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Abstract: Raftlin, as an inflammatory biomarker, has been previously reported in chronic inflamma-
tory diseases. This study investigates the expression of Raftlin in cigarette smokers and in chronic
rhinosinusitis with nasal polyps (CRSwNP), as well as evaluating its correlation with interleukin-
17 (IL-17) and tumor necrosis factor-α (TNF-α) levels. A total of 30 CRSwNP non-smoking and
16 CRSwNP + SK (smoking) patients undergoing endoscopic sinus surgery were enrolled, while
20 middle turbinate tissue pieces were examined and performed as the control group. In nasal
mucosa epithelial staining, Raftlin levels were elevated in the columnar cells and were stained much
more intensely in the CRSwNP and CRSwNP + SK groups. Raftlin was located more closely to the
apical region of the epithelium in the CRSwNP + SK group; however, the Raftlin levels from whole
nasal tissue pieces, according to ELISA data, showed that there was no significant difference between
the three different study groups. A positive relationship by Pearson correlation was found between
IL-17 or TNF-α levels and Raftlin levels. Taken together, these data indicate that increasing Raftlin
expression in columnar cells might involve nasal epithelial remodeling in smokers with CRSwNP.

Keywords: Raftlin; chronic rhinosinusitis; nasal polyps; smoking; interleukin-17; tumor necrosis factor-α

1. Introduction

Chronic rhinosinusitis with nasal polyps (CRSwNP) is an important medical disease,
defined by nasal polyps growing in the inflamed tissue of the nasal mucosa as well as
the swelling and inflammation of the nasal airway and sinuses, which lasts more than
12 weeks [1]. Tissue remodeling in chronic rhinosinusitis might occur with provisional or
continuous change in the histological composition of the tissues [2,3]. Numerous studies
have indicated that sinonasal epithelial tissue remodeling occurs in CRSwNP, depending on
the type of inflammation [3,4]. Recently, many reports have pointed out that the biomarkers
of chronic inflammation are related to the processing treatments of the paranasal sinuses
and nasal polyps [4–6], such as Mucin 5AC, Eotaxin, Activin A, Periostin, etc. [6–10].

As a major protein in lipid rafts, Raftlin was identified by Saeki K et al. in 2003 and
was realized to play an important role in the transmission and maintenance of lipid rafts.
In B-cells, Raftlin was inferred to act as a positive regulator of B-cell antigen receptor
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(BCR) signal transduction. [11]. In a recent study, Raftlin was revealed as an inflammatory
biomarker for several inflammatory diseases. Lee et al., in 2014, demonstrated that Raftlin
is related to the severity of sepsis and the dysfunction of endothelial cells, using not only
prospective studies but also in vitro/in vivo studies as well, suggesting that Raftlin could
be used as a biomarker for determining the severity of sepsis [12]. In a study on Raftlin
expression in obstructive sleep apnea (OSA), Bilal et al. revealed Raftlin levels decreased
significantly in an OSA group on the third postoperative month [13]. Moreover, in patients
with chronic vascular inflammatory disease, such as atherosclerosis, Raftlin levels were
shown as highest before treatment and decreased with treatment [14].

Although Raftlin was originally found in B cells, it also played an important role in
the regulation of T cell-mediated immune responses [11,15,16]. In addition, Raftlin may be
associated with oxidative stress biomarkers malondialdehyde (MDA), total oxidant status
(TOS), or catalase (CAT) [14,17], as well as inflammatory biomarkers such as tumor necrosis
factor-α (TNF-α) and interleukin-17 (IL-17) [13,16]. Cigarette smoke plays a critical role
in the pathogenesis of airway inflammatory diseases. Another report showed that IL-17A
levels are markedly and increasingly expressed in CRS patients who smoke cigarettes [18].
However, the expression of Raftlin in CRSwNP concerning smokers remains unclear. In
the present study, we investigated Raftlin expression in nasal polyp tissues (with controls
and CRSwNP smoker samples) in the Taiwanese population and assessed its relationship
with cytokines IL-17 and TNF-α.

