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Abstract

Single nucleotide polymorphisms (SNPs) represent an important type of dynamic sites within the 

human genome. These common variants often locally correlate within more complex multi-SNP 

haploblocks that are maintained throughout generations in a stable population. Information 

encoded in the structure of SNPs and SNP haploblock variation can be characterized through a 

normalized information content metric. Genodynamics is being developed as the analogous 

“thermodynamics” characterizing the state variables for genomic populations that are stable under 

stochastic environmental stresses. Since living systems have not been found to develop in the 

absence of environmental influences, this paper describes the analogous genomic free energy 

metrics in a given environment. SNP haploblocks were constructed by Haploview v4.2 for five 

chromosomes from phase III HapMap data, and the genomic state variables for each chromosome 

were calculated. An in silico analysis was performed on SNP haploblocks with the lowest genomic 

energy measures. Highly favorable genomic energy measures were found to correlate with highly 

conserved SNP haploblocks. Moreover, the most conserved haploblocks were associated with an 

evolutionarily conserved regulatory element and domain.
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INTRODUCTION

The human genome consists of 3 billion nucleotides, most of which are fixed alleles. A 

significant number of sites (about 0.1%) consist of single nucleotide polymerphisms (SNPs) 

non-randomly distributed across the human genome. SNPs are (usually) bi-allelic dynamic 

sites on the human genome whose allelic distribution reflects the homeostasis of a 

population within a given environment (Dunston et al., 2014). Here, environment will refer 

not only to geographic or geophysical parameters, but also to the complete interface of the 

population to biologic and evolutionary stresses. The defining characteristics of a population 

are directly reflected within genomic information measures that are maintained throughout 

generations. Populations are here defined by the maintained order and diversity of the whole 

genome in its environment.

In developing metrics for the interaction of the human genome with its environment, the 

genomic environment is the stochastic bath driving variations within a locally viable 

population. SNPs are dynamic sites that are often highly correlated into SNP haplotypes 

maintained with fixed frequencies within a given stable population. Combinations of SNPs 

that are very highly correlated within a population are said to be in linkage disequilibrium 

(LD). It should be noted that certain SNP allelic combinations never appear within the 

population. Therefore only certain SNP haplotypes are biologically viable and 

generationally maintained.

The dynamically independent statistical micro-states are SNP haplotypes together with SNP 

sites that are not in LD with any other SNPs. The linkage of several SNPs as conserved units 

that are passed between generations represents a type of statistical phase transition in 

forming complex dynamic units for a population within a given environment. It is therefore 

very useful to develop information metrics for SNP microstates that can quantify viable 

sequence variation in the human genome.

What is genodynamics?

Genodynamics explores nucleotide structure-function relationships of common sequence 

variation and population genetics, grounded in first principles of thermodynamics and 

statistical physics (Lindesay et al., 2012). Our use of the term “genodynamics” is 

conceptually unrelated to and derived totally independent of any prior use of this term in the 

published literature. Using genodynamics, we study the informatics of SNPs as dynamic 

sites in the genome. Viewing structural configurations of SNPs as complex dynamical 

systems, we earlier developed and utilized the normalized information content (NIC) as a 

biophysical metric for interrogating the information content (IC) present in SNP 

haploblocks. SNP haploblocks are defined by the location of the distribution of SNP 

haplotypes in the genome. The NIC metric, derived from Boltzman’s canonical ensemble 

and used in information theory, facilitates translation of biochemical DNA sequence 

variation into a biophysical metric for examining ‘genome-environment interactions’ at the 

nucleotide level. From this biophysical vantage point, the genome is perceived as a dynamic 

information system defined by patterns of SNP and SNP haploblock variation that correlate 

with genomic energy units (GEUs), herein introduced and developed. The quantification of 
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structural configurations encoded in SNP microstates using GEUs provides an additional 

biophysical metric for interrogating and translating the biology of common sequence 

variation.

MATERIALS AND METHODS

Entropy and information

Information can be quantified in terms of the maintained order of a given system. In the 

physical sciences, the concept of entropy quantifies the dis-order of a physical system 

(Susskind and Lindesay, 2005). Therefore, entropy can serve as an additive measure of 

genodynamic variation within a population. This is done by taking the logarithm of 

multiplicative independent probabilities ph, which define the surprisals log2 ph. The specific 

(or per capita) entropy of a SNP haploblock consisting of a set of strongly depen-dent bi-

allelic SNPs is taken to be the statistical average of this additive measure:

(1)

where n(H) is the number of bi-allelic SNP locations in haploblock H, and  represents 

the probability (frequency) that haplotype h occurs in the population. This measure of 

maintained (dis)order takes the value of zero for a completely homogeneous population with 

only one haplotype (since for ), while it takes the value  for 

a completely stochastic distribution of all SNP alleles with all mathematically possible SNP 

haploblocks occurring with equal likelihood

For bi-allelic SNPs that are not in LD, there are only 2 possible states at that location. 

