain morphometry of individuals even 
at the chronic stage of TBI. These findings extend a line of research 
in	 structural	 brain	 plasticity	 in	 clinical	 populations	 (Alosco	 et	al.,	
2015;	McEwen	 et	al.,	 2015;	 Reiter	 et	al.,	 2015;	 Sehm	 et	al.,	 2014)	
by	 demonstrating	 training-	induced	 changes	 in	 cortical	 thickness	 in	
the	context	of	cognitive	training	after	TBI.	Another	novel	component	
of our study is that we demonstrated structural plasticity following 
cognitive	 reasoning	 training,	 adding	 to	 similar	 evidence	 following	
physical	 activity	 (Alosco	 et	al.,	 2015;	 McEwen	 et	al.,	 2015;	 Reiter	
et	al.,	2015)	and	balance	training	(Sehm	et	al.,	2014).	Cognitive	train-
ing regimes for TBI are frequently necessary to help individuals re-
gain	daily	 life	 functions,	 as	 individuals	with	chronic	TBI	often	have	
persistent	difficulties	in	the	higher-	order	cognitive	domains,	such	as	
abstract	 reasoning,	 planning,	 decision	making,	 and	 executive	 func-
tion. The efficacy of reasoning training in chronic TBI translated into 
improvement	in	trail-	making	test	scores	that	reflect	improvement	in	
executive	function	(Table	3).	Note	that	executive	function	is	the	most	
frequently impaired domain in TBI. Previous morphometry studies 

F IGURE  2 Colormaps	for	nonmonotonic	(a)	and	monotonic	(b)	within-		and	between-	group	contrasts	for	changes	in	cortical	thickness	over	
time (pvertex	<	.05,	pcluster	<	.05).	SMART,	strategic	memory	advanced	reasoning	training;	BHW,	brain	health	workshop;	L,	left;	R,	right;	DLPFC,	
dorsolateral	prefrontal	cortex;	SCG,	subcentral	gyrus;	DPFC,	dorsal	prefrontal	cortex;	AMPFC,	anterior	medial	prefrontal	cortex;	PRCG,	
precentral	gyrus;	PCG,	postcentral	gyrus;	MT+,	middle	temporal	complex;	LG,	lingual	gyrus;	APFC,	anterior	prefrontal	cortex;	OCPL,	occipito-	
parietal lobe

BHW WHB sv TRAMSTRAMS
Monotonic Changes over Time(b)

0.05 0.05 0.00010.0001

decrease increase
p-value

posterior posterior posterior

pcorr<0.05

BHW WHB sv TRAMSTRAMS
Nonmonotonic Changes over Time(a)

0.05 0.05 0.00010.0001

decrease then increase increase then decrease
p-value

posterior posterior posterior

pcorr<0.05

L LG

R MT+

R APFC

R DPFC
L DLPFC

R AMPFC

R POCG

L AMPFC

R DLPFC

L SCG

R OCPL

L PRCG
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reported altered cortical volume and thickness following TBI. Our 
findings extend this body of TBI literature to show that cortical thick-
ness may be modified by training protocols several years after injury. 
Thus,	even	though	a	TBI	alters	morphometry	of	the	gray	matter,	the	
injured brain at the chronic stage of TBI responds to cognitive train-
ing	by	exhibiting	dynamic	changes	in	cortical	thickness	(Figures	2–5	
and	9).	The	need	for	effective	rehabilitative	trainings	for	individuals	
with	chronic	TBI	is	growing	(Frieden	et	al.,	2015).	In	this	context,	our	
findings	 on	 changes	 in	 cortical	 thickness	 following	 strategy-	based	
reasoning training for individuals with TBI suggest that cortical thick-
ness	may	be	a	sensitive	measure	to	identify	training-	induced	neuro-
plasticity	 in	 TBI.	However,	measuring	 cortical	 thickness	 alone	may	
not be sufficient to evaluate the efficacy of neurorehabilitation for 
TBI as half of the changes in cortical thickness over time within the 
SMART	group	were	transient	and	the	controls	also	showed	changes	
in	cortical	thickness	(Table	5).