2. Materials and Methods
2.1. Study Subjects

A total of 66 patients were enrolled from the Department of Otolaryngology in the
Kaohsiung Chang Gung Memorial Hospital in Taiwan between September 2017 and July
2020. Nasal polyps from 30 CRSwNP and 16 CRSwNP plus Smoking (CRSwNP + SK)
patients, who underwent endoscopic sinus surgery, were assessed. The control group
comprised biopsy tissues from the middle turbinate mucosae of 20 subjects who received
septo-meatoplasty for relief of nasal obstruction with non-allergic chronic rhinitis, exclud-
ing previous sinonasal surgery, nasal tumor, and other sinonasal diseases. The diagnosis
of CRSwNP followed the criteria set by the 2020 European Position Paper on Rhinosi-
nusitis and Nasal Polyps (EPOS 2020) [1]. The subjects excluded included: (1) patients
who had allergic fungal rhinosinusitis (AFRS) or aspirin-exacerbated respiratory disease
(AERD); (2) patients who had immune responses such as ciliary dyskinesia, cystic fibro-
sis, immunodeficiency, multiple myeloma, or rheumatoid arthritis; (3) patients who had
taken immunomodulatory therapies or systemic corticosteroids within 12 weeks before
surgery; (4) patients who had asthma; and (5) patients with recurrent CRS. Each CRSwNP
patient was evaluated for nasal polyp symptom severity by computed tomography Lund–
Mackay scale (LMK-CT) scores [19], with each paranasal sinus scored on a scale of 0 to
2, depending on the level of opacification. The range of total score was 0–24 points. This
study was approved by the Institutional Review Board of Chang Gung Medical Founda-
tion (approval numbers 201701016B0 and 201900340B0 on approval date 14 July 2017 and
26 March 2019, respectively).

2.2. Measurement of IL-17 and TNF-α

Cytokine IL-17 (also known as IL-17A) and TNF-α measurements were performed
simultaneously using the Bio-Plex Human Cytokine Group Assay kit (Bio-Rad Laboratories,
Hercules, CA, USA), according to the manufacturer’s instructions. The principle of assay
was followed: antibodies specific for human IL-17 or TNF-α coated on a 96-well plate; then,
standards and samples were pipetted into the wells and IL-17 or TNF-α was bound to the
wells by the immobilized antibody. The wells were washed and biotinylated, anti-human
IL-17 or TNF-α antibodies were added. After flushing in triplicate for unbound biotinylated
antibody, HRP-conjugated streptavidin was pipetted into the wells. The TMB substrate
solution was added to the wells and color developed in proportion to the amount of IL-17 or
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TNF-α bound. The stop solution changes the color from blue to yellow, and the intensity of
the color was measured at 450 nm by Bio-Plex suspension array system, with data analyzed
using Bio-Plex Manager software version 6.0 (Bio-Rad Laboratories, Hercules, CA, USA).

2.3. Measurement of Human Raftlin

The level of human Raftlin (RFTN1) from nasal mucosae or nasal polyps was assayed
using ELISA kits (MBS1600006, MyBioSource, San Diego, CA, USA). This principle of test
was based on sandwich enzyme-linked immunosorbent assay (ELISA)-technology follow-
ing photometric methods with a commercially purchased ELISA kit; an OD absorbance of
450 nm was measured using a microplate reader (BioTek Instruments, Inc., Winooski, VT,
USA), and the concentrations of Raftlin were calculated by the following formula: (relative
OD 450 nm) = (OD 450 nm of the test well) − (OD 450 nm of the control well).

2.4. Tissue Microarray

Tissue microarrays (TMA) were performed using the SIDSCO-TMA70 system (Sci-
entific Integration Design Service Corp., Kaohsiung, Taiwan). The tissue sections were
performed using hematoxylin and eosin staining (H&E staining), primary antibody: anti-
Raftlin (ab233438, Abcam, Cambridge, UK), anti-IL-17A (ab79056, Abcam) and anti-TNF-α
(ab6671, Abcam). Then, tissue sections were incubated with goat anti-rabbit HRP. Rabbit
IgG was used as an isotype control (ab37415, Abcam). All slides were mounted with
xylene-based mounting medium and scanned at 400× using the Olympus OlyVIA software
(Olympus, Tokyo, Japan). The quantitative intensity of staining was analyzed by Image-Pro
Plus 6.0 (Media Cybernetics, Rockville, MD, USA) and IHC intensity was represented by
mean density, equal to integrated optical density/area of interest, as follows: IHC intensity
0 to 0.15 as weak staining; IHC intensity 0.16 to 0.25 as mild to moderate staining; IHC
intensity 0.26 to 0.35 as strong staining; and IHC intensity above 0.35 as very strong staining.
The IHC intensity of each slide was determined by at least 3 images.