Therefore, the specific entropy of the SNP location (S) takes the form:

(2)

where  represents the probability (frequency) that allele a occurs in the population. As 

defined here, the entropy has no dimensional units. The total specific entropy of the genome 

in the specified environment is given by the sum over all genetically viable blocks, including 

correlated SNPs in the haploblocks, along with individual SNPs between the haploblocks 

that are not in LD,

(3)
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This insures that all dynamic SNP degrees of freedom are included in calculating the 

genomic entropy. Because this entropy measure is additive, it also quantifies the entropy 

within any region of the genome. The overall entropy of a population distribution is 

proportional to the size of the population NPopulation, that is, SGenome = Npopulation SGenome, 

making entropy an extensive state variable.

Since entropy is a measure of the disorder of a distribution, a system with maximum 

disorder is one of maximum entropy. In contrast, the information content of a distribution is 

measured by the degree of order that the distribution has relative to a completely disordered 

one, that is, the difference between the entropy of the distribution and that of a completely 

disordered distribution; IC = Smax − S. Such an information measure is likewise additive due 

to the additive nature of the entropy (Lindesay, 2013).

In our previous work (Lindesay et al., 2012), a normalized information metric was 

developed as a means of comparison of the information contained within specific regions of 

the genome, as well as between various populations. This NIC value ranges between 0 and 

1, where a value of zero indicates a completely random allelic distribution, while a value of 

unity represents a homogeneous allelic distribution without variation. The NIC for a given 

SNP haploblock (H) is defined by:

(4)

One should note that unlike the information content, NIC is not an additive measure for 

multi-SNP haploblocks. The information measure for the whole genome in an environment 

must be calculated using the total number of SNP locations in the genome, as well as the 

total specific entropy of the genome.

Statistical energetics

The statistical “genomic energy” of a population in a given environment is expected to be an 

additive (extensive) state variable that depends upon the entropy, the populations of various 

allelic constituencies, and possibly the “genomic volume” of the environment, if population 

pressures have a significant effect on the environment. The functional dependence of the 

contribution of haploblock H to the average genomic energy U can be expressed using the 

differential expression:

(5)

where TE represents an environmental potential (which is conjugate to the entropy state 

variable),  represents the haplotype potential of haplotype h in SNP haploblock H, 

 represents the population of haplotype h, and  represents any 

“pressure” by the haploblock on the environment that would result in expansion of the 
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genomic “volume” V(H). In all subsequent expressions, any genomic effects that would 

modify the genomic volume will be neglected .

As is the case for thermodynamics and statistical physics, it is quite convenient to define an 

additive free energy state variable that is most naturally expressed as a function of the 

potential of the environmental bath TE and the populations, through the Legendre 

transformation

(6)

A focus on the free energy as the fundamental dynamic state variable has the advantage of 

inherently including environmental-genomic interchanges as necessary considerations in 

describing the dynamics. It is a particularly convenient parameter for describing dynamics in 

a fixed environmental bath for which dTE = 0. As one recognizes that living cells have 

evolved their cellular functions within the warm, wet physiologic environment, one can 

safely conclude that a homeostatic living population distribution has evolved directly in 

association with the ecosystem within which it is being characterized. Thus, we assert that 

the evolution of living populations cannot be separated from their interchanges with the 

environment. In a statistical environment that is stochastically varying, it is the genomic free 

energy rather than the genomic energy that is minimized. The genomic free energy is a state 

variable that balances between conservation and variation of SNP haplotypes within an 

environment. Minimizing the genomic free energy optimizes the population’s survivability 

under environmental stresses, establishing the balance between conservation and variation in 

the dynamics of the population distribution.

For the genome, only the site locations and bi-allelic nature of the specific SNPs are 

conserved parameters. In addition, phase transitions involving the stability of SNP 

haploblock structures are common between differing populations, resulting in non-

conservation of the number and SNP composition of the haploblocks. This is in marked 

contrast with the standard micro-units in statistical physics, whose universal energy states 

are only weakly dependent upon the environment, and have well defined conservation 

properties with regards to the creation of new states (or changing dynamic degrees of 

freedom). Therefore, rather than seeking universal energy measures that are independent of 

the genomic environment, the emphasis here will be based on establishing convenient 

genomic measures of the dynamics that are inseparably coupled with environmental 

parameters. Since the allelic potentials, given by , are the parameters in 

the environmental bath that dynamically couple to the SNP haplotype unit h, the formulation 

will be developed in a manner that most directly interprets these genomic energy measures.

