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Abstract 
Summary: DNA sequencing is becoming more affordable and faster through advances 
in high-throughput technologies. This rise in data availability has contributed to the 
development of novel algorithms to elucidate previously obscure features and led to an 
increased reliance on complex workflows to integrate such tools into analyses pipelines. 
To facilitate the analysis of DNA sequencing data, we created metapipeline-DNA, a 
highly configurable and extensible pipeline. It encompasses a broad range of 
processing including raw sequencing read alignment and recalibration, variant calling, 
quality control and subclonal reconstruction. Metapipeline-DNA also contains 
configuration options to select and tune analyses while being robust to failures. This 
standardizes and simplifies the ability to analyze large DNA sequencing in both clinical 
and research settings. 

Availability: Metapipeline-DNA is an open-source Nextflow pipeline under the GPLv2 
license and is freely available at https://github.com/uclahs-cds/metapipeline-DNA. 
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Introduction 
With the rapid progression in efficiency and affordability of high-throughput 
technologies, biomedical research has seen a sharp increase in the generation and 
volume of large sequencing datasets. As DNA sequencing becomes more cost-efficient 
and rapid, it is increasingly used in both routine clinical care and for research studies 
(Shendure, et al., 2017). Technical advances have also facilitated studying of previously 
obscure features. The development of long-read sequencing through nanopores, for 
example, has given insights into structural variants (SVs) and complex repetitive regions 
of the genome that were difficult to capture through traditional short-read sequencing 
(Branton, et al., 2008). Given such possibilities, the number of features being studied 
through sequencing has greatly expanded, with research on any given dataset studying 
variant calling of single-nucleotide variants (SNVs) and SVs, telomere length and 
dynamics, mitochondrial genome sequencing and calling, mutational signatures and so 
forth (Ding, et al., 2015; Gauthier, et al., 2019). 

The availability of such data has been paralleled by development and use of software 
for processing and analysis in both research and clinical settings, with new discoveries 
relying heavily on complex workflows comprising established and novel algorithms 
(Cremin, et al., 2022). These workflows, often referred to as “pipelines”, are 
implemented through a range of orchestration frameworks built for data processing to 
minimize manual handling of data flow and facilitate the stitching together of different 
tools and algorithms to ultimately process raw data into more refined forms. Widely-
used orchestration frameworks in computational biology include Galaxy, Snakemake, 
Common Workflow Language (CWL), and Nextflow (Crusoe, et al., 2022; Köster, et al., 
2012; The Galaxy Community, 2022; Di Tommaso, et al., 2017). 

The use of complex workflows has placed a growing emphasis on standardization, 
extensibility, quality control, and compute infrastructure needs. Workflow 
implementations are routinely different from team to team, and often lack critical 
features like configuration with multiple algorithms to facilitate use of specialized tools, 
automated quality control and visualization to maintain integrity and quality of data, 
testability, and automated recovery from failure (Patel, et al., 2024a). Given the volume 
of data and the necessary compute, workflows are often designed for high-performance 
computing environments which may vary across different providers (Marx, 2013). This 
brings up a need for cross-provider compatibility and portability of workflows for new 
environments, a concept aligning with the “model to data” (M2D) paradigm in data 
sharing and processing (Ellrott, et al., 2019). Rather than shuffling data, which is 
infeasible due to data size and privacy, around across infrastructure for processing, 
M2D instead relies on bringing the model or algorithms to the data, thus necessitating 
that models be portable across providers and environments.   

To address this need for a robust sequencing analysis pipeline, we created 
metapipeline-DNA, a highly configurable DNA sequencing analysis pipeline capable of 
processing data from any stage of analysis up to and including subclonal reconstruction. 
It encompasses steps to process DNA sequencing data starting with raw reads, perform 
alignment and recalibration, call variants, and perform subclonal reconstruction with 
quality control built into the workflow level and the individual steps. It includes a broad 
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range of configuration options for selecting and tuning analyses including support for 
robustly picking up analysis from failed runs without having to restart the entire 
workflow. 