The	 spatial	 patterns	 of	 training-	related	 changes	 in	 cortical	
thickness were specific to the type of training that was carried out 
(Figures	2–5	and	S3–S5,	Table	5).	As	such,	regions	with	statistically	
significant (pvertex	<	.05,	 pcluster	<	.05)	 changes	 in	 cortical	 thickness	
of	 the	SMART	and	BHW	groups	did	not	overlap	 (Figures	2–3	and	
S3).	Among	 the	12	 regions	 identified	 in	 the	group	analysis,	 statis-
tically	significant	between-	group	differences	 in	changes	 in	cortical	
thickness	 occurred	 by	 within-	group	 changes	 that	 occurred	 in	 10	

regions	 in	 the	 SMART	 group	 compared	 to	 4	 	regions	 in	 the	 BHW	
group	 (Figures	2–3	 and	 S2,	 Table	5).	 SMART	 training	 is	 targeted	
at	 improving	higher-	order	cognition	 (i.e.,	 executive	 functions),	 and	
is likely to involve different cognitive processes than the BHW. 
SMART	involves	strategic	attention,	abstract	reasoning,	and	cogni-
tive	flexibility	(Vas	et	al.,	2016),	whereas	the	BHW	primarily	involves	
learning	and	memory.	A	previous	study	carried	out	in	healthy	indi-
viduals	(Metzler-	Baddeley	et	al.,	2016)	reported	that	changes	in	cor-
tical thickness occurred in three regions after highly taxing working 
memory	training	compared	to	change	in	one	region	after	less-	taxing	
working	memory	 training.	Taken	together,	a	greater	number	of	 re-
gions	exhibited	cortical	 thickness	changes	over	 time	after	SMART	
training	 compared	 to	 the	 BHW	 group,	 suggesting	 that	 strategy-	
based reasoning training programs may induce more spatially ex-
tensive gray matter structural changes than simply engaging in new 
learning. Temporal patterns of cortical thickness changes were also 
training	specific.	However,	half	of	the	changes	in	cortical	thickness	
over	 time	within	 the	 SMART	 group	were	 transient	 (Table	5)	mak-
ing	 it	 difficult	 to	 infer	 training-	induced	neuroplasticity	 from	 corti-
cal	 thickness	 results	 alone.	 In	 other	words,	 this	 demonstrates	 the	
necessity	 and	 advantage	 of	 utilizing	multimodal	 imaging	methods	
to	better	understand	training-	induced	neuroplasticity	in	chronic	TBI	
(see discussion on changes in cortical thickness and	 resting-	state	
connectivity).

F IGURE  3 Colormaps	for	within-		and	between-	group	contrasts	for	changes	in	cortical	thickness	from	TP1 to TP2	(a)	and	from	TP2 to TP3	(b).	
The colormaps were thresholded at pvertex	<	.05	and	pcluster	<	.05.	See	Figure	2	for	the	abbreviations

(a)

(b)
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F IGURE  4 Trajectories of cortical thickness over time and scatter plots for cortical thickness changes in the right dorsal prefrontal cortex 
(a),	right	anterior	medial	prefrontal	cortex	(b),	right	postcentral	gyrus	(c),	and	left	lingual	gyrus	(d).	Within	each	panel,	the	top	row	demonstrates	
trajectories	of	cortical	thickness	over	time	for	each	of	the	participants	from	the	SMART	(left)	and	BHW	(right)	groups.	The	other	two	rows	
represent scatter plots for cortical thickness changes from TP1 to TP2	(middle	left)	and	from	TP2 to TP3	(middle	right),	and	monotonic	(i.e.,	from	
TP1 to TP2 plus from TP2 to TP3;	bottom	left)	and	nonmonotonic	(i.e.,	changes	from	TP1 to TP2 minus changes from TP2 to TP3;	bottom	right)	
changes	over	all	time	points,	respectively.	The	I	bars	indicate	the	means	and	standard	deviations	of	the	BHW	(a–c)	and	SMART	(d)	groups,	the	
dotted	(solid)	horizontal	bar	is	the	2	SD	from	the	mean	of	the	BHW	(SMART)	group,	and	the	solid	horizontal	bars	in	the	SMART	(a–c)	and	BHW	
(d)	are	the	means	of	the	SMART	(a–c)	and	BHW	(d),	respectively.	Filled	triangles	(circle)	represent	TBI	individuals	from	the	SMART	(BHW)	with	
“significant”	changes	in	cortical	thickness,	located	outside	the	dotted	(solid)	horizontal	bars	(see	the	Methods	section	for	more	details	of	the	
term	“significant”).	See	Figure	2	for	the	other	abbreviations	and	locations	of	the	regions
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Interestingly,	 the	 majority	 of	 the	 training-	induced	 changes	
in cortical thickness occurred within the sulcal span at sulcal 
banks	 (Figures	5	 and	 S5).	More	 specifically,	 increases	 in	 cortical	
	thickness	were	accompanied	by	decreases	in	sulcal	span,	and	de-
creases in cortical thickness were accompanied by increases in 
sulcal	 span.	Although	 this	 phenomenon	 has	 not	 previously	 been	
documented	 in	 studies	 of	 training-	related	 brain	 plasticity,	 our	
finding is in line with previous reports on inverse relationships be-
tween		cortical	thickness	and	sulcal	span	in	adolescence	(Aleman-	
Gomez	et	al.,	2013)	and	aging	populations	(Kochunov	et	al.,	2008).	
However,	 it	 remains	unclear	whether	 the	phenomenon	observed	
in	 a	 subset	 of	 participants	 (Figure	5)	 occurred	 in	 the	 other	 par-
ticipants.	Thus,	 further	 studies	will	 be	 required	 to	 quantitatively	