Using the differential form for the haploblock free energy 

 from (Equation 6), we can use the expression of the 
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population with haplotype h given by  to expand the differential 

. Re-writing the variation of the haploblock free 

energy in terms of the population gives:

(7)

Population stability

Values for all of these additive genomic state variables can be likewise assigned to those 

SNPs that are not in linkage disequilibrium by simply replacing the particular haploblock 

index (H) in any of the previous formulas with the SNP location (S). The total genomic free 

energy will be a sum over all SNP haploblocks and non-linked SNPs given by:

(8)

We further examined the condition that a stable population is defined by the genomic data. 

Our condition will require that the genomic free energy be a minimum under changes in the 

population within the local environment when the population is stable, that is, 

.

The average allelic potential within a SNP haploblock  will be referred 

to as the block potential for haploblock (H), while the average allelic potential at a non-

linked SNP location  will be referred to as the SNP potential for 

location (S).

From Equation 7 for the genomic free energy in terms of block potentials and SNP 

potentials holding the environmental potential and frequencies fixed, the population is seen 

to be stable if the overall genomic free energy satisfies:

(9)

where a shows the particular allele at SNP location (S).

Our population stability condition incorporates Hardy-Weinberg equilibrium (Hardy, 1908; 

Weinberg, 1908) in population genetics. Hardy-Weinberg equilibrium asserts that in order 

for the genomic distributions to meaningfully represent a stable population, the various 

frequencies of haplotypes and alleles should be stable. Since the frequencies directly 

determine the block and SNP potentials, a requirement that these environmentally dependent 

potentials remain fixed and sum to zero satisfies Hardy-Weinberg equilibrium. Such stable 
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populations maintain the distribution of SNPs throughout the generations within the given 

environment. The genomic average allelic potential μGenome, which is the sum over all block 

potentials and SNP potentials, is seen to vanish if the population does not increase or 

decrease. This means that a stable population is balanced with regards to its overall sum 

over allelic potentials, μGenome=0. The genomic free energy is lowered by a population with 

negative overall genomic potential μGenome<0 if its size increases, while if μGenome>0 the 

genomic free energy is lowered if the population decreases.

As is the case of thermodynamics, the additive allelic potentials  are expected to scale 

relative to the environmental parameter TE, and allelic potential differences should directly 

reflect in the ratio of the frequencies of occurrence of those haplotypes within the 

population. A functional form that has these properties is given by:

(10)

The genomic energy labeled μ̃ will be defined as the unique allelic potential that will insure 

that a single (bi-allelic) SNP will be in its state of highest variation  within the given 

species. Similarly, a haploblock with n(H) SNPs in its state of highest variation with all 

mathematically possible haplotypes occurring with frequencies  will have a 

block potential of n(H) μ̃. The unit μ̃ will be universal across all populations of a given 

species, but likely differs between species. Solving the previous equation, the allelic 

potential of the haplotype h or allele a in an environmental bath characterized by 

environmental potential TE can be expressed as:

(11)

where the allelic potential for a single non-linked SNP location (S) has n(S) = 1. Using our 

identifications, a lower allelic potential is then associated with a higher conservation of the 

SNP haplotype within the population, as high entropy is associated with large variation 

within the population. The ability to assign a well defined genomic energy measure for an 

individual haplotype once the environmental potential TE is known allows this formulation 

to establish biophysical measures beyond statistical statements about the population as a 

whole.

Haplotypes and alleles with high genomic energy are highly unfavorable in the given 

environment. The value of the allelic potential  that fixes a single non-linked SNP 

location (S) into a given allele ( ) will be defined to be the fixing potential in the 

given environment. If the allele has this potential, it is homogeneous throughout the 

population. This value is directly related to the environmental potential through:
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(12)

Thus, the allelic potential of any single SNP location cannot be determined to be less than 

the fixing potential through measurements in a single environment.

The population stability condition  can be used to 

determine the environmental potential. By substituting the forms of the allelic potentials 

 and  expressed in terms of the probabilities into the population stability condition, 

an explicit expression of the environmental potential can be obtained:

(13)

where  is the total number of SNP locations on the genome. The 

average allelic potential for a given SNP haploblock, which has been defined as the block 

potential of that haploblock, then satisfies:

(14)

which has been obtained by simply taking the statistical average of the allelic potentials in 

(Equation 11), and substituting the expression for the environmental potential in terms of the 

genomic normalized information content.

These measures of genomic potentials have several convenient features:

1. The environmental potential TE is inversely proportional to the IC of the whole 

genome. Low IC results from a high environmental potential, while a completely 

conserved genome has the lowest possible environmental potential, which we can 

define to have the value of one genomic energy unit μ̃ =1 GEU. A population with 

a completely disordered genomic distribution would inhabit an environment with 

infinite environmental potential.