2.5. Statistical Analysis

The statistical analysis and graphing were performed using GraphPad Prism 5.0
software (GraphPad Software Inc., La Jolla, CA, USA). Statistical differences among the
means of the study groups were tested by One-Way ANOVA (one-way analysis of variance)
with Bartlett’s test for equal variance, while Chi-square testing was used to test for gender
data. Pearson’s correlation test was used to measure a linear relationship between two
variables. Data were presented as the means and standard error (mean ± SE) and p value
of 0.05 or less (p ≤ 0.05) was considered as statistically significant.

3. Results
3.1. Patient Demographics

A total of 30 CRSwNP, 16 CRSwNP plus smoking, and 20 control subjects were
included in this study. The demographic information for each group, including the presence
of atopy, peripheral eosinophil (%), and LMK-CT scores, are described in Table 1. There
was no difference in gender or age between all groups, but there were differences in atopy
and the LMK-CT scores. The serum IgE level was higher in CRSwNP and CRSwNP + SK
patients than in the control group (p < 0.001); moreover, there was a higher serum IgE level
among the CRSwNP + SK group compared with the CRSwNP group.

3.2. Expression of Raftlin in CRSwNP and Smoking

The expression of Raftlin in whole nasal tissue pieces for all groups was determined
using ELISA. The levels of Raftlin in the control, CRSwNP, and CRSwNP + SK groups
were 82.2 ± 15.1, 78.6 ± 12.9, and 100.5 ± 18.6 pg/mL, respectively, with no significant
differences between the CRSwNP and CRSwNP + SK groups when compared to the
control group (Figure 1A). In Figure 1B, which shows nasal mucosa epithelial staining
by immunohistochemical staining (IHC), Raftlin expression in the basal cells was stained
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weakly in the control group. Interestingly, Raftlin expression was elevated in the columnar
cells and stained much more intensely among the CRSwNP and CRSwNP + SK groups;
besides, Raftlin was located more closely to the apical region of the epithelium in the
CRSwNP + SK group. Additionally, the IHC staining intensity of Raftlin is shown in
Figure 1C,D. The data indicated that Raftlin intensity in basal cells staining in the CRSwNP
and CRSwNP + SK groups was significantly higher than in the control group (Figure 1C;
p = 0.0079); similarly, the Raftlin intensity in the columnar cell staining was markedly
higher among the CRSwNP and CRSwNP + SK groups (Figure 1D; p < 0.001).

Table 1. Clinical demographics of subjects in this study.

Demographics Subjects

Variables Control
(n = 20)

CRSwNP
(n = 30)

CRSwNP + SK
(n = 16) p Value

Gender (male), n (%) 12 (60.0) 19 (63.3) 12 (75.0) 0.6185
Age (years), Mean ± SE 38.9 ± 2.8 48.3 ± 2.7 49.7 ± 3.5 0.6100

Peripheral eosinophil (%), Mean ± SE 3.2 ± 0.5 3.8 ± 0.5 3.3 ± 0.5 0.5315
Serum IgE level (KU/L), Mean ± SE 78.8 ± 12.8 116.9 ± 20.0 250.9 ± 36.4 <0.001 *

LMK-CT score - 15.0 ± 0.9 15.6 ± 1.2 0.2686 &

Methodologies used -
Tissue ELISA (n) 20 30 16
Tissue IHC (n) 20 30 16

* Significance was considered at p < 0.05; & Comparison between CRSwNP and CRSwNP + SK. CRS: chronic
rhinosinusitis; NP: Nasal polyps; SK: smoking; IgE: immunoglobulin E; LMK-CT: computed tomography Lund–
Mackay; ELISA: enzyme-linked immunosorbent assay; IHC: immunohistochemistry.