Results 
Overview 
Metapipeline-DNA is a Nextflow meta-pipeline for analysis of DNA sequencing starting 
from raw sequencing reads and including all major classes of variant detection (Figure 
1A). It encompasses 12 pipelines (Table 1), each of which can be executed 
independently. All pipelines are extensively parameterized through configuration which 
allows for customization, selection, and tuning of algorithms with available options. 
Individual pipelines can allow execution of multiple algorithms and even create 
consensus calls from them. For example, four separate algorithms can be executed for 
somatic single nucleotide variant (SNV) detection, generating a consensus set of 
predictions and associated data-visualizations (Figure 1B; Patel, et al., 2024a). 
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Figure 1. Data flow and visualizations. A. Data flow through metapipeline-DNA. B. Example intersection diagram of 
consensus variants between 4 SNV callers: MuSE2, SomaticSniper, Strelka2, and Mutect2. C. Normalized tumour 
coverage relative to the matched normal (log2R) and the B-allele frequency of individual SNPs laid out across the 
genome to support CNA detection 

 

Pipeline Input Formats Output Artefacts Algorithms Features 

Convert-
BAM2FASTQ 

BAM/CRAM FASTQ SAMtools Automatic conversion from 
CRAM to BAM 

Align-DNA FASTQ BAM BWA-MEM2 

HISAT2 

Duplicate marking 

Calculate-
targeted-
coverage 

BAM 

Target region 
BED 

Expanded regions 

Per-base depth in 
target regions and 
dbSNP sites  

Hybrid-selection 

SAMtools 

BEDtools 

Automatic expansion of 
regions to off-target dnSNP 
loci with coverage 
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metrics 

Recalibrate-BAM BAM 

Target regions 

INDEL realigned and 
base-quality score 
recalibrated BAM 

GATK Support for target regions 

Local INDEL realignment 

Base-quality score 
recalibration 

Generate-SQC-
BAM 

BAM BAM statistics 

Coverage metrics 

SAMtools 

Picard 

Qualimap 

Customizable selection of 
QC 

Coverage reporting and 
visualization 

Call-gSNP BAM 

Target regions 

Per-sample GVCF 

Germline SNP VCF 

GATK Variant quality score 
recalibration 

Ambiguous variant filtration 

Call-mtSNV BAM/CRAM Mitochondrial SNV 
VCF 

MToolBox 

mitoCaller 

Mitochondrial read 
extraction support for BAM 
and CRAM 

Heteroplasmy calling 

Call-gSV BAM Germline SV VCF 

Germline SV BCF 

DELLY 

Manta 

Germline CNV calling 

Variant call QC 

Call-sSV BAM Somatic SV VCF 

Somatic SV BCF 

DELLY 

Manta 

Germline SV filtration 

Call-sSNV BAM 

Somatic SNV 
calls 

Panel of normal 

Somatic SNV VCFs Mutect2 

Strelka2 

SomaticSniper 

MuSE 

BCFtools-
Intersect 

Support for panel of 
normals 

Tumour-only mode 

Multi-tumour mode 

Consensus callset and 
vizualization 

Call-sCNA BAM Somatic CNA VCF or 
TSV 

Battenberg 

FACETS 

Standardized visualization 
of aberrations 

Option for customizing 
Battenberg refit 
suggestions 

Call-SRC SNV calls 

CNA calls 

SNV clustering 

Reconstructed 
phylogeny 

PyClone 

PyClone-VI 

PhyloWGS 

DPClust 

FastClone 

CliP 

CONIPHER 

Customizable combinations 
of clustering algorithm and 
phylogeny algorithm 

Standardized clustering 
and phylogeny formats 

Table 1: metapipeline-DNA Constituent Pipelines. Pipelines encompassed within metapipeline-DNA and their 
inputs, outputs, algorithms, and key features. Inputs that are italicized are optional and inputs separated by “/” 
represent a list of choices from which one must be chosen. 
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Pipeline PCAWG (runtime 
in hours) 

PCAWG 
(Peak 

RAM in 
GB) 

TCGA (runtime 
in hours) 

TCGA (Peak 
RAM in GB) 

Align-DNA 
(normal) 

4.62 55.3 0.27 24.3 

Align-DNA 
(tumour) 

8.93 55.9 0.32 24.7 

Recalibrate-
BAM 

30.40 20.6 1.63 2.8 

Generate-
SQC-BAM 

6.23 1.5 0.28 0.96 

Call-gSNP 8.90 5.4 0.37 5.1 

Call-mtSNV 4.15 8.1 0.13 6.4 

Call-sSNV 13.12 42 0.37 31.5 

Call-sSV 17.88 12.9 0.37 8 

Call-gSV 8.98 6 0.23 2 

Call-sCNA 4.15 45 2.68 19.1 

Call-SRC 1.40 0.37 0.03 0.25 

TOTAL 72.2 - 5.35 - 
Table 2: Runtime of pipelines per sample. The total runtime is less than the sum of the individual pipelines’ 
runtimes due to parallelization of variant calling pipelines. 

 

The standard run-time mode accepts input sequencing data in FASTQ format and 
executes all pipelines on it starting with alignment. Aligned and unaligned BAM and 
CRAM files can also be used as entry-points, with automated BAM-to-FASTQ 
conversions performed as needed (Cock, et al., 2009; Li, et al., 2009). A few pipelines 
can accept alternative entry-points, such as direct use of SNV and copy number 
aberration (CNA) calls for tumour subclonal reconstruction. All dependencies, input, and 
output formats are available on well-structured and standardized GitHub pages for the 
respective pipeline. 

We designed metapipeline-DNA to be intrinsically flexible. Users can select any subset 
of analyses for execution, and all necessary dependencies are automatically identified 
and executed. All run-modes and dependency identification have defaults set to the 
most common behaviour, but with parameters available for easy configuration. For 
example, when the input data is aligned, options exist to control whether reads are 
back-converted to FASTQ and then re-aligned, whether the aligned reads undergo 
recalibration, or whether an input BAM or CRAM is directly used for downstream 
analyses. 
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Several different sample run-modes are available, which we denote using the 
terminology nT-mN, where T indicates the number of tumour samples and N the 
number of reference samples. Thus the classic paired tumour-normal analysis mode is 
1T-1N. Metapipeline-DNA fully supports modes like 0T-1N (i.e. germline DNA 
sequencing), 0T-3N (e.g. familial trios), 1T-0N (i.e. unpaired tumour-only sequencing) 
and arbitrary multi-region tumour and/or reference sequencing. The primary limitation to 
multi-sample analyses are compute resource availability – particularly RAM and 
scratch-disk space. Metapipeline-DNA automatically handles input types for each mode 
and only executes feasible pipelines, independent of user-selections. For example, in 
0T modes only germline structural variant detection is attempted, independent of user-
selections. 

In a similar way, metapipeline-DNA is flexible to the specific genome build used, and 
has been tested extensively with GRCh37, GRCh38 and GRCm39. It can run in WGS 
mode and targeted-sequencing mode, based on user parameterization. Targeted-
sequencing model supports all subsets of the whole genome, including whole-exome 
sequencing. Options are available to assess coverage, expand targets with off-target 
coverage sites, and automatically use expanded target intervals for downstream 
processing. 

Data Visualization & Quality-Control 
Metapipeline-DNA includes a range quality control steps and pipelines to assess data 
quality. BAM quality is assessed with alignment and coverage metrics. In targeted-
sequencing mode, coverage assessment is performed through per-base depth 
calculations at target regions and well-characterized off-target polymorphic sires from 
dbSNP. Pipelines also perform specific quality control for cross-individual contamination 
and variant-type specific metrics (Figure 1B, 1C).  

Software-Engineering & Pipeline Robustness 
Our pipeline development placed a heavy focus on generating re-usable and extensible 
software that could automatically detect and recover from common errors. This led us to 
adopt or create a series of development practices and pipeline features aimed at 
maximizing quality. All software is open-source, available on GitHub 
(https://github.com/uclahs-cds/metapipeline-DNA), with transparent tracking of issues 
and discussions. Development followed a test-driven approach using the NFTest 
framework (Patel, et al., 2024a). Metapipeline-DNA has a suite of 71 total unit, 
integration, and regression tests that are run for each new release with testing 
performed for different stages of execution from end-to-end tests to individual pipeline 
tests. Our extensive use of Docker containers allows seamless co-existence of multiple 
pipeline versions, and the combination of automated testing and containerization 
facilitates rapid updating with new features or dependency versions. Standardized 
GitHub issue templates support robust reporting of both bugs and new feature-requests. 
The development effort to-date has involved 42 contributors making 1220 pull-requests, 
and 45 individuals making 973 suggestions, feature-requests and issue-reports. 