2. SNP haploblocks that are highly conserved relative to the whole genome will have 

negative block potentials, while those that are highly varying will have positive 

block potentials. The block potentials typically lie within the range specified by 

n(H) μFixing ≤ 〈μ(H)〉 ≤ n(H) μ̃ (although the lower bound is not rigorously required).

3. The number of highly correlated SNPs within the haploblock n(H) amplifies SNP 

haploblock allelic potentials.

One should note that while the environmental potential TE, the block potentials 〈μ(H)〉 and 

the SNP potentials 〈μ(S)〉 can only be defined for a population, the individual allelic 

potentials  and  define an overall allelic potential for each individual in the 

population:
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(15)

where the SNP haplotypes h and alleles a are unique to the individual. An individual’s 

overall allelic potential is not a universal parameter, but rather depends strongly upon the 

environment. Thus, the overall allelic potential of an individual is not an essentially fixed 

microphysical genomic energy state, in contrast to the energetics of particles in statistical 

physics. An environment within which an individual haplotype or allele has a negative 

allelic potential tends to conserve that characteristic, while a haplotype or allele that has a 

positive allelic potential provides diversity and viable genomic variation within that 

environment. The value of the allelic potential gives a direct measure of the dynamic 

(un)favorability of a haplotype as a function of the environment.

Analysis of the block potentials associated with five chromosomes in the human genome

To demonstrate the usefulness of the previously defined genomic state variables, the 

parameters will be calculated using genomic data for stable populations. We choose to 

utilize genotype data provided by the HapMap Project on the Yoruba in Ibadan, Nigeria 

(YRI) and the Utah residents with ancestry from Northern and Western Europe (CEU). 

Because of the time involved in the calculations, we have chosen representative large, 

medium and small chromosomes (1, 6, 11, 19, and 22) within the genome to examine the 

uniformity of the genomic potentials, and comparisons between populations.

Our formulation requires that the SNP haploblock structure that codifies the LD between 

local SNPs be established for a given population. For this purpose, we used Haploview, 

which is a software package in the public domain that is in general use. SNP haploblocks 

were constructed for the representative chromosomes using the confidence interval 

algorithm developed by Gabriel et al. (2002) in Haploview v 4.2 from HapMap phase III 

data. Haploview uses a two marker expectation-maximization algorithm with a partition-

ligation approach that creates highly accurate population frequency estimates of the phased 

haplotypes based on the maximum-likelihood as determined from the unphased input 

(Barrett et al., 2005). Once the block structure of the population has been constructed, we 

have developed software that takes that data and calculates the genomic state variables for 

each of the chromosomes. This data was then graphed for analysis. In order to demonstrate 

the usefulness of the genomic state variables, rather than overwhelm the reader with the 

abundance of data contained within all the chromosomes that have been examined, the 

parameters are here demonstrated for chromosome 6 of both the examined populations. 

Additionally, an in silico analysis was performed on SNP haploblocks with the lowest 

genomic energy measures on chromosome 6 scanning for associated regulatory elements, 

signatures of positive selection, protein domains, molecular functions and biological 

processes using publically available bioinformatics tools (Boyle et al., 2013; Brown et al., 

2013; Friedman et al., 2014; Gagen et al., 2005 ;Genome Bioinformatics Group of UC Santa 

Cruz, 2013; Greer et al., 2014; Lee and Shatkay, 2013; Sandelin et al., 2013; Sherry et al., 

2012; Sigrist et al., 2013; Thorisson et al., 2012; Wu et al., 2013; Zhang et al., 2013).
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It will be assumed that the environmental potential TE that would be calculated from the 

NIC of the whole genome does not differ significantly from that calculated using the five 

chromosomes. This parameter takes the value TE,(YRI)=1.26 GEUs for the YRI population, 

and TE,(CEU)=1.12 GEUs for the CEU population.

RESULTS

The distributions of the NIC values across the genomes of the YRI and CEU populations are 

demonstrated in Figure 1. The overall distributions of NIC values for these two populations 

have a similar chromosomal distribution pattern despite the NIC values for the CEU 

population being higher than those for the YRI. In the CEU population, the NIC values for 

the chromosomes studied are as follows: NIC1≅0.90, NIC6≅0.90, NIC11≅0.89, 

NIC19≅0.85 and NIC22≅0.87; while the NIC values for the YRI population are: 

NIC1≅0.79, NIC6≅0.80, NIC11≅0.79, NIC19≅0.74 and NIC22≅0.76.

