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Abstract

The Notch-Delta signaling pathway enables communication between neighboring cells during 

development1. It plays a critical role in the formation of ‘fine-grained’ patterns, generating distinct 

cell fates among groups of initially equivalent neighboring cells, and in sharply delineating 

neighboring regions in developing tissues 2,3,4,5. The Delta ligand has been shown to have two 

activities: it trans-activates Notch in neighboring cells, and cis-inhibits Notch in its own cell. 

However, it remains unclear how Notch integrates these two activities and how the resulting 

system facilitates pattern formation. To address these questions, we developed a quantitative time-

lapse microscopy platform for analyzing Notch-Delta signaling dynamics in individual 

mammalian cells. By controlling both cis- and trans-Delta levels, and monitoring the dynamics of 

a Notch reporter, we measured the combined cis-trans input-output relationship for the Notch-

Delta system. The data revealed a striking difference between the response of Notch to trans- and 

cis-Delta: While the response to trans-Delta is graded, the response to cis-Delta exhibits a sharp, 

switch-like response at a fixed threshold, independent of trans-Delta. We developed a simple 

mathematical model that shows how these behaviors emerge from the mutual inactivation of 

Notch and Delta proteins. This interaction generates an ultrasensitive switch between mutually 

exclusive sending (high Delta / low Notch) and receiving (high Notch / low Delta) signaling 

states. At the multicellular level, this switch can amplify small differences between neighboring 

cells even without transcription-mediated feedback. This Notch-Delta signaling switch facilitates 

the formation of sharp boundaries and lateral inhibition patterns in models of development, and 

provides insight into previously unexplained mutant behaviors.

Notch and Delta are single-pass transmembrane protein families found in metazoan species. 

Delta in one cell can bind to, and transactivate, Notch in a neighboring cell. This interaction 
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results in proteolytic release of the Notch intracellular domain (ICD), which translocates to 

the nucleus and activates target genes6 (Fig. 1A). Delta also plays a second role, inhibiting 

Notch activity in its own cell (cis-inhibition) 7,8,9,10. Cis-inhibition has been shown to 

involve direct interaction of the two proteins11, but current understanding is incomplete12.

In order to understand how levels of cis- and trans-Delta are integrated by the Notch 

pathway (Fig. 1B), we constructed cell lines that allowed us to independently modulate the 

levels of cis- and trans-Delta, and quantitatively monitor the transcriptional response of a 

Notch reporter (Figs. 1C, S1, supplementary). These cell lines stably expressed Notch 

receptors and corresponding Citrine fluorescent protein (YFP) reporters of Notch activity 

(Figs. S1, S2). These cell lines also contained a doxycycline-inducible chimeric 

Delta(rDll1)-mCherry fusion gene (Fig. S3). In our main cell line, hN1G4esn, the 

intracellular domain of hNotch1 was replaced with a minimal variant of the transcriptional 

activator Gal4, denoted Gal4esn (ref. 13), to avoid activation of endogenous Notch 

targets14,15,16. A second cell line, hN1, containing the full length hNotch1 was analyzed as a 

control (Figure S1). Notch mRNA expression levels in these cells were comparable to those 

observed in early T-cell progenitors where Notch is active17 (supplementary).

We first asked how Notch activity depends on the level of trans-Delta. We adsorbed IgG-

Deltaext fusion proteins to the surface of plates at different concentrations, denoted Dplate 

(Fig. 2A, S4)18,19, and recorded time-lapse movies of Notch activation. Prior to the start of 

each movie (t<0), we inhibited Notch activation using the γ-secretase inhibitor N-[N-(3,5-

Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT). At t=0, DAPT was 

washed out, allowing the fluorescent reporter to accumulate at a rate determined by Notch 

activity (Fig. 2B,C, Movie S1). The YFP production rate showed a graded response to Dplate 

well fit by Hill functions with modest Hill coefficients (Fig. 2D). A similar response was 

observed in the hN1 cell line (Figure S1). This graded response was not due to the use of 

plate-bound ligands: When cells expressing only Delta were co-cultured with cells 

expressing only Notch, we observed a similarly graded dependence of Notch activity on 

Delta expression level, but with greater variability (Fig. S5).

We next set out to quantify the response of Notch to varying levels of cis-Delta in the 

hN1G4esn cell line. We used a scheme in which Delta-mCherry was expressed in a pulse 

prior to the start of the movie and subsequently allowed to dilute, effectively titrating its 

concentration (Fig. 3A)20. These experiments were performed at low cell density, where 

relatively weak intercellular activation of Notch is observed (Fig. S6), and trans-activation 

was induced predominantly by Dplate. At the beginning of the movie Notch reporter 

expression was fully inhibited by high Delta-mCherry levels (Fig. 3B, Movie S2). 

Subsequently, Delta-mCherry levels gradually declined with a timescale of τD=32±2.5 

hours, consistent with dilution by cell growth and division (Fig. 3C). At ton≈40 hours, we 

observed a sharp onset of reporter expression in the median response of the population (Fig 

3C). Even sharper responses were evident in individual cell lineages (Fig. 3D,E,F, S13). 

Similar behavior was observed in the hN1 cell line (Fig. S7).

To quantify the sharpness of cis-inhibition, we computed the rise time, denoted τrise, 

required for Notch activity to increase by a factor of e in individual cells (Figs. 3E, and 3A, 
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inset). The distribution of τrise showed a median of 2.6 hours, considerably shorter than τD 

(Fig. 3F). For comparison, an equivalently sharp Hill function of cis-Delta would require a 

Hill coefficient .

We repeated the experiment at varying levels of Dplate, allowing us to directly measure the 

integrated response of Notch across the two-dimensional input space of cis- and trans-Delta 

levels (Fig. 3G, S14). Activation occurred at a similar ton, and therefore cis-Delta level, 

regardless of Dplate, as indicated by the fixed position of the transition from black to green 

points in Fig. 3G. In addition, the activation remained sharp at all Dplate values where it 

could be clearly measured.

Thus, an explanation for the observed cis and trans signal integration must simultaneously 

account for the three key features of the experimental data: (1) A graded response to trans-

Delta (Fig. 2D), (2) A sharp response to cis-Delta (Fig. 3C-F), and (3) a fixed threshold for 

cis-inhibition across varying levels of trans-Delta (Fig. 3G). We show here that a simple 

model can explain these observations in a unified way (Box 1, Fig. 3H). The model’s key 

assumption is that Notch and Delta in the same cell mutually inactivate each other. As 

shown in Box 1, strong enough mutual inactivation can produce an ultrasensitive switch 

between two mutually exclusive signaling states: Cells can be in a predominantly “sending” 

state, with high Delta and low Notch, or a “receiving” state, with high Notch / low Delta 

(“receiving”), but cannot be in both states at the same time. Alternative models that do not 

include mutual inactivation fail to account for the observed data (Fig. S8).

The three features described above emerge naturally in this model. First, in the absence of 

cis-Delta, Notch activation is proportional to trans-Delta concentration, generating a graded 

response. Second, a sharp response to cis-Delta results from mutual inactivation, which 

causes an excess of either protein to strongly diminish the activity of the other. Finally, the 

switching point occurs when Notch and cis-Delta levels are comparable, and is therefore 

only weakly dependent on trans-Delta.

The mutual inactivation model predicts cis-inhibition, not just of Notch by Delta, but also of 

Delta by Notch. This interaction is supported by results in other systems12,21,22. We tested 

this prediction in our system using a transactivation assay based on co-culture of Delta-

expressing “sending” cells with Notch reporter cells. Expression of Notch in the Delta-

expressing cells reduced their ability to transactivate, as predicted (Fig. S9). While the exact 

biochemical mechanism of mutual inactivation remains unclear, we observed no sharp drop 

in total cellular Delta-mCherry fluorescence during switching, suggesting that the inactive 

complex may be stable in these conditions (Fig. 3C,D).

What implications does the signaling switch have for multicellular patterning? Consider two 

neighboring cells which produce Notch and Delta at constant rates (Fig. 4A). A slight excess 

of Notch production in one cell and a slight excess of Delta production in its neighbor can 

generate a strong signaling bias in one direction: the first cell becomes a receiver and the 

second becomes a sender. In this way, a small difference in production rates between cells is 

amplified into a much larger difference in Notch activity (Fig. 4B). This amplification does 

not require transcriptional regulation or feedback.
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The send-receive signaling switch can facilitate formation of sharp boundaries. For example, 

in Drosophila, Notch and Delta sharply delineate wing vein boundaries 4,5. In this system, 

Delta production is initially expressed in a graded profile transverse to the vein. Eventually, 

Notch signaling is restricted to two sharp side bands on either side of the vein axis.

As a simplified model, we simulated the development of a field of cells with a graded rate of 

Delta production and a uniform rate of Notch production (Fig. 4C). The mutual inactivation 

model generated sharply defined side-bands of Notch signaling at positions where the two 

production rates intersect, i.e. where ‘sender’ and ‘receiver’ cells are next to each other (Fig. 

4C). Moreover, this model explains a striking mutant behavior occurring in the Drosophila 

wing vein system. While Notch and Delta are individually haploinsufficient (causing thicker 

veins), the Notch+/- Delta+/- double mutant restores the wild-type phenotype23. This 

suppression of the single mutant phenotypes in the double mutant emerges automatically in 

the model because proportional rescaling of the Notch and Delta production rates does not 

move their intersection points (Fig. 4D). This suppression is maintained across a broad range 

of parameter values and persists even with additional feedbacks (Fig. S10f), but is difficult 

to explain in other models (Fig. S10, supplementary).

The send-receive signaling switch can also facilitate lateral inhibition patterning. When 

Notch transcriptionally downregulates Delta expression, the resulting intercellular positive 

feedback loop can generate ‘checkerboard’ patterns of Notch activity (Fig. 4E)24,25. Without 

mutual inactivation, pattern formation requires a minimum Hill coefficient of n > 2, or 

higher, in the regulatory feedback loop (Fig. 4F, left, supplementary). Although we cannot 

rule out such cooperativity, or additional feedback loops, no evidence for strongly 

cooperative trans-activation was observed here or previously (Figs. 2D, S1). In contrast, 

mutual inactivation enables patterning even without cooperativity, by introducing a sharp 

response to changes in Delta expression, (Fig. 4F, right panel). In addition, for strong 

enough cis-inhibition, mutual inactivation allows cells with high Delta levels to co-exist next 

to one another at steady-state, leading to a broader range of possible patterns (Fig. S17). 

Finally, we note that low levels of free Notch (Delta) exist in sender (receiver) cells at finite 

mutual inactivation strength (Fig. S11). The resulting signaling between like cells (senders 

or receivers) can play a role in lateral inhibition patterning dynamics.

Different signal transduction pathways are optimized to encode and transmit information in 

different ways, depending on the tasks they perform in the organism. Our results show that 

mutual inactivation between Notch and Delta in the same cell forces cells into 

predominantly sending or receiving states (Box 1 Figure). In a multicellular context, this 

mechanism amplifies small initial differences between neighboring cells, and facilitates 

pattern formation (Fig. 4). This signaling switch thus appears to optimize the Notch-Delta 

pathway for directional signaling, and may explain why it is employed in specific 

developmental processes. Moreover, this mechanism could also provide other advantages 

such as faster dynamics 26,27. We note that interactions between Notch and Delta are 

typically embedded in more complex dynamic regulatory networks that involve additional 

feedbacks. It will be important to explore how this signaling switch functions in the context 

of larger regulatory circuits.
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Box 1: Model of mutual inactivation of Notch and Delta

Here we describe a simple model of Notch-Delta interactions that explains the 

experimental data and provides insight into developmental patterning processes. The 

model involves several reactions: First, during intercellular signaling Notch in one cell 

binds to extracellular Delta, Dtrans, leading to release of the Notch intracellular domain 

and degradation of its extracellular domain6. Similarly, Notch in a neighboring cell, 

Ntrans, can bind to Delta. Second, Notch binds irreversibly to Delta in the same cell to 

form a stable, inactive, complex, which is effectively removed from the system12. 

Finally, Notch and Delta are produced at constant rates, and degraded and/or diluted at a 

constant rate, in addition to their removal through the interactions described above.

These reactions can be expressed as a set of ordinary differential equations for free 

Notch, N, and free Delta, D, in an individual cell. An additional equation represents the 

intracellular domain of Notch, denoted S, which activates expression of the fluorescent 

reporter gene:

Here, Dtrans represents Dplate in Figs 2-3, but could also represent Delta levels in one or 

more neighboring cells (supplementary). Similarly, D in these equations corresponds to 

Dcis in the experiments. βN and βD denote the production rates of Notch and Delta, 

respectively. The combined degradation and dilution rate, γ, is assumed for simplicity to 

be the same for Notch and Delta. γS is the rate of decay for S. kc and kt determine the 

strengths of cis-inhibition and trans-activation, respectively. See supplementary for a 

more detailed description.

At steady-state, mutual inactivation leads to a switch between two qualitatively distinct 

behaviors, depending on the relative production rates of Delta and Notch. When βD > βN, 

excess Delta effectively inactivates most Notch, allowing cells to send, but not to 

efficiently receive, signals. Conversely, when βD < βN, excess Notch effectively 

inactivates Delta, allowing cells to receive, but not efficiently send. Thus, the system 

approaches two mutually exclusive signaling states: high Delta / low Notch (“sending,” 

pink shading in Box Fig.), and high Notch / low Delta (“receiving,” blue shading). Note 

that this switch is not bistable.

At steady-state the transition between the two regimes is ultrasensitive: Near the 

threshold, a small relative change in βD (or βN) can lead to a much larger change in 

signaling (Fig. S11). Related biochemical kinetics occur in bacterial sRNA, and protein 

sequestration27,28,29. In Fig. 3, ultrasensitivity occurs dynamically in response to the 

decay of the total Delta concentration (supplementary).
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Methods Summary

Genetic constructs and cell lines were assembled by standard methods (Table S1). All cell 

lines used in the main text (Table S2) were derived from T-REx-CHO-K1 (Invitrogen). Cell 

lines were constructed by sequential rounds of Lipofectamine 2000 (Invitrogen) transfection 

and selection. Stably transfected clones were isolated by limiting dilution or fluorescence-

activated cell sorting (FACS). Time-lapse microscopy was performed with cells plated on 

24-well glass-bottom plates (Mattek). For plate-bound Delta experiments, IgG-Deltaext was 

adsorbed to the plate together with 5 μg/ml hamster fibronectin (Innovative Research) prior 

to cell plating. Before imaging, cells were switched to a low-fluorescence medium, 

consisting of 5% FBS in αMEM lacking riboflavin, folic acid, phenol red, and vitamin B12. 

Movies were acquired using an Olympus IX-81 ZDC microscope, equipped with a 37°C 

environmental chamber supplying 5% CO2, a 20X 0.7 NA objective, and automated 

acquisition software (MetaMorph). Western blots for Gal4 were obtained using standard 

protocols. Blots were probed with rabbit anti-Gal4 DBD primary antibody (sc-577, Santa 

Cruz Biotechnology, 1:200) followed by incubation with horseradish peroxidase-labeled 

anti-rabbit IgG secondary antibody (Amersham, 1:2000). Bands were quantified using a 

VersaDoc gel imaging system. qRT-PCR was performed using standard protocols based on 

the RNeasy kit (Qiagen) and iScript cDNA synthesis kit (Bio-Rad). Co-culture experiments 

were analyzed for YFP fluorescence using a FACScalibur flow cytometer (Becton 

Dickinson) and standard protocols. Movies were analyzed in several stages. First, individual 

cell nuclei were identified on CFP images using a custom Matlab-based algorithm based on 

edge detection and thresholding of constitutively expressed H2B-Cerulean fluorescence. 

Then, for analysis of single-cell expression trajectories, individual nuclei were tracked 

across frames using custom software (Matlab, C) based on the SoftAssign algorithm 

(supplementary). All single-cell trajectories were validated manually. For further details see 

supplementary.

Methods

Genetic constructs

We used standard molecular biology techniques to assemble all constructs used in this paper 

(Table S1). The construct used to generate the hN1 cell line, pcDNA3-hN1-mCherry was 

Sprinzak et al. Page 6

Nature. Author manuscript; available in PMC 2010 November 06.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



constructed by fusing the coding sequence of mCherry to hN1, provided by Jon Aster7. The 

construct used to generate the hN1G4esn cell line, pcDNA3-hNECD-Gal4esn was 

constructed by replacing amino acids 1742 to 2556 of hNotch1 with the amino acids 1-147 

and 768-881 of Gal4. The Delta-mCherry fusion consists of the entire coding sequence of 

rDll1 concatenated directly to the coding sequence of mCherry. The reporter for hNotch1 

activation was constructed from the 12XCSL construct provided by Urban Lendahl6. The 

reporter for hNECD-Gal4esn activation was constructed from the UAS construct provided by 

Scott Fraser5. Both reporters used a protein fusion of H2B-Citrine in order to localize 

fluorescence to cell nuclei where it could be more accurately quantified. Doxycycline-

inducible constructs were based on the T-REx system (Invitrogen).

Generation of stable cell lines

All cell lines used in the main text (Table S2) were based on the cell line T-REx-CHO-K1 

(Invitrogen). Cells were grown in Alpha MEM Earle’s Salts (Irvine Scientific) 

supplemented with 10% Tet System Approved FBS (Clontech), 100 U/ml penicillin -100 

ug/ml streptomycin − 0.292 mg/ml L-glutamine (Gibco), and 10 μg/ml Blasticidin 

(InvivoGen) at 37°C in the presence of 5% CO2 under a humidified atmosphere. Cell lines 

incorporating multiple transgenes were constructed by sequential rounds of Lipofectamine 

2000 (Invitrogen) transfection and selection. Stably transfected clones were generated by 

limiting dilution or fluorescence-activated cell sorting (FACS) of single cells. hN1 and 

hN1G4esn cell lines were first created by stably integrating the 12xCSL-H2B-Citrine or 

UAS-H2B-Citrine reporters, respectively, into T-REx-CHO-K1 cells. After selection with 

media containing 400 μg/ml Zeocin (Invitrogen) and 10 μg/ml Blasticidin (InvivoGen), 

individual clones were obtained. Clones with the best dynamic range of reporter induction 

were identified and used in subsequent stages. pcDNA3-hN1-mCherry or pcDNA3-hNECD-

Gal4esn was transfected into the 12xCSL-H2B-Citrine or UAS-H2B-Citrine reporter cell 

lines, respectively. Cells were selected with media containing 400 μg/ml Zeocin, 10 μg/ml 

Blasticidin, and 600 μg/ml Geneticin (Invitrogen). Individual clones were obtained and 

tested for Notch activity by plating on 2.5 ug/ml IgG-Deltaext. Clones with minimal 

background levels and high reporter activation when exposed to Delta were selected and 

transfected with a plasmid expressing Delta-mCherry under a doxycycline inducible 

promoter (pcDNA5-TO-Dl-mCherry). These cells were selected in media containing 400 

μg/ml Zeocin, 10 μg/ml Blasticidin, 600 μg/ml Geneticin, and 500 μg/ml Hygromycin 

(InvivoGen). Clonal cell populations were obtained, and the clone with the lowest mCherry 

background expression in the absence of doxycycline, as well as good inducibility of 

mCherry expression when exposed to 1 μg/ml doxycycline, was selected for experiments. 

hN1 and hN1G4esn cell lines also contain an integrated H2B-Cerulean under constitutive 

CMV promoter. A separate cell line containing only inducible Delta-mCherry was created 

by transfecting T-REx-CHO-K1 cells with pcDNA5-TO-Dl-mCherry. Clones were 

generated as above, but selection media contained only Blasticidin and Hygromycin. This 

cell line was then used to generate the TO-DMC+hN1G4esn cell line by stably transfecting 

with pcDNA3-hNECD-Gal4esn construct (600 μg/ml Geneticin).
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Experimental techniques and imaging protocols

Surface preparation: All time-lapse microscopy experiments were performed with cells 

plated on 24-well glass bottom plates (Mattek). IgG-Deltaext constructs were generously 

provided by Irwin Bernstein. For plate-bound Delta experiments, IgG-Deltaext was adsorbed 

together with 5 μg/ml hamster fibronectin (Innovative Research) to the glass plate surface by 

incubation for 1 hour at 4°C prior to cell plating. Cells were diluted to 2×104 cells/ml (1×105 

cells/ml for coculture experiments). A calibration was performed for determining the 

dependence of active IgG-Deltaext concentration on the concentration added during 

incubation (see supplementary). Preparation of cells for imaging: Before imaging, cells were 

switched to a low-fluorescence medium, consisting of 5% FBS in αMEM lacking riboflavin, 

folic acid, phenol red, and vitamin B12. Time-lapse microscopy: Movies were acquired 

using an Olympus IX-81 ZDC microscope, equipped with a 37°C environmental chamber 

supplying 5% CO2, a 20X 0.7 NA objective, and automated acquisition software 

(MetaMorph). For each movie, fluorescence images were acquired in CFP, YFP, and RFP 

channels, as well as Differential interference contrast (DIC).

Western blot

Western blots were performed using standard protocols. For detection of Gal4, TO-Gal4esn 

cells were either uninduced or induced for 24 hr with 100 ng/ml of doxycycline. 4 ×106 cells 

were lysed with 200ul 1.5x complete SDS loading buffer at 0 hr, 1 hr, 2 hr, 4 hr and 6 hr 

post-doxycycline removal. 10ul of cell lysate was run in triplicate on a NuPAGE Novex 

4-12% Bis-Tris Midi Gel (Invitrogen) and transferred to a 0.2 μm nitrocellulose membrane 

using the iBlot from Invitrogen. The blot was probed with rabbit anti-Gal4 DBD primary 

antibody (sc-577, Santa Cruz Biotechnology, 1:200) followed by incubation with 

horseradish peroxidase-labeled anti-rabbit IgG secondary antibody (Amersham, 1:2000). 

Bands were quantified using a VersaDoc gel imaging system.

Real-time qRT-PCR

qRT-PCR was performed using standard protocols based on the RNeasy kit (Qiagen) and 

iScript cDNA synthesis kit (Bio-Rad). RNA was isolated from hN1 and hN1G4esn cells. 

cDNA was subsequently synthesized from 1ug of RNA. From a 20ul reaction, 2ul of cDNA 

was used to assess Notch and β-Actin mRNA levels.

Flow cytometry analysis of co-cultures

TO-DMC or TO-DMC+ hN1G4esn cells were co-cultured with hN1G4esn-No-Delta cells. 

1×105 cells were plated at a ratio of 20% Delta cells and 80% Notch reporter cells. For each 

set of co-cultures, a 12 hr pulse of 1.6 ng/ml and 100 ng/ml doxycycline was performed (a 

well with no doxycycline served as a control). 24hr after doxycycline removal, co-cultured 

cells were trypsinized and then analyzed for YFP fluorescence using a FACScalibur flow 

cytometer (Becton Dickinson) and standard protocols.

Image and data analysis

Movies were analyzed in several stages: (1) Segmentation. Individual cell nuclei were 

identified on CFP images using a custom Matlab-based algorithm based on edge detection 
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and thresholding of constitutively expressed H2B-Cerulean fluorescence. (2) Tracking. For 

analysis of single-cell expression trajectories, individual nuclei were tracked across frames 

using custom software (Matlab, C) based on the SoftAssign algorithm– see supplementary 

materials for details. (3) Verification. All single-cell trajectories were validated using a 

semi-automated custom software system (Matlab). (4) More detailed analysis of the 

resulting data is described in supplementary material.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. System for analyzing signal integration in the Notch-Delta pathway
(A) Notch (blue) and Delta (red) interactions are indicated schematically. (B) Notch activity 

integrates cis- and trans-Delta. (C) CHO-K1 cell line for analyzing Notch activity. (C) The 

hN1G4esn cell line stably incorporates a variant of hNotch1 in which the activator Gal4esn 

replaces Notch ICD. This cell line also contains genes for Histone 2B (H2B)-Citrine (YFP) 

reporter controlled by a UAS promoter, a Tet-inducible Delta-mCherry fusion protein, and a 

constitutively expressed H2B-Cerulean (CFP) for image segmentation (not shown). A 

similar cell line expressing full length hNotch1 (hN1 cell line) was also analyzed (Figs. S1, 

S2). These cells exhibit no detectable endogenous Notch or Delta activities. Notch-Delta 

interactions are indicated schematically and do not represent molecular interaction 

mechanisms11.
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Figure 2. Trans-activation of Notch occurs in a graded fashion
(A) Schematic of experimental design. The rate of increase of fluorescence (slope of green 

line) measures Notch activity. (B) Typical hN1G4esn filmstrip, with Dplate=1.16 μg/ml, and 

frame times as indicated (Movie S1, cf. Fig. S6). (C) hN1G4esn cells respond in a graded 

manner to varying Dplate concentrations. Curves show the median fluorescence of individual 

cells within a single field of view for selected Dplate levels (see Fig. S15 for distributions). 

(D) The relationship between Dplate and Notch activity (in Relative Fluorescence Units per 

hour, from the linear regime in (C)). Hill function fit is indicated by black lines, with Hill 

coefficient n=1.7 (95% confidence interval (CI): 0.8-2.7). Similar results were obtained 

using the hN1 cell line (Fig. S1). Note that doxycycline does not directly affect Notch 

activation or cell growth, nor does Dplate affect cell growth (Fig. S12).
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Figure 3. Cis/trans signal integration by Notch
(A) Schematic of the experimental protocol. Inset: Rise time, τrise, is the time required for 

Notch activity (black line, or slope of green line) to change by a factor of e . (B) Filmstrip of 

hN1G4esn cells, with Dplate=1.45 μg/ml (Movie S2), showing Delta-mCherry fluorescence 

(red) and concomitant activation of Notch reporter (green); times as indicated (cf. Fig. S6). 

(C) Population average (median) response for the same movie shows a slow decay of Delta-

mCherry fluorescence (red points), but a sharp response of reporter expression (green 

points). Constitutively expressed pCMV-H2B-Cerulean (blue) remains constant (control). 

Compare single-cell tracks in Fig. S13, and response to modulation of dox in Fig. S14. (D) 

Single-cell response for two individual cells (solid and dashed lines, colors as in C). Black 

arrows mark cell divisions. (E) Single cell traces in (D) replotted, but shifted up after each 

cell division event to ‘add back’ sister cell fluorescence, in order to show the continuity of 

Notch activity (see also Fig. S13). (F) Histogram of τrise from 26 non-overlapping cell 

lineages (Fig. S13). (G) Notch response to both cis and trans Delta. Data shown are from 2 

duplicate movies acquired at each of 12 Dplate values for hN1G4esn cells. Green coloring 

indicates points that exceed a detection threshold. Note that turn-on (black to green 

transition) occurs at approximately the same time in all movies. (H) Simulations based on 
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the model in Box 1 are qualitatively similar to data in (G) (see supplementary and Fig. S16 

for model details).
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Figure 4. The mutual inactivation model in multicellular patterning
(A) Signal amplification (schematic). Two interacting cells with the same amount of Notch 

(here, 2 molecules), but different amounts of Delta (1 or 3 molecules). Due to the cis-

interaction between Notch and Delta, signaling is strongly biased to cell1. (B) Notch 

amplifies differences between cells. Signal amplification, defined as shown, for two 

interacting cells, with different Delta production rates, βD
(2) = 1.35 βD

(1) (see model in 

supplementary). The x-axis specifies the average Delta production rate, 

. Maximum amplification occurs when Delta production rates flank 

βN (vertical line). Stronger mutual inactivation (smaller kc/kt) increases signal amplification. 

(C-D) Sharp boundary formation in response to a gradient of Delta production. (C) 

Simulation of a field of interacting cells in which Delta production rates decay exponentially 

from the center, according to βD (x) = βD
0exp (−x/x0) with x0 =7 cells (dashed red line). 

Notch production rate, βN, is constant (dashed blue line). Resulting free Notch and Delta 

protein levels are indicated (solid lines). Notch activation occurs in two sharply defined 

columns of cells (green line in plot and green cells in cellular diagram). (D) This model 

explains suppression of mutant phenotypes. Gray lines indicate positions where βN = βD (x), 

leading to Notch activity peaks. Simultaneous reduction of both Notch and Delta production 

rates by half maintains boundary positions (dotted lines) (Fig. S10). (F-G) Mutual 

inactivation facilitates lateral inhibition patterning, shown schematically in (F). (G) In the 

absence of cooperativity in regulatory feedback, a standard lateral inhibition model 24 
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cannot pattern (first panel) while a model of lateral inhibition with mutual inactivation can 

(second panel).
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