assess sulcal span and potentially other morphometric measures 
at the group level.

Within	the	SMART	group,	temporal	patterns	of	changes	in	cortical	
thickness	varied	among	brain	regions	(Figures	2–5	and	S3–S5,	Table	5).	
We	observed	(1)	nonmonotonic	changes	in	the	bilateral	DLPFC,	L	SCG,	
R	DPFC,	and	R	AMPFC,	(2)	monotonic	increases	in	the	R	POCG	and	
R	OCPL,	 and	 (3)	monotonic	 decreases	 in	 the	 L	 PRCG,	 R	MT+,	 and	
R	APFC.	Although	 the	majority	of	 the	previous	 studies	 reported	 in-
creases	in	cortical	thickness	or	gray	matter	volume	(Valkanova,	Eguia	
Rodriguez,	&	Ebmeier,	2014),	differences	 in	directionality	of	cortical	
thickness and cortical volume changes across brain regions were also 
reported	in	several	previous	studies	(Draganski	et	al.,	2006;	Maguire	
et	al.,	2000;	Metzler-	Baddeley	et	al.,	2016;	Taubert	et	al.,	2010).	These	

F IGURE  5 Voxel	views	of	white/gray	
matter	boundary	(yellow)	and	pial	surface	
(red)	of	each	of	the	participants	with	the	
greatest cortical changes over time in 
each	of	the	R	dorsal	prefrontal	cortex	(a),	
R	anterior	medial	prefrontal	cortex	(b),	R	
postcentral	gyrus	(c),	and	L	lingual	gyrus	(d)

R Dorsal Prefrontal Cortex (SMART)

R Postcentral Gyrus (SMART)

L Lingual Gyrus (BHW)

TP1 TP2 TP3

TP1 TP2 TP3

TP1 TP2 TP3

(a)

(c)

(d)

R Anterior Medial Prefrontal Cortex (SMART)

TP1 TP2 TP3

(b)
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F IGURE  6 Colormaps	for	resting-	state	functional	connectivity	among	the	selected	twelve	regions	of	the	SMART	and	BHW	groups	over	
time.	The	twelve	regions	were	selected	from	Figure	2.	(a–b):	Average	functional	connectivity	of	the	SMART	and	BHW	groups.	(c–d):	Thresholded	
Z-	statistical	maps	and	anatomical	views	for	between-	group	differences	in	resting-	state	functional	connectivity	changes	over	time	and	at	TP3 
(|Z|>1.96,	pNBS	<	.05).	NBS,	network-based	statistics.	See	Figure	2	and	Table	5	for	the	other	abbreviations	and	details
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diverse temporal trajectories of cortical thickness in both present and 
in previous studies demonstrate the complexity of brain plasticity. 
Further	 studies	 are	 required,	 but	 these	 different	 cortical	 thickness	
dynamics across brain regions may be attributable to different bio-
logical mechanisms and time scales of brain plasticity across the dif-
ferent brain regions. This may also reflect different patterns of brain 
response	to	subcomponents	of	the	SMART	occurring	over	the	8-	week	
timeframe of the training.

4.2 | Changes in resting- state functional connectivity 
following training

TBI-	related	deficits	in	rsFC	can	be	caused	by	DAI	(Smith	et	al.,	2003).	
This is one of the most common mechanisms of a closed head injury 
and	is	well	documented	in	the	TBI	literature	(Sharp	et	al.,	2014),	yet	