The genomic energy spectra for chromosome 6 of the YRI and CEU populations are 

demonstrated in Figure 2. In the YRI population, there were 6,810 SNP haploblocks with 

positive potentials and 6,738 with negative potentials. In comparison, the CEU population 

had 5,160 SNP haploblocks with positive potentials and 3,600 with negative potentials. No 

highly varying SNP haploblock has a block potential significantly larger than the 

environmental potential TE.

The block potential as a function of the number of SNP locations in the haploblock for each 

population was examined, and this is illustrated in Figure 3. A set of good fits for the block 

potentials for large haploblocks are given by:

where again, n(H) is the number of SNP locations in haploblock H. This indicates that those 

SNP haploblocks that are highly conserved are seen to have block potentials that approach 

the fixing potential μfixing for the given specific environment times the number of SNP 

locations in the block.

The number of SNP haploblocks within given intervals of NIC as a measure of the 

proportion of haploblocks that maintain a specific degree of variation were plotted, and bar 

graphs of these proportions are demonstrated in Figure 4. The distribution for the CEU 

population is shifted relative to that of the YRI population, so that there are an increased 

number of SNP haploblocks with higher NIC values. Also, it was noticed that there are no 

SNP haploblocks with a NIC value lower than ~0.2.

The block spectrum of SNP haploblocks in the MHC region for the populations of interest 

was examined. The genomic energies for the YRI population are  as 

compared to CEU whose genomic energies are . The most highly 
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conserved haploblock found within any of the chromosomes thus far examined is Block 

3013 on chromosome 6 in this region of the YRI population. It is worth noting that the most 

highly conserved haploblock in the CEU population, Block 7016, is also located on 

chromosome 6 however it is not in the MHC region.

In silico analysis of blocks 3013 in the YRI population and 7016 in the CEU population

Block 3013 is located between 6p22 and 6p21.3 bands (29,960,986-30,043,628) on 

chromosome 6 (Figure 6a). It has 441 SNP locations, with 226 of them being dynamic. It 

contributed a highly favorable averaged block potential of −112 GEUs to the overall 

genomic energy and had a NIC value of 0.991. Block 3013 has 253 SNPs in genes and 188 

SNPs in non-genic regions. This block included six genes: (1) Zinc ribbon domain 1 

(ZNRD1); (2) ZNRD1-antisense RNA1 (ZNRD1-AS1); (3) Human leukocyte antigen 

(HLA) complex group 8 (HCG8); (4) Protein phosphatase 1 regulatory inhibitor subunit 11 

(PPP1R11); (5) HLA-J and (6) Ring finger protein 39 (RNF39) as shown in Figure 6a.

ZNRD1, PPP1R11 and RNF39 are genes with functional proteins, whereas HCG8 and 

ZNRD1-AS1 are both non-coding RNAs (ncRNAs). HLA-J is a transcribed pseudogene. 

ZNRD1, PPP1R11, and RNF39 are highly conserved across species ranging from 

chimpanzee to zebrafish. These genes also display signatures of positive selection, but only 

in populations of European descent. Several putative and confirmed transcription factor 

binding sites (TFBS) are in Block 3013. Also, several broadly conserved microRNAs 

(miRNAs) are in Block 3013. It is worth noting that the ncRNA, ZNRD1-AS1, is a natural 

antisense transcript (NAT) that regulates the expression of ZNRD1.

Block 7016 is located on the 6q24 band (145,851,676-146,351,676) on chromosome 6 

(Figure 6b). This block contributed a highly favorable averaged block potential of −73.85 

GEUs to the overall genomic energy and had a NIC value of 0.995. Block 7016 contains 666 

SNPs, with 353 of them being dynamic. This block has 399 SNPs in genes and 267 SNPs in 

non-genic regions. It included four genes: (1) Epilepsy, progressive myoclonus type 2, 

Laforin disease [laforin] (EPM2A); (2) Uncharacterized protein (RP11-54515.3); (3) SNF2 

histone linker PHD RING helicase E3 ubiquitin protein ligase (SHPRH) and (4) F-box 

protein 30 (FBXO30) as shown in Figure 6b.

EPM2A, SHPRH and FBXO30 are genes with functional proteins whereas RP11-54515.3 is 

a ncRNA. The protein coding genes located in this block are also highly conserved across 

species ranging from chimpanzee to Arabidopsis thaliana. Even though the protein coding 

genes in this block are highly conserved across species, there were no signatures of positive 

selection associated with any of the genes in this block. There are several putative and 

confirmed TFBS associated with Block 7016. Like Block 3013, Block 7016 also has several 

broadly conserved miRNAs. The ncRNA, RP11-54515.3, is also a NAT which regulates the 

expression of SHPRH and FBXO30.