Biomolecules 2022, 9, x FOR PEER REVIEW 5 of 11 

 
 

 

 

 
Figure 1.  The expression of Raftlin in nasal tissues. (A) The Raftlin levels from whole nasal tis-
sue pieces in the control (n = 20), CRSwNP (n = 30), and CRSwNP+SK (n = 16) groups were ana-
lyzed byELISA assay. (B) Representative photomicrograph of nasal epithelium staining of Raftlin 
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Figure 1. The expression of Raftlin in nasal tissues. (A) The Raftlin levels from whole nasal
tissue pieces in the control (n = 20), CRSwNP (n = 30), and CRSwNP + SK (n = 16) groups were
analyzed byELISA assay. (B) Representative photomicrograph of nasal epithelium staining of Raftlin
expression and its corresponding normal rabbit immunoglobulin G (IgG) as the isotype control
for three different study groups. Yellow arrows: basal cells staining and red arrows: columnar
cells staining. Scale bar = 50 µm. The quantitative intensity of staining for (C) the basal cells and
(D) columnar cells was measured by Image-Pro Plus 6.0. * p < 0.05 vs. control; ** p < 0.01 vs. control.
SK: smoking.

3.3. The Levels of IL-17 and TNF-α Correlated with Raftlin

Raftlin may be markedly related to cytokines, such as IL-17 and TNF-α [13,16]; there-
fore, the levels of IL-17 and TNF-α for the whole nasal tissue pieces were measured by
ELISA, as presented in Figure 2A,B. The levels of IL-17 in the CRSwNP and CRSwNP + SK
groups were significantly higher than in the control group (both p < 0.001), and there were
no significant differences between the CRSwNP and CRSwNP + SK groups (Figure 2A). For
TNF-α levels, the amounts of TNF-α in the CRSwNP + SK group were higher than in the
control group (p = 0.0071), and there were no significant differences among the CRSwNP
group as compared to the control group (Figure 2B). In addition, immunohistochemical
staining was performed, and the distribution of the IL-17 and TNF-α expression is pre-
sented in Figure 2C. In the top panels, the hematoxylin and eosin staining (H&E staining)
revealed that there were several changes in the CRSwNP and CRSwNP + SK groups, such
as the disruption and shedding of epithelial cells, with increased cytoplasmic vacuolization,
large goblet cells, and florid inflammatory cell infiltration in the stroma, yet this was not
evident in the control group. The epithelial cells of CRSwNP + SK group were less regularly
aligned than those in the CRSwNP group. The second row showed that the inflammatory
cells in the CRSwNP and CRSwNP + SK patients significantly expressed IL-17. In the third
row, we found that TNF-α was highly expressed, not only in the inflammatory cells, but
also in the epithelial basal layer of those patients with CRSwNP and CRSwNP + SK.

The comparisons between the levels of cytokines IL-17 or TNF-α and Raftlin by
Pearson correlation coefficients are shown in Figure 3. The Pearson correlation showed a
significant positive relationship between the IL-17 level and all measurable Raftlin levels
from the whole nasal tissue pieces was found. The IHC staining intensity of the basal cells
and the IHC staining intensity of columnar cells was r = 0.3450; 95% CI = 0.1123–0.5418,
r = 0.3447; 95% CI = 0.1120–0.5416; and r = 0.6106; 95% CI = 0.4324–0.7429, respectively
(Figure 3A–C). Moreover, there was also a significantly positive correlation between the
TNF-α level and the measurable Raftlin levels from the whole nasal tissue pieces, with
the IHC staining intensity of columnar cells being r = 0.4132; 95% CI = 0.1902–0.5957;
and r = 0.2952; 95% CI = 0.05721–0.5015, respectively; however, there was no correlation
between the TNF-α level and IHC staining intensity of the basal cells (Figure 3D–F).



Biomolecules 2022, 12, 1316 6 of 10

Biomolecules 2022, 9, x FOR PEER REVIEW 6 of 11 

 
TNF-α expression is presented in Figure 2C. In the top panels, the hematoxylin and eosin 

staining (H&E staining) revealed that there were several changes in the CRSwNP and 

CRSwNP+SK groups, such as the disruption and shedding of epithelial cells, with in-

creased cytoplasmic vacuolization, large goblet cells, and florid inflammatory cell infil-

tration in the stroma, yet this was not evident in the control group. The epithelial cells of 

CRSwNP+SK group were less regularly aligned than those in the CRSwNP group. The 

second row showed that the inflammatory cells in the CRSwNP and CRSwNP+SK pa-

tients significantly expressed IL-17. In the third row, we found that TNF-α was highly 

expressed, not only in the inflammatory cells, but also in the epithelial basal layer of 

those patients with CRSwNP and CRSwNP+SK. 

The comparisons between the levels of cytokines IL-17 or TNF-α and Raftlin by 

Pearson correlation coefficients are shown in Figure 3. The Pearson correlation showed a 

significant positive relationship between the IL-17 level and all measurable Raftlin levels 

from the whole nasal tissue pieces was found. The IHC staining intensity of the basal 

cells and the IHC staining intensity of columnar cells was r = 0.3450; 95% CI = 

0.1123-0.5418, r = 0.3447; 95% CI = 0.1120-0.5416; and r = 0.6106; 95% CI = 0.4324-0.7429, 

respectively (Figures 3A-C). Moreover, there was also a significantly positive correlation 

between the TNF-α level and the measurable Raftlin levels from the whole nasal tissue 

pieces, with the IHC staining intensity of columnar cells being r = 0.4132; 95% CI = 

0.1902-0.5957; and r = 0.2952; 95% CI = 0.05721-0.5015, respectively; however, there was 

no correlation between the TNF-α level and IHC staining intensity of the basal cells 

(Figures 3D-F). 

 

Biomolecules 2022, 9, x FOR PEER REVIEW 7 of 11 

 

 

Figure 2. The expression of IL-17 and TNF- in nasal tissues. ELISA data from (A) IL-17 and (B) 

TNF-α expression from the whole nasal tissue pieces for the control (n = 20), CRSwNP (n = 30), and 

CRSwNP+SK (n = 16) groups. **p < 0.01 vs. control. SK: smoking. (C) IHC images of IL-17 and 

TNF-α expression in nasal tissues. The nasal mucosae as a control and nasal polyps as of group 

CRSwNP and CRSwNP+SK were stained by hematoxylin and eosin (H&E) staining (top panels) 

and IL-17 (middle panels) and TNF-α (bottom panels) staining. Scale bar = 50 μm. 

Figure 2. The expression of IL-17 and TNF-α in nasal tissues. ELISA data from (A) IL-17 and
(B) TNF-α expression from the whole nasal tissue pieces for the control (n = 20), CRSwNP (n = 30),
and CRSwNP + SK (n = 16) groups. ** p < 0.01 vs. control. SK: smoking. (C) IHC images of IL-17
and TNF-α expression in nasal tissues. The nasal mucosae as a control and nasal polyps as of group
CRSwNP and CRSwNP + SK were stained by hematoxylin and eosin (H&E) staining (top panels)
and IL-17 (middle panels) and TNF-α (bottom panels) staining. Scale bar = 50 µm.
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Figure 3. The correlation between IL-17 or TNF-α and the three measurable Raftlin levels (66 samples
in total) was analyzed by Pearson R test. (A) Correlation between levels of IL-17 and Raftlin from
whole nasal tissues, (B) between IL-17 and Raftlin from IHC intensity of basal cells, (C) between
IL-17 and Raftlin from IHC intensity of columnar cells, (D) between levels of TNF-α and Raftlin from
whole nasal tissues, (E) between TNF-α and Raftlin from IHC intensity of basal cells, and (F) between
TNF-α and Raftlin from IHC intensity of columnar cells in all study subjects. IL: Interleukin; TNF-α:
Tumor necrosis factor alpha; p < 0.05 was considered a statistically significant difference.

4. Discussion

A wealth of evidence has indicated that damage to airway epithelium plays a key
role in triggering tissue or epithelial remodeling, which is considered an important feature
in the many inflammation diseases in the upper and lower airways, such as CRS or
asthma [4,5,20,21]. Several reports have investigated the pathophysiological mechanisms
of CRS. CRS patients with exposure to cigarettes have higher LMK-CT scores (as disease
severity) than non-smokers [22]. Smoking may cause a variance in sinus microbiota and
the modification of the physiological and immunological functions of the underlying sinus
mucosa. The squamous metaplasia in the olfactory sensory epithelium was observed in
CRS patients who were current smokers [22–24]. Moreover, some inflammatory biomarkers
are associated with the pathogenesis of CRSwNP. A previous reporter indicated that the
levels of inflammatory and profibrotic genes, such as profibrotic transforming growth factor
beta 1 (TGF-β1) and activin A, as well as downstream TGF-β1 signaling, were present
in the stroma of CRSwNP patients. The up-expression of TGF-β1 and activin A from
primary nasal epithelial cells (PNECs) in CRSwNP patients was induced by cigarette smoke
extract, suggesting that exposure to cigarette smoke might involve airway remodeling [25].
The down-expression of E-prostanoid 2 (EP2) and E-prostanoid 4 (EP4) receptors may be
correlated to severe inflammatory reactions in patients with CRSwNP who smoke [26].
Cigarette smoking, causing airway inflammation, is considered to be associated with
neutrophil, macrophage, and activated T lymphocyte infiltration and increased cytokine
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concentrations, such as IL-17A and TNF-α [18,26–29]. IL-17A and TNF-α are both powerful
pro-inflammatory cytokines, which have been reported to be associated with the expression
and release of various pro-inflammatory mediators, which lead to tissue damage and
epithelial remodeling in the upper and lower airway [28,30,31]. The raft-linking protein
Raftlin, as a new inflammatory biomarker, can be responsible for regulating the signal
transmission of the B cell antigen receptor (BCR), which plays an important role in the
induction of autoimmune and vascular inflammatory responses [11,15]. The present study
investigated the major proteins of lipid rafts as Raftlin expression for both non-smoking
and smoking Taiwanese CRSwNP patients. Nevertheless, there are some limitations to our
clinical study: (1) the difficulty in collecting the health nasal mucosa (IRB limitation), and
(2) a low number of patients with CRSwNP (n = 3) (this might be due to medical habits in
Southern Taiwan).