training-	related	changes	in	rsFC	of	individuals	with	TBI	are	still	poorly	
characterized.	 In	 this	 regard,	our	 rsFC	findings	 (Figures	6–8	and	10)	
extend the TBI literature with results that demonstrate the utility 
of neuroimaging not only for diagnosing TBI but also for identifying 
brain changes associated with cognitive training for individuals with 
TBI.	Furthermore,	results	for	rsFC	portion	of	our	study	(Figure	6)	are	
consistent	with	two	theories	of	rsFC.	First,	rsFC	is	based	upon	the	un-
derlying	structural	connectivity,	and	therefore	reflects	the	functional	
anatomy	 of	 brain	 systems	 (Damoiseaux	 et	al.,	 2006).	 On	 the	 other	
hand,	 rsFC	 is	 also	 sculpted	 by	 the	 repeated	 history	 of	 coordinated	
activation	 between	 brain	 regions	 during	 experience-	driven	 activi-
ties	(Lewis	et	al.,	2009).	Our	rsFC	findings	(Figure	6)	further	support	
the	 latter	aspect	of	 rsFC	by	demonstrating	 training-	related	changes	
in	rsFC	of	injured brain. Note that our findings do not contradict the 
former	 aspect	 of	 rsFC	 (i.e.,	 the	 patterns	 of	 rsFC	 follow	 functional	

F IGURE  8 Effect	sizes	for	training-	
induced	increases	in	resting-	state	
functional	connectivity	within	the	SMART	
group.	(a):	Changes	in	connectivity	
strength,	(b):	Percent	changes	relative	to	
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L DLPFC 1
R DLPFC 2

L SCG 3
R DPFC 4

L AMPFC 5
R AMPFC 6

L PRCG 7
R POCG 8

R MT+ 9
L LG 10

R APFC 11
R OCPL 12

ΔZ(r) (pNBS<0.05; |Z|>1.96)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Z (r)

L DLPFC 1
R DLPFC 2

L SCG 3
R DPFC 4

L AMPFC 5
R AMPFC 6

L PRCG 7
R POCG 8

R MT+ 9
L LG 10

R APFC 11
R OCPL 12

Percent changes (pNBS<0.05; |Z|>1.96)

30

50

70

90

110

130

150

170

%

Effect size for increases in connectivity over time (SMART)

(a) (b)

F IGURE  7 The	number	(a)	and	distance	(b)	of	increased	connections	over	time	in	SMART	relative	to	BHW.	DMN,	default-	mode	network;	
SMN,	somatomotor	network;	VN,	visual	network;	w,	within;	b,	between
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F IGURE  9 Associations	between	changes	in	cortical	thickness	and	changes	in	scores	of	the	trail-	making	number–letter	switching	versus	
motor	speed	test.	(a):	Colormaps	for	statistically	significant	associations	of	the	improved	trail-	making	test	scores	with	monotonic	(left)	and	
nonmonotonic	(right)	changes	in	cortical	thickness	after	the	SMART.	No	statistically	significant	associations	of	the	reduced	trail-	making	test	
scores	in	the	controls	with	changes	in	cortical	thickness	occurred.	See	Table	6	for	the	details	of	the	identified	regions.	(b–d):	Trajectories	of	
cortical	thickness	versus	the	trail-	making	scores	within	L	CUN	(b),	L	AG	(c),	and	L	AI	(d).	Each	colored	line	represents	trajectory	of	each	individual,	
and	black	line	represents	group-	averaged	trajectory	in	the	regions.	AG;	angular	gyrus,	TP;	temporal	pole;	OCPL:	occipital	lobe;	CUN,	cuneus;	
POCG,	postcentral	gyrus;	AI,	anterior	insula;	PSPL,	posterior	superior	parietal	lobule;	LOCPL,	lateral	occipital	lobe;	IFG,	inferior	frontal	gyrus
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organization)	because	overall	patterns	of	rsFC	following	SMART	are	
preserved	over	 time.	 In	other	words,	SMART	strengthened	existent	
rsFC,	not	inducing	radically	different	functional	organization	relative	
to	the	time	period	prior	to	training.	For	example,	the	SMART	group	re-
tained	a	tight	coupling	among	bilateral	AMPFC,	R	DPFC,	and	R	APFC	
as	a	part	of	the	DMN	(Greicius	et	al.,	2002;	Raichle	et	al.,	2001)	and	
showed	relatively	strong	sustained	connectivity	(1)	between	L	DLPFC	
and	R	DLPFC	and	 (2)	among	R	MT+,	L	LG,	and	R	OCPL	 (Yeo	et	al.,	
2011).

Monotonic	 increases	 in	 rsFC	 for	 the	SMART	group	primarily	oc-
curred	 at	 between-	network	 and	 long-	range	 connections	 (Figure	7).	
Although	 there	 are	 a	variety	of	 differences	 among	 training	 regimes,	
the	prominent	changes	we	observed	in	between-	network	connectiv-
ity	over	within-	network	connectivity	following	training	are	consistent	
with	 the	 findings	 of	 Lewis	 et	al.	 (2009).	 R	DFPC	 and	R	APFC	were	
the	 most	 heavily	 involved	 in	 connectivity	 changes	 for	 the	 SMART	
group. The ROIs overlaid onto the Yeo atlas revealed that the ROIs 
were	affiliated	with	the	default	mode,	somatomotor,	visual	networks	
(Figure	S5).	From	 the	perspective	of	 large-	scale	networks,	 increases	
in	 connectivity	 between	 the	 DMN	 and	 SMN	 (seven	 connections)	
and	between	the	DMN	and	VN	(three	connections)	were	prominent	
(Figure	7a).	We	would	have	missed	 the	patterns	of	 such	 changes	 in	
rsFC	following	the	strategy-based	reasoning	training	 (i.e.,	SMART)	 if	
we had limited our assessment of connectivity to within individual net-
works.	Thus,	we	suggest	one	should	take	a	comprehensive	approach	
to	identify	patterns	of	training-	related	changes	in	rsFC	when	the	train-
ing	 involves	top-	down	integrative	reasoning	processes.	 Interestingly,	
between-	network	connectivity	that	showed	training-	related	changes	
over	time	corresponded	to	long-	range	connections	(Figure	7b).	Long-	
range	connections	are	fewer	in	number,	but	are	important	for	efficient	
global	neural	communications	 (Achard,	Salvador,	Whitcher,	Suckling,	
&	Bullmore,	2006).	The	strength	of	brain	activity	in	regions	with	high	
between-	network	connectivity	is	proportional	to	the	number	of	cog-
nitive	functions	engaged	in	a	task	(Bertolero,	Yeo,	&	D’Esposito,	2015).	
Furthermore,	damage	to	these	regions	disrupts	the	brain’s	modular	or-
ganization	 (Gratton,	Nomura,	 Pérez,	&	D’Esposito,	 2012)	 and	yields	
widespread	 deficits	 in	 neuropsychological	 measures	 (Warren	 et	al.,	

2014).	 Critically,	 long-	range	 and	 between-	network	 connections	 are	
also	vulnerable	to	damage	from	TBI	(Han	et	al.,	2014,	2016).	Although	
further	graph-	theoretic	studies	comprehensively	assessing	brain	net-
works	of	our	participants	are	needed	(e.g.,	studies	evaluating	greater	
numbers	of	nodes),	the	present	training-	related	changes	which	showed	
a	preferential	impact	to	long-	range	and	between-	network	connectiv-
ity	suggest	 that	 the	SMART	program	might	contribute	 to	more	effi-
cient neural communications thus perhaps healthier brain systems.

4.3 | Changes in cortical thickness and resting- state 
connectivity

Changes	 in	 rsFC	 among	 the	 regions	which	 also	 exhibited	 temporal	
changes	in	cortical	thickness	(Figure	6)	indicate	that	training-	induced	
spatially distributed changes in cortical thickness accompany changes 
in	 the	 functional	architecture	of	 the	brain.	Although	several	 studies	
have	reported	changes	 in	rsFC	 in	a	variety	of	domains	 (see	Guerra-	
Carrillo	et	al.,	 2014	and	Kelly	&	Castellanos,	2014	 for	 review),	 very	
few	 studies	 (Takeuchi	 et	al.,	 2014;	 Taubert	 et	al.,	 2011)	 simultane-
ously	 investigated	 changes	 in	 gray	 matter	 morphometry	 and	 rsFC.	
These	 previous	 multimodal	 imaging	 studies	 (Takeuchi	 et	al.,	 2014;	
Taubert	et	al.,	2011)	separately	investigated	changes	in	rsFC	and	gray	
matter	structure	at	the	whole-	brain	level.	However,	we	directly exam-
ined	whether	training-	related	changes	 in	cortical	 thickness	co-	occur	
with connectivity changes or these cortical thickness changes remain 
spatially isolated. This was achieved by constraining regions of assess-
ment	 for	 rsFC	 into	 connections	 among	 regions	 showing	 changes	 in	
cortical thickness.

Although	co-	occurring	patterns	of	cortical	thickness	and	rsFC	were	
identified,	 the	 specific	 dynamics	 of	 rsFC	 and	morphometric	 change	
varied.	 Unlike	 the	 diverse	 temporal	 patterns	 of	 changes	 in	 cortical	
thickness	of	the	SMART	group	(i.e.,	increases	followed	by	decreases,	
monotonic	 increases,	 or	 monotonic	 decreases),	 the	 SMART	 group	
showed	only	monotonic	increases	in	rsFC.	For	example,	R	DPFC	and	
R	APFC,	which	were	heavily	associated	with	increases	in	rsFC	of	the	
SMART	group,	showed	transient	changes	in	cortical	thickness.	These	
apparently unintuitive phenomena may be explained by the principle 

Index Seed name
MNI coordinates (x, y, z) of 
center

Surface area 
(mm2)

1 Left	angular	gyrus (−38.1,	−59.2,	21.2) 748.2

2 Left	temporal	pole (−42.9,	−1.5,	−38.6) 569.3

3 Left	occipital	lobe (−16.7,	−90.7,	20.3) 455.7

4 Left	cuneus (−3.3,	−81.9,	13.0) 748.5

5 Right postcentral gyrus (44.9,	−25.4,	41.7) 561.3

6 Left	anterior	insula (−34.2,	5.2,	7.0) 713.9

7 Right posterior superior 
parietal lobule

(28.1,	−65.7,	27.9) 463.1

8 Right angular gyrus (40.1,	−74.5,	35.4) 608.8

9 Right lateral occipital lobe (41.9,	−83.6,	−4.0) 701.0

10 Right inferior frontal gyrus (45.0,	39.4,	−2.8) 471.0

See	Table	5	for	the	abbreviations	and	details.

TABLE  6 Seed	regions	for	the	
assessment of changes in functional 
connectivity versus improvement in the 
trail-making	test	scores
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F IGURE  10 Colormaps	for	statistically	significant	associations	between	the	improved	trail-	making	test	scores	and	changes	in	seed-	based	
resting-	state	functional	connectivity	within	the	SMART	group.	See	Figure	9	and	Table	6	for	the	seed	regions.	The	maps	were	corrected	for	
multiple comparisons across vertices and seeds at pvertex	<	.05	and	pcluster	<	.005	(=.05/10)
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of	energy	conservation	 in	the	brain	(Laughlin	&	Sejnowsk,	2003).	As	
such,	 diverse	 and	 complex	 changes	 in	 cortical	 thickness	 following	
training may reflect adaptive and dynamic processes of reallocating 
neural	resources	to	support	more	‘successful’	information	processing	
relevant	to	the	training	program,	while	maintaining	energy	efficiency	
of	the	brain.	 In	this	context,	 training-	induced	 increases	 in	rsFC	 (par-
ticularly,	long-	range	and	between-	network	connections)	might	reflect	
more	‘successful’	information	processing	compared	to	the	pretraining	
stage. Results of brain and behavior relationships indirectly support 
this	hypothesis.	As	such,	 improvement	in	neuropsychological	perfor-
mance	after	the	SMART	was	associated	with	monotonic	increases	in	
rsFC	in	most	of	the	seeds	and	regions	while	the	patterns	of	associa-
tions with cortical thickness included a mixture of monotonic and non-
monotonic	changes	(Figures	9	and	10).	Future	studies	will	be	needed	
to directly measure the energy efficiency of the brain.

4.4 | Potential underlying mechanisms

The	underlying	microscopic-	level	mechanisms	of	the	training-	related	
changes	in	cortical	thickness	and	rsFC	are	unknown,	which	is	common	
in	most	of	the	MRI	studies.	However,	we	can	speculate	potential	un-
derlying	mechanisms	based	on	the	literature.	As	in	the	case	of	learning	
and	memory	(Chklovskii,	Mel,	&	Svoboda,	2004),	functional	plasticity	
(i.e.,	changes	 in	synaptic	strength	without	changing	anatomical	con-
nectivity	between	neurons)	alone	may	be	 insufficient	to	explain	the	
underlying biological mechanisms of our findings because structural 
plasticity	 (i.e.,	changes	 in	anatomical	connectivity	between	neurons)	
is	 likely	 to	be	 involved	 in	 the	observed,	 training-	induced	changes	 in	
cortical thickness. Neurogenesis may not be one of the underlying 
mechanisms,	as	neurogenesis	outside	the	hippocampus	in	human	ap-
pears	unlikely	(Zatorre,	Fields,	&	Johansen-	Berg,	2012).