Listed in Table 1 are the protein domains associated with the genes in Blocks 3013 and 

7016, while Table 2 outlines the molecular functions associated with these genes. Table 3 

depicts the biological processes associated with the genes in these blocks. With regard to 

their protein domains, both blocks contain genes with evolutionarily conserved domains 
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which are in lowercase in Table 1. Also, in boldface in Table 1 are the protein domains that 

both blocks have in common. In Table 2, the molecular functions that are associated with 

one or more evolutionarily conserved protein domains are in lowercase while those 

molecular functions that both blocks have in common are in boldface. With regard to their 

biological processes, there were no commonalities between the two blocks. However, those 

processes associated with one or more evolutionarily conserved protein domains found in 

Blocks 3013 and 7016 are in lowercase. It is worth noting that the ncRNAs and pseudogene 

were excluded from this analysis due to the fact that they are non-coding genes and would 

lack said domains, functions and processes.

DISCUSSION

We have developed genomic energy measures for the human genome that relate the 

distribution of alleles within a stable population to state variables associated with the 

environment within which that population resides. The state variables defined by common 

variations utilize the entropy of the statistical distribution of alleles to establish normalized 

information measures for persistent dynamic units within arbitrary regions of the genome, as 

well as for the genome as a whole. For our initial analysis, YRI and CEU were chosen as 

representative populations in or very near homeostasis with their respective environments. 

Moreover, these populations have significant differences in the degree of variation in SNP 

allele and haplotype frequencies. As demonstrated in Figure 1, the YRI population has 

overall greater variation, while the CEU population exhibits more conservation, as 

quantified by its higher overall NIC. In both populations, it is clear that each of the five 

chromosomes examined in this study has a NIC value within 10% of the composite NIC 

value for that population. Also, the larger chromosomes have NIC values that seem to be 

quite representative of the composite NIC value for that population, while the smaller 

chromosomes seem to maintain slightly higher variation. Moreover, the relative distribution 

of conservation amongst the chromosomes seems to take the same shape between the two 

populations. Whether these features are fundamental properties of the genome remains an 

unsettled question for further studies. We will first expand our exploration to include all 

chromosomes for the selected populations; then include all populations we expect to be in 

environmental homeostasis. The formulation should be applicable to all populations in 

quasi-homeostasis consistent with publically available genomic distribution data.

We further made comparisons of genomic energy measures between the individual SNP 

haploblocks within chromosome 6 which is illustrated in Figure 2. We developed a genomic 

energy spectrum by plotting the block potential of each haploblock in GEUs as a function of 

its location on the chromosome. Since the block potential is an average of the allelic 

potentials of the various haplotypes that make up the haploblock, such genomic energy 

spectra describe the population as a whole. Given that their sum must vanish, it was initially 

expected that the spectrum would display an even distribution of positive and negative 

potentials. However, it is clear that although those haploblocks contributing positive block 

potential are uniformly distributed, those haploblocks contributing negative block potentials 

are far fewer and more conserved, displaying an inverted Manhattan-plot profile.
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There is another interesting characteristic of the block potentials that was seen across all the 

chromosomes examined. This feature was discovered upon exploring the dependency of the 

block potentials upon the number of SNP locations within those haploblocks (Figure 3). 

Although the block potential per SNP varied somewhat for haploblocks containing fewer 

than ~50 SNPs, the block potential per SNP for larger haploblocks is constant within a given 

population, regardless of the chromosome examined. The slope of this linear relationship is 

the fixing potential in the given environment, suggesting that larger haploblocks have been 

“optimally” shaped by the environment. This is sensible when recognizing that as block size 

increases, relatively fewer variations remain biologically viable.

It was instructive to directly compare the informatics of chromosome 6 in the two 

populations. The NIC takes values between zero and one, where a value of zero indicates 

maximal variation in SNP haplotypes, while a value of one indicates complete sequence 

homogeneity of the population. We plotted the number of SNP haploblocks within given 

intervals of NIC as a measure of the proportion of haploblocks that maintain a specific 

degree of variation (Figure 4). It is clear that the distribution of the NIC values for the CEU 

population is shifted towards one relative to that of the YRI population. Our prior studies 

(Lindesay et al., 2012) demonstrated that those SNP haploblocks with low NIC were 

associated with innate immune regulation and functions that require rapid response to 

environmental stresses. It is also worth noting that neither population has haploblocks with 

NIC values lower than ~0.2. This indicates that many mathematically possible variations of 

alleles within the haploblocks are not viable within these stable human populations.

To further examine the biophysical interpretations of genomic energies, we considered the 

block spectrum of SNP haploblocks in the MHC region for the populations of interest. A 

striking feature of comparison between the spectra is that despite the overall higher diversity 

in the YRI population as quantified in its considerably lower NIC when compared to the 

CEU population, the YRI population had genomic energies that were considerably more 

conserved  as compared to those of the CE EU population 

.

This is also apparent from the lower value for the average block potential demonstrated by 

the middle dashed lines in Figure 5. It is intriguing to find that despite the relatively large 

difference between YRI and CEU in their composite NIC values (~13%), the NIC values of 

their respective MHC regions were within 2%, indicating comparable normalized 

information content (NIC). This results in considerably lower GEUs for alleles in the MHC 

region of the YRI as compared to the CEU population (~300%). Within a given 

environment, the MHC region seems to adjust its GEUs to conserve its NIC.

Given that this region is important for encoding immune responses, it is expected that it 

would be particularly sensitive to environmental influences. Surprisingly, the most highly 

conserved haploblock found within any of the chromosomes thus far examined is the Block 

3013 on chromosome 6 in the MHC region of the YRI population, while the most highly 

conserved haploblock in the CEU population is also on chromosome 6, Block 7016, though 
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this block is not located in the MHC region. Both blocks have NIC values approaching one 

(complete sequence homogeneity of the population) and the protein coding genes located in 

these blocks are highly conserved across species, implying that these genes may play a 

fundamental role in the biological processes necessary for life. The protein coding genes 

ZNRD1, RNF39 and PPP1R11, along with the ncRNA ZNRD1-AS1, have been associated 

with disease states that are related to autoimmunity, immunity, and infection; while EPM2A 

and SHPRH have been associated with glycogen metabolism, cancer, and chemical 

dependency (Hindorff et al., 2013; Becker et al., 2013). In addition to this, a conserved 

regulatory element, NAT, was also found in these two blocks. NATs are an evolutionarily 

conserved group of ncRNAs that have been shown to mediate a number of cellular processes 

ranging from epigenetic modifications to regulation of transcription and post-transcription of 

protein coding genes in a multitude of species (Scherbakov and Garber, 2000; Havilio et al., 

2005; David et al., 2006; Wang et al., 2005; Jen et al., 2005; Chen et al., 2004; Yelin et al., 

2003; Zhang et al., 2006; Kiyosawa et al., 2003; Wang et al., 2008; Li et al., 2006, 2008; 

Sun et al., 2006; Chan et al., 2006; Rosok and Sioud, 2005; Imamura et al., 2004; Sleutels et 

al., 2000; Lee et al., 1999; Khochbin et al., 1992; Krystal et al., 1990; Munroe and Lazar, 

1991; Enerly et al., 2005; Mihola et al., 2007; Volk et al., 1989; Kiyosawa et al., 2005; 

Kumar and Carmichael, 1997; Rossignol et al., 2002; Lapidot and Pilpel, 2006). St. Laurent 

and Wahlestadt (2007) have proposed that throughout evolutionary history, ncRNAs have 

experienced dramatic expansions that were in concert with increased organismal complexity. 

Pang et al. (2006) have shown that between mouse and human the sequence homology of 

the NATs (less than 70%) is equivalent to the sequence homology present in introns. This 

relaxation of evolutionary constraint may allow NATs to evolve at a faster rate as compared 

to other ncRNAs (Qu and Adelson, 2012). Studies suggest that the transition from 

unicellular organisms to multicellular organisms may have been possible due to the 

pervasive incorporation of ncRNAs into the genomes of early multicellular organisms 

(Gagen et al., 2005; Taft et al., 2007; Mattick, 2004, 2007). Georges St. Laurent et al. (2007) 

regard ncRNAs as “molecular information processors” that enhance the performance of 

cellular processes by integrating high density information between functional networks 

thereby faciletating the refined incorporation and collaborative action of many different 

molecular machines. For every species that has been sequenced to date, there is a correlation 

between organismal complexity and the number of ncRNAs (Taft et al., 2007), which has 

led to the view that ncRNAs are central to the information processing of complex organisms 

(Mattick, 2007; St. Laurent and Wahlestadt, 2007).

Moreover, we observed that Blocks 3013 (YRI) and 7016 (CEU) had genes that bind zinc 

ions and contain zinc finger (ZNF) domains. Zinc is a heavy metal that is an essential 

structural component of many proteins which include intracellular signaling enzymes and 

transcription factors (Vallee and Auld, 1993; Prasad, 1995). Zinc and ZNF domains play an 

important role in a number of biological functions, including wound healing, cellular 

communication, immune function, cell division, nucleic acid metabolism, cell replication, 

synaptic plasticity and protein synthesis (Classen et al., 2011; Sandstead, 1994; McCarthy et 

al., 1992; Solomons, 1998; Prasad, 1995; Fabris and Mocchegiani, 1995; Bitanihirwe and 

Cunningham, 2009; Murakami and Hirano, 2008). Zinc can be found in the brain, muscle, 

bone, kidney and liver (Wapnir, 1990; Pfeiffer and Braverman, 1982). The earliest use of 
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zinc appears ~3.5 billion years ago (bya) and is believed to have been utilized as a 

messenger in nerve signaling, while the ZNF motif was associated with hormonal signaling 