Bioinformatics data has high intrinsic variability, and bioinformatics software can be 
prone to significant numbers of failures – particularly in heterogeneous HPC 
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environments. Failure handling is built into metapipeline-DNA to predict and minimize 
wasted computation. We automated input and parameter validation to catch issues prior 
to commitment of compute resources (Patel, et al., 2024b). Validation of pipeline 
parameters is also implemented to foresee potential errors prior to resource 
commitment. Individual pipelines are modularized and set up to be fault-tolerant such 
that errors or failures in one pipeline stay isolated from and do not terminate other 
pipelines that are not their direct dependencies. With the robust input formats and 
configurable pipeline selection, metapipeline-DNA can be easily re-run in cases of 
failure, starting from prior partial results. 

All outputs are organized with standardized directory and naming structures. Filenames 
have been standardized to provide dataset, patient and sample information in a 
consistent way across pipelines. metapipeline-DNA similarly organizes log-files to 
ensure saving of and ready access to the metapipeline-DNA logs, individual pipeline-
level logs and compute partition logs. These logs capture execution and resource usage 
metrics for every process. Scripts have been created that automatically “crawl” over a 
series of pipeline runs to extract and tabulate information about run success, compute 
resources and other features. 

Compute Infrastructure 
Metapipeline-DNA includes customizability for compute infrastructure, execution, and 
scheduling in a cloud-agnostic workflow, with successful testing and validation 
performed in both Azure and AWS computing environments. Execution follows the 
pattern of a single leading job responsible for submission and monitoring of per-sample 
or per-patient analysis jobs. Execution is performed with the Slurm executor with option 
available to select the specific compute partitions used to run analyses (Yoo, et al., 
2003). Parameters also exist to control rate of job submission and amount of 
parallelization/resources usage. Once configured and submitted, metapipeline-DNA 
automatically handles processing of an entire cohort with input parsing and job 
submission without requiring intervention. Real-time monitoring is also available through 
email notifications sent from a server watching individual step start, end, and status. 
The choice of executor itself is parameterized, and can be easily extended to other 
environments. 

Metapipeline-DNA includes optimizations for disk usage with eager intermediate file 
removal and built in checks to allow for optimized disk usage (performing I/O operations 
from high-performance working disks) without losing any output data. Resource 
allocation for individual steps is also automatically handled, with steps from pipelines 
running in parallel filling in available resources as available. Resource-related 
robustness is also built into pipelines to detect shortages in memory allocation and 
automatically retry processes with higher allocations. 

Use-Case: PCAWG-63 Breast cancer normal-tumour pair and TCGA 
sarcoma normal-tumour pair 
As a demonstration, two normal-tumour pairs were processed through the entirety of 
metapipeline-DNA. One pair was selected from the Pan-cancer Analysis of Whole 
Genomes (PCAWG) 63 dataset and the other from The Cancer Genome Atlas 
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(Abeshouse, et al., 2017; The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes 
Consortium, 2020). The PCAWG-63 sample was derived from a breast cancer sample 
sequenced with whole-genome sequencing. The TCGA samples was derived from a 
soft tissue sarcoma sample sequenced with exome-targeted sequencing. Both pairs 
were processed using metapipeline-DNA from alignment to subclonal reconstruction. 
Runtimes of metapipeline-DNA for these samples are summarized in Table 2. 

Discussion 
Metapipeline-DNA is designed to facilitate the analysis of DNA sequencing data in a 
highly configurable and robust manner with support for a broad range of variant calling 
and analyses. The volume of available sequencing data is rapidly increasing, bringing 
with it development in tools and algorithms designed to study features from the raw 
data. Metapipeline-DNA collects and encompasses a range of algorithms to ease the 
multi-step analyses often carried out with sequencing data. The design also allows for a 
high level of customizability to select different algorithms for different processing. 

The high level of customizability brings with it the ability to expand the set of algorithms 
and pipelines available within metapipeline-DNA. Individual pipelines within the meta-
pipeline are organized in a modular fashion, allowing for a plug-and-play architecture 
that can be adapted to support additional technologies as they become available. 
Algorithms and workflows for processing long-read data, for example, pose an avenue 
for expanding the meta-pipeline as such tools mature and long-read datasets become 
more common. Specialized algorithms designed to leverage hardware, such as FPGAs 
and GPUs, outside of the standard CPUs and RAM do exist for processing sequencing 
data. The integration of such tools along with support for executing processes on 
specialized hardware remain to be incorporated into metapipeline-DNA and will be 
made possible by the modular nature of pipelines. The context of DNA also brings up 
the possibility of similar meta-pipelines for other biological molecules such as RNA and 
proteins. Such workflows are currently under development to provide a similar level of 
configurability and extensibility for analyses of RNA and protein data. 

The volume of data being generated and processed in sequencing studies is often very 
large. With that comes a need for optimization of analyses pipelines’ data handling. 
Metapipeline-DNA contains several disk usage optimizations to efficiently handle large 
amounts of data while minimizing I/O operations and cross-file system data movement. 
There are additional enhancements that are underway to minimize duplicated data and 
disk usage of metapipeline-DNA. 
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Methods 
Analysis Cohort 

To demonstrate the use of metapipeline-DNA, we chose two normal-tumour pairs: one 
WGS breast cancer pair from PCAWG-63 donor DO2629 and one exome sequencing 
soft tissue sarcoma pair from TCGA donor TCGA-QQ-A8VD (Abeshouse, et al., 2017; 
The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020). 

Alignment and variant calling 

Sequencing reads were aligned to the GRCh38 reference build including decoy contigs 
from GATK using BWA-MEM2 (v2.2.1) in paired-end mode followed by duplicate 
marking with MarkDuplicatesSpark using GATK (v4.2.4.1) (McKenna, et al., 2010; 
Vasimuddin, et al., 2019). The results alignments were recalibrated through Indel 
realignment using GATK (v3.7.0) and base-quality score recalibration using GATK 
(v4.2.4.1). Quality metrics were generated using SAMtools (v1.18) stats and Picard 
(v3.1.0) CollectWgsMetrics (Broad Institute, 2019; Li, et al., 2009). Germline SNPs were 
called using HaplotypeCaller from GATK (v4.2.4.1) followed by variant recalibration 
using GATK (v4.2.4.1). Germline SVs were called using Delly2 (v1.2.6) and Manta 
(v1.6.0) (Chen, et al., 2016; Rausch, et al., 2012). Mitochondrial SNVs were called 
using mitoCaller (v1.0.0) (Ding, et al., 2015). Somatic SNVs were called using MuSE2 
(v2.0.4), SomaticSniper (v1.0.5.0), Strelka2 (v2.9.10), and Mutect2 (v4.5.0.0) followed 
by a consensus workflow to identify variants called by 2 or more callers using BCFtools 
(v1.17) (Danecek, et al., 2021; Ji, et al., 2022; Kim, et al., 2018; Larson, et al., 2012). 
Somatic SVs were called using Delly2 (v1.2.6) and Manta (v1.6.0). Somatic CNAs were 
called using CNV_FACETS (v0.16.0) for the PCAWG sample and using Battenberg 
(v2.2.9) for the TCGA sample (Nik-Zainal, et al., 2012; Shen, et al., 2016). Taking the 
consensus set of somatic SNV calls and the CNA calls, subclonal reconstruction was 
performed using PyClone-VI (v0.1.2), PhyloWGS (v2205be1), and FastClone (v1.0.9) 
(Deshwar, et al., 2015; Gillis, et al., 2020; Xiao, et al., 2020). Data validation was 
performed with PipeVal (v5.1.0) and data processing was done using Nextflow 
(v23.04.2) (Patel, et al., 2024b). 
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