Rather,	the	primary	underlying	mechanisms	may	be	synaptic	plas-
ticity	 (i.e.,	structural	changes	 in	synapses),	which	has	been	reviewed	
elsewhere	(Butz,	Wörgötter,	&	van	Ooyen,	2009;	May,	2011;	Zatorre	
et	al.,	 2012).	More	precisely,	 (1)	 synaptogensis	by	growing	dendritic	
spines,	increases	in	the	number	of	synapses	per	neuron,	dendritic	ar-
borization,	 and	 axonal	 sprouting,	 (2)	 selective	 synaptic	 pruning,	 and	
(3)	synaptic	remodeling	by	dendritic	rebranching	and	axonal	rerouting	
may	have	 led	to	the	training-	induced	changes	 in	both	cortical	 thick-
ness	and	rsFC	as	we	report	herein.	At	present,	it	remains	unclear	which	
precise mechanism of synaptic plasticity plays a role at specific time 
phase.	 Several	 or	 all	 of	 these	 complex	mechanisms	may	 contribute	
to	 rewiring	neural	circuits	 for	more	efficient	 information	processing,	
as	 indicated	 by	 increased	 rsFC	 following	 training.	 Second,	 changes	
in	glial	 cells	 such	as	oligodendrocytes,	 astrocytes,	 and	microglia	 (re-
viewed	in	Markham	&	Greenough,	2005	and	Zatorre	et	al.,	2012)	may	
also	reflect	training-	induced	changes	in	cortical	thickness	and	rsFC.	In	
particular,	changes	 in	oligodendrocytes,	and	subsequent	myelination	
and myelin remodeling in the white matter are plausible candidate pro-
cesses,	as	axonal	connections	are	pivotal	in	the	establishment	of	rsFC	
(Zhou	et	al.,	2014).	Further	neuroimaging	studies	assessing	white	mat-
ter microstructure such as diffusion tensor imaging and myelin water 
imaging	 (Alonso-	Ortiz,	 Levesque,	&	Pike,	2015)	may	help	 to	 further	

clarify	the	validity	of	this	hypothesis.	Third,	changes	in	the	cerebrovas-
culature	may	be	another	mechanism.	Experience-	dependent	changes	
in	 cerebrovasculature	 in	 rats	 have	 been	 reported	 (Black,	 Sirevaag,	
&	Greenough,	 1987;	 Sirevaag,	 Black,	 Shafron,	&	Greenough,	 1988).	
Furthermore,	 Zatorre	 et	al.	 (2012)	 suggested	 that	 changes	 in	 cere-
brovasculature are a potential candidate mechanisms for gray matter 
changes	 following	 training,	 and	Tak,	Wang,	Polimeni,	Yan,	 and	Chen	
(2014)	 reported	a	close	association	between	the	cerebrovasculature	
and	measures	of	rsFC.	Importantly,	changes	in	cerebral	blood	flow	and	
rsFC	of	the	adult	human	brain	following	cognitive	training	have	been	
previously	reported	(Chapman	et	al.,	2015;	Takeuchi	et	al.,	2013).

4.5 | Limitations and future directions

Our	 study	 sample	was	 heterogeneous,	 which	may	 not	 be	 scientifi-
cally	ideal,	particularly	in	the	context	of	diagnosis	and	characterization	
of	 pathology.	 However,	 in	 practice,	 TBI	 is	 marked	 by	 heterogene-
ity.	 Training-	related	 changes	 within	 our	 heterogeneous	 TBI	 sample	
demonstrate	the	robustness	and	applicability	of	the	SMART	program	
for	 individuals	with	chronic	TBI.	Thus,	 the	heterogeneity	of	our	TBI	
sample is advantageous in terms of relating to the clinical popula-
tion	of	 interest.	Although	our	TBI	 sample	 is	 inherently	heterogene-
ous,	we	carefully	 randomized	 the	 two	 training	groups	making	 them	
demographically similar and we maintained training protocols consist-
ently	 across	 individuals	within	 each	of	 the	 training	 groups.	 Second,	
even	 though	we	matched	 demographics,	 injury	 characteristics	 (e.g.,	
initial	 injury	severity	and	postinjury	time),	and	severity	of	subclinical	
psychiatric	 symptoms	 of	 the	 two	 groups	 by	 carefully	 randomizing	
the	participants,	 there	were	group	differences	 in	scores	on	multiple	
neuropsychological test at the baseline. These baseline group differ-
ences	yielded	cross-	sectional	group	comparisons	at	TP2 and TP3 less 
meaningful.	Thus,	we	 focused	on	 reporting	group	contrasts	 in	 tem-
poral changes in neuropsychological measures (conceptually same as 
group-	by-	time	 interactions	 in	 ANOVA).	 The	 heterogeneity	 of	 neu-
ropsychological	 test	 performance	 in	 TBI	 (Tellier	 et	al.,	 2009;	 Thaler	
et	al.,	2013)	and	other	potential	factors	that	we	did	not	measure	such	
as	genetics	(Diaz-	Arrastia	&	Baxter,	2006)	might	have	led	such	group	
differences	at	the	baseline.	Future	research	in	identifying	factors	that	
are affecting neuropsychological test performance in chronic TBI may 
provide	us	with	better	 strategy	 to	 randomize	 training	group	assign-
ment.	Third,	we	did	not	systematically	assess	the	effects	of	training	on	
rsFC	at	the	whole-	brain	level.	As	such,	spatial	and	temporal	patterns	
of	 rsFC	 following	 training	 outside	 the	 selected	 twelve	 regions,	 and	
training-	related	changes	in	network	topology	at	the	whole-	brain	level	
remain	unknown.	Thus,	in	the	future,	we	will	utilize	a	comprehensive	
graph-	theoretic	approach	to	address	this	concern.	Fourth,	it	remains	
unclear	whether	the	SMART	program	in	individuals	with	chronic	TBI	
led to recovery or compensation of altered neural circuitry that re-
sulted	from	TBIs.	Although	improvement	in	neuropsychological	tests	
performance	is	observed,	“true”	recovery	of	neural	circuitry	of	injured	
brain	following	training	may	be	unlikely	 (Kolb	&	Muhammad,	2014).	
Future	comparisons	with	healthy	 individuals	may	address	this	ques-
tion.	 Lastly,	 our	 study	would	 provide	better	 understanding	of	 brain	
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and behavior relationships following rehabilitation for chronic TBI if 
we assessed more appropriate behavioral measures for improvement 
associated	with	the	SMART	program	or	 if	we	adopted	more	refined	
and	specialized	training	program.	The	SMART	is	an	integrative	train-
ing that aims to improve multiple domains of cognitive functions such 
as	abstract	reasoning,	goal	management,	and	selective	attention	(Vas	
et	al.,	2011).	The	number–letter	switching	versus	motor	speed	of	the	
trail-	making	test	measures	cognitive	processing	speed,	working	mem-
ory,	and	the	ability	to	switch	tasks	while	maintaining	a	goal	(Sánchez-	
Cubillo	 et	al.,	 2009).	 Although	 improvements	 in	 cognitive	 functions	
following	 the	 SMART	 for	 TBI	 can	 reflect	 improvement	 in	 the	 trail-	
making	test	scores,	the	trail-	making	test	does	not	measure	the	same	
level	of	cognitive	functions	that	the	SMART	improves.	This	may	be	the	
reason	why	spatial	patterns	of	between-	group	contrasts	for	changes	
in	cortical	thickness	(Figure	2)	and	statistically	significant	associations	
between	changes	in	cortical	thickness	and	the	trail-	making	test	within	
the	SMART	group	(Figure	9)	did	not	overlap.	Future	studies	utilizing	
carefully	 designed	 fMRI	 tasks	 that	 can	 tease	 apart	 SMART-	induced	
cognitive	domains	may	allow	us	to	better	understand	the	brain–be-
havior	relationships	associated	with	the	SMART	for	chronic	TBI.

Our future directions include carrying out assessments of other 
morphometric	measures	and	graph-	theoretic	measures	in	this	TBI	co-
hort	to	better	understand	the	current	findings,	and	further	address	the	
concerns discussed above. We also plan to investigate and identify 
pretraining	conditions	that	are	predictive	of	training-	related	changes	
in	 cortical	 thickness	 and	 rsFC	 of	 the	 individuals	 with	 TBI,	 and	 are	
linked	to	training	outcomes	(Arnemann	et	al.,	2015;	Ventura-	Campos	
et	al.,	2013).

5  | CONCLUSION

In	conclusion,	we	provided	neural	evidence	of	 the	effects	of	cogni-
tive	rehabilitation	 in	chronic	TBI.	Specifically,	we	demonstrated	that	
strategy-	based	 reasoning	 training	 led	 to	 dynamic	 changes	 in	 corti-
cal	 thickness	and	rsFC	 in	 individuals	with	chronic	TBI	 relative	 to	an	
information-	based	 training	 comparison	 group,	 even	 3	months	 after	
training was completed. Our findings suggest that brain plasticity con-
tinues	through	the	chronic	phases	of	TBI,	and	a	combination of cortical 
thickness	and	rsFC	may	be	sensitive	biomarkers	for	evaluating	the	ef-
ficacy of cognitive rehabilitation in the chronic TBI populations.
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