Our data show that Raftlin levels in whole nasal tissue pieces, analyzed by ELISA
assay, showed no significant differences among the CRSwNP and CRSwNP + SK groups
when compared to the control group. Interestingly, a recent report from Turkey revealed
that nasal polyp tissue Raftlin levels in a CRSwNP group were significantly lower than
those of the control group, with no significant differences between CRSwNP and CRSwNP
groups regarding asthma [32]. Their data were unlike ours, suggesting that there could exist
differences in the profiles of inflammatory biomarkers between CRS patients from different
races. Our IHC results found that Raftlin stained much more intensely in the columnar
cells among the CRSwNP groups, especially in the CRSwNP + SK group, showing strong
staining in the apical region of the epithelium. Furthermore, the Raftlin levels detected
in the basal and columnar cells among the CRSwNP and CRSwNP + SK groups were
markedly higher than those in the control group. This information indicates that Raftlin
expression was elevated in the columnar cells, supporting the notion that Raftlin might be
a biomarker for epithelial remodeling in CRSwNP patients.

Raftlin might modulate T-cell receptor-mediated signaling and enhance Th17-mediated
autoimmune responses [15] and is considered as an inflammatory biomarker [13,14,17].
Previous reports showed that Raftlin may be related to TNF-α [13,14]. Consequently, we
analyzed the IL-17 and TNF-α from whole nasal tissue pieces, and both cytokine levels
were markedly higher in the CRSwNP + SK group than in the control group. Besides, our
data indicated that the levels of IL-17 and TNF-α significantly correlated with Raftlin levels
from whole nasal polyp tissues and in columnar cells. Similar results were reported by
some studies, where the level of Raftlin was found to be positively correlated with TNF-α
in several chronic inflammatory diseases [13,14]. Collectively, these results suggest that
Raftlin translocation may play a role in epithelial remodeling, which is related to IL-17 and
TNF-α levels in CRSwNP smoking and non-smoking patients.

Cigarette smoking is a substantial risk factor in the development of upper or lower
airway inflammatory diseases, including CRS and asthma [18,33]. A large proportion
of patients in the “CRS with smoking” category is found in clinical settings in Taiwan,
accounting for around 35~50% of male smokers as being CRS patients [18,34]. Similarly,
our data in the present study showed that around 35% of CRSwNP patients were smokers,
and 75% of these were males. The other pathogenetic factors for CRSwNP, such as a
humid environment, air pollution, as well as ethnic genotype, are distinct in Taiwan, which
might help explain the different inflammatory patterns of CRS between Asian and Western
populations [35,36]. Only one study has examined the Raftlin in CRSwNP patients in
Turkish populations [32], but no previous reports have investigated Raftlin expression in
smoking and non-smoking CRSwNP for Taiwanese people. This study is necessary for
understanding the effect of Raftlin-associated signaling in the pathogenesis of CRS. In
conclusion, our results suggested that increasing Raftlin in columnar cells might involve
nasal epithelial remodeling in smoking CRSwNP patients, which correlates with IL-17
and TNF-α levels. Further studies are needed to investigate the therapeutic potential of
Raftlin-associated signaling and the mechanism for the reaction between Raftlin and IL-17
or TNF–α in these two subject groups through in vitro or in vivo studies.
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