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The influence of astrocytes on synaptic function has been increasingly studied,

owing to the discovery of both gliotransmission and morphological ensheath-

ment of synapses. While astrocytes exhibit at best modest membrane potential

fluctuations, activation of G-protein coupled receptors (GPCRs) leads to a pro-

minent elevation of intracellular calcium which has been reported to correlate

with gliotransmission. In this review, the possible role of astrocytic GPCR

activation is discussed as a trigger to promote synaptic plasticity, by affecting

synaptic receptors through gliotransmitters. Moreover, we suggest that

volume transmission of neuromodulators could be a biological mechanism

to activate astrocytic GPCRs and thereby to switch synaptic networks to the

plastic mode during states of attention in cerebral cortical structures.
1. Introduction
With the advent of molecular genetics and cellular imaging techniques, our

understanding of brain function has advanced substantially in the recent

decade. Glial cell research has indisputably benefited from these techniques,

as glial cells are generally electrically passive, and their dynamism resides

most probably in biochemical and morphological changes. Among the glial

cells, astrocytes occupy a significant proportion of the brain volume in mam-

mals and are arguably the most numerous in primate cortical grey matter.

The morphology of astrocytes is best described as an interface between vascular

and neuronal networks. A typical protoplasmic astrocyte has a bushy organiz-

ation of microprocesses that surround synapses and a few large processes that

impinge on neighbouring vasculature (giant end-feet). For white matter fibrous

astrocytes, the microprocesses extend around the nodal regions of myelinated

axons. Such strategic positioning of astrocytes is indeed well matched with

the classically supposed functions of astrocytes, including the clearance of

synaptically released neurotransmitters, regulation of ionic concentrations and

mediation of energy metabolism substrates. Since gliotransmission—the

ability of astrocytes to secrete biochemical molecules to influence surrounding

neurons—was discovered about two decades ago [1–3], astrocytes have been

hypothesized to play active roles in neuronal network operations.

Membrane potential fluctuations recorded from the soma of mature astrocytes

are quite modest (i.e. within several millivolts) at best. The resting membrane

potential of a typical astrocyte is less than 280 mV, which is close to the reversal

potential of potassium (Kþ). Astrocytes have an order-of-magnitude lower input

resistance than pyramidal cells owing to Kþ channels that are permeable at resting

membrane potentials (e.g. TWIK-1, TREK-1 and Kir4.1) [4,5] as well as the exist-

ence of hemichannels and gap junctions. While these properties and the lack of

active conductance make astrocytes electrophysiologically quiescent, astrocytes

have been reported to have cytosolic calcium (Ca2þ) elevations and intercellular

Ca2þ waves [2]. These Ca2þ elevations occur without large membrane potential

changes, because the Ca2þ is released from internal Ca2þ stores such as the

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2013.0604&domain=pdf&date_stamp=2014-09-15
mailto:hirase@brain.riken.jp


sensory system

(a)

(c)

(b)

subcortical areas

neurotransmitter
neuromodulator
gliotransmitter

neuromodulator

neurotransmitter

wiring transmission volume transmission

Ca2+ Ca2+

Figure 1. Wiring transmission versus volume transmission and their effects on astrocytes. (a) Wiring transmission targets designated synapses and produces localized
responses in perisynaptic astrocytic processes. (b) In volume transmission, the neuromodulators diffuse into tortuous and convoluted ECS upon release from
en passant varicosities. Such ECS diffusion results in activation of astrocytic GPCRs in larger areas than a synaptic component, resulting in synchronized and spatially
spread astrocytic Ca2þ activities. (c) Volume transmission and synaptic transmission can occur simultaneously in brain states characterized by neuromodulator release,
for instance, during attention.
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endoplasmic reticulum (ER). Such cytosolic Ca2þ elevations in

astrocytes have also been described in vivo in rodents [6]. Trig-

gers that initiate astrocytic Ca2þ elevation are diverse, but

common neurotransmitters and neuromodulators are potent

agonists for astrocytic Ca2þ elevation through G-protein

coupled receptors (GPCRs). One of the key questions in

neuron–astrocyte interactions is whether astrocytic Ca2þ

elevations play any role in brain operation, and to identify

the circumstances under which such neuron–glia interactions

occur. In this article, we focus on how subcortical neuromodu-

latory signals mediate astrocyte–neuron interactions in the

context of synaptic plasticity in cerebral cortical structures.
2. Volume transmission versus synaptic
transmission

Chemical transmitters are released in two distinct transmission

modes: wiring transmission and volume transmission (forclassic

reviews, see [7,8]). Wiring transmission is intercellular communi-

cation mediated via a physically defined connecting structure.