(Williams, 2012). Likewise, it was noted that during times of rapid evolution, as seen in the 

Cambrian Explosion ~0.54 bya, dramatic expansion of ZNF domains occurred in response 

to the changing chemical composition of the sea shown by geochemical evidence of the 

accelerated rise of oxygen in the atmosphere, the increase in sulphate in the sea and the 

sedimentation of trace elements including zinc (Williams, 2012). This illustrates how life 

has adapted to its ever changing environment. In addition, the increase in the zinc content of 

proteins has been associated with the evolution of cellular complexity (Frausto da Silva and 

Williams, 2001; Williams and Frausto da Silva, 2006; Dupont et al., 2010; Zhang and 

Gladyshev, 2009).

In summary, the use of genomic energy units (GEUs) as a biophysical metric in SNP 

haploblock analysis has provided insights into the inherent structure and conservation of 

information in the human genome. We have demonstrated that highly favorable allelic 

potentials correlate with highly conserved genomic information units, in this case SNP 

haploblocks. Furthermore, the protein coding genes associated with the haploblocks of 

lowest block potential have strong homology across species underlining their fundamental 

role in the biological processes necessary for life. In addition to this, a conserved regulatory 

element and an evolutionarily conserved protein domain were also found in these blocks.

The development of genomic energy measures for the human genome relates the distribution 

of allele frequencies within a stable population to state variables associated with the 

environment within which that population resides. The state variables defined by the 

frequencies of common variants utilize the entropy of the statistical distribution of alleles to 

establish normalized information measures. Moreover, ‘genodynamics’ introduces more 

robust metrics for defining populations based on the genotypes of all individuals in the 

population as opposed to many current metrics based on the most frequent or common 

genotype in the population.

The NIC of the whole genome was found to determine an overall environmental potential 

that is a state variable which parameterizes the extent to which the environment drives 

variation and diversity within the population. Once this environmental potential (which is 

canonically conjugate to the entropy) has been determined, the genomic energies of 

individual alleles (nucleotides) and sets of alleles (haplotypes), as well as statistically 

averaged genomic energies for each persistent dynamic unit (haploblocks), can be directly 

calculated.

The assignment of genomic energies to alleles within a given environment allows the 

parameterization of specific environmental influences upon shared alleles across populations 

in varying environments. We are examining simple allelic dependencies on environmental 

parameters for future presentation.
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Abbreviations

SNPs Single nucleotide polymorphisms

LD linkage disequilibrium

NIC normalized information content

IC information content

TE environmental potential

GEUs genomic energy units

YRI Yoruba in Ibadan, Nigeria

CEU Utah residents with ancestry from Northern and Western Europe

MHC major histocompatibility complex

ZNRD1 zinc ribbon domain 1

ZNRD1-AS1 ZNRD1-antisense RNA1

HLA human leukocyte antigen

HCG8 human leukocyte antigen complex group 8

PPP1R11 protein phosphatase 1 regulatory inhibitor subunit 11

HLA-J human leukocyte antigen J

RNF39 ring finger protein 39

ncRNAs non-coding RNAs

TFBS transcription factor binding sites

miRNAs microRNAs

NAT natural antisense transcript

EPM2A epilepsy, progressive myoclonus type 2, Laforin disease [laforin]

RP11-54515.3 uncharacterized protein

SNF2 sucrose nonfermentable 2

PHD plant homeo domain

RING really interesting new gene

E3 ubiquitin ligase

SHPRH SNF2 histone linker PHD RING helicase E3 ubiquitin protein ligase

FBXO30 F-box protein 30

ZNF zinc finger

bya billion years ago
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Figure 1. 
Analysis of NIC values for chromosomes 1, 6, 11, 19 and 22 in the YRI and CEU 

populations.
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Figure 2. 
Analysis of the genomic energy measurements for chromosome 6 in the YRI and CEU 

populations.
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Figure 3. 
Comparison of the genomic energy spectra for chromosome 6 in the YRI and CEU 

populations.
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Figure 4. 
Comparison of the informatics of chromosome 6 in the YRI and CEU populations. The NIC 

value for the YRI population is 0.74±0.17 and 0.81±16 for the CEU population.
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Figure 5. 
Comparison of the major histocompatibility complex (MHC) region on chromosome 6 for 

the YRI and CEU populations.
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Figure 6. 
Figures 6a and 6b. The ideogram on the left is of chromosome 6 illustrating the location of 

Block 3013 in the YRI population, while the ideogram on the right illustrates the location of 

Block 7016 in the CEU population on chromosome 6.
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