Synaptic transmission is the primary mechanism of wiring

transmission, and its primary feature is fast (millisecond-order)

point-to-point communication. Glutamate and GABA are the

predominant neurotransmitters for this in mammalian cortical

structures. The potency and reliability of the synapse are the

key determinants of information transmission. Astrocytic micro-

processes that ensheath synapses are thought to increase the

fidelity of synaptic transmission by rapid neurotransmitter

clearance and insulation from other synapses [9].

Volume transmission is by non-synaptic release of

neuromodulators diffusing through the extracellular space

(ECS; figure 1), which is defined by an intricate and dense

organization of synaptic and glial process morphology (for a

review, see [10]). As a result, the manner of diffusion deviates
significantly from free diffusion because of the tortuosity and

limited volume fraction of the ECS. Subsequently, a relatively

large number of cells sense neuromodulators via extrasynap-

tic receptors. In the cerebral cortex and hippocampus,

volume-transmitted neuromodulators include acetylcholine

and monoamines. The afferent fibres for neuromodulators

are mainly of subcortical origin, and usually make asynaptic

junctions in the cortex and hippocampus via terminal varicos-

ities in stark contrast to glutamatergic and GABAergic

innervation. For example, synaptic incidences are a mere

10–20% of the total varicosities for acetylcholine [11,12] and

noradrenaline [13,14] and 20–30% for serotonin [15]. In

addition to the complex ECS geometry, the true nature of

ECS diffusion is complicated by the presence of diffusion

obstacles (e.g. extracellular matrix and cell adhesion molecules)

and active interference system (e.g. uptake by transporter or

enzymatic degradation) [10,16]. Theoretical models and simu-

lations have been compared with experimental data obtained

by real-time iontophoresis or fluorescent macromolecule

imaging [10].

As much as neurons receive this extrasynaptic neuro-

modulator transmission, astrocytes surrounding synapses

are also the receivers. Serial reconstruction of the neuropil

of rat hippocampal grey matter shows that glial processes

occupy over 10% of all plasma membrane area [17]. This

proportion is even higher when the analysis is confined to

the extrasynaptic space, and thus glial surface represents a

considerable target area for volume-transmitted neuromodu-

lators. Moreover, astrocytes express receptors for subcortical

neuromodulators [18].

Other remarkable differences between synaptic trans-

mission and volume transmission are the time course and

spatial range of signal transfer. While neurotransmitters travel

20–30 nm across the synaptic cleft, volume-transmitted neuro-

modulators travel on the scale of micrometres to reach their
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receptors. At the receptor end, ionotropic receptors dominate in

glutamatergic and GABAergic synapses of the cerebral cortex

and hippocampus, ensuring millisecond-order signal trans-

mission. Extrasynaptic receptors of neurons include both

ionotropic receptors and metabotropic GPCRs. Literature

suggests that neuromodulator receptors in astrocytes are

predominantly GPCRs that have a much slower signal trans-

duction (at least hundreds of milliseconds) [19]. Therefore,

while affecting many targets, volume transmission is not

expected to provide temporally precise signal transmission.

Considering the tight coupling of neuromodulatory systems

and behavioural states, and the slow time course of GPCR sig-

nalling, elucidation of the significance of astrocytic activation by

neuromodulators may yield a new insight into understanding

neuronal information processing in distinct behavioural states.
Soc.B
369:20130604
3. Astrocytic response to neurotransmitters and
neuromodulators

Astrocytes respond to neurotransmitters and neuromodulators

through a wide variety of GPCRs. Their activations trigger

production of inositol 1,4,5-triphosphate (IP3), which induces

Ca2þ release from the ER. So far, several groups have reported

that Ca2þ elevations in astrocytes lead to gliotransmission of

glutamate, D-serine or ATPand in turn regulate neuronal activity

and synaptic strength in brain slices [20–26]. D-Serine is an

endogenous co-agonist of NMDA receptors (NMDARs), and

several studies have suggested that astrocytes release D-serine

by exocytosis [27–29]. D-Serine release from a single astrocyte

can modulate neighbouring neuronal NMDAR currents [26],

and basal astrocytic Ca2þ concentration and extracellular

D-serine concentration are correlated [30]. Electron-microscopic

analysis showed that glutamate and D-serine are localized in

microvesicles near the ER within the perisynaptic processes of

astrocytes [31], hinting at the significance of perisynaptic Ca2þ

signalling in gliotransmission. Recent studies using high-

resolution Ca2þ imaging of hippocampal slices suggested that

astrocytic microprocesses respond to single synaptic activity

with rapid and localized Ca2þ elevation [32,33]. Roles of glio-

transmission from astrocytic processes in synaptic function

have been studied in the hypothalamic nuclei, where the astro-

cytic coverage of synapses decreases during lactation. The

availability of D-serine in the synapses was reduced in slices

from lactating rats [34].

There is growing evidence that astrocyte-derived ATP,

which was initially categorized as a paracrine messenger

responsible for interglial propagation of Ca2þ waves [35–37],

can regulate synaptic transmission [22,38]. Although several

non-vesicular pathways have been identified, recent studies

using transgenic mice selectively expressing a dominant-

negative SNARE protein in astrocytes demonstrated the

significance of vesicular release of astrocytic ATP [22,39].

Another study showed that electrical stimulation of excitatory

input to the hypothalamus induces metabotropic glutamate

receptor (mGluR)-dependent astrocytic Ca2þ elevation and

release of ATP [40]. Notably, a rise in Ca2þ in the astrocyte

compartments immediately adjacent to the postsynaptic

neuron was necessary for ATP-mediated changes in synaptic

transmission. Interestingly, noradrenaline application also led

to astrocytic ATP release and similar synaptic transmission

changes [41], implying that the astrocytes are capable of
responding to and possibly integrating both neurotransmitters

and neuromodulators (figure 1).

It has been shown that astrocytic Ca2þ signals in the adult

brain are mediated by volume-transmitted neuromodulators.

Upon electrical stimulation of locus coeruleus (LC; the sole

source of noradrenergic input to cortex), astrocytes exhibit

broad Ca2þ increases in somatosensory cortex [42]. Aversive

stimulation, known to result in phasic LC activity, also led to

widespread adrenergic astrocytic Ca2þ elevation throughout sen-

sory cortex, which is more pronounced in awake conditions [43].

Acetylcholine also activates global astrocytic Ca2þ signalling in
vivo. The predominant sources of cholinergic afferents for the cer-

ebral cortex and hippocampus are the nucleus basalis of Meynert

(NBM) and medial septum. We and others have demonstrated

that stimulation of the respective cholinergic nuclei leads to

muscarinic acetylcholine receptor (mAChR)-dependent astrocy-

tic Ca2þ elevation in the cortex [44,45] and hippocampus [46].

Notably, NBM stimulation led to an increase in extracellular

D-serine in the cortex of control mice, but not of mice lacking

astrocyte-dominant IP3 receptors (IP3R2) [44]. Our results

indicate that astrocytic Ca2þ responses by whisker or NBM

stimulation differ in the following two aspects: (i) whisker stimu-

lation induces mGluR-dependent weaker Ca2þ responses [47],

whereas NBM stimulation produces mAChR-dependent robust

responses; and (ii) while whisker-induced Ca2þ surges return

to baseline even during stimulation, plateau Ca2þ increases

persist throughout NBM stimulation.

GPCR signalling in astrocytes has also been suggested to

regulate extracellular Kþ [48,49], neurotransmitter uptake [50]

and neurovascular coupling [51–53] (but also see [54,55]).

On the other hand, some recent studies that use molecular

genetics have challenged the validity of gliotransmission.

Astrocytic expression of and subsequent activation of a

foreign GPCR (MrgA1) to selectively induce astrocytic Ca2þ

elevation [56,57] or genetic deletion of IP3R2s to diminish

astrocytic Ca2þ elevations [57,58] did not result in a notable

change in excitatory synaptic transmission in mouse hippo-

campal slices. This apparent contradiction may be due to the

method used to stimulate astrocytes. For example, uncaging

IP3 in MrgA1-positive astrocytes increased the frequency of

glutamatergic miniature excitatory postsynaptic currents

(mEPSCs) in nearby neurons [56]. A recent study further

addressed this issue and showed that Ca2þ uncaging in

astrocytes triggers glutamate release, whereas agonist acti-

vation of MrgA1, PAR-1 or purinergic receptors does not

[49]. Moreover, astrocytic glutamate release can be mediated

by channels [59,60], and Gq-coupled GPCRs may also have

IP3-independent pathways [61]. Future investigation on

neuromodulator-mediated Ca2þ signalling in astrocytic pro-

cesses and their functional manipulation in vivo will advance

our understanding of the role of astrocytes in normal brain

function. Other key issues for future studies are to understand

the functional significance of neuromodulator-driven global

responses and neurotransmitter-driven individual localized

transients and to identify the biological situation where these

signalling modes are employed differentially or in synergy.
4. Neuromodulator activation and gamma
oscillations

Distinct neuromodulators contribute to different modes of ani-

mals’ behavioural states. Likewise, animals’ behavioural states
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and neuronal population dynamics are tightly correlated. For

instance, large amplitude slow waves (0.5–2 Hz) appear in

the electroencephalogram (EEG) during deep sleep, whereas

faster and lower amplitude patterns are seen in waking

states. Gamma oscillations (30–100 Hz) appear during states

of attention [62], and this rhythm is thought to bind neural

representation of different sensory modalities [63]. Detailed

cellular mechanisms underlying gamma oscillations are yet

to be fully elucidated, but reciprocal interactions between

excitatory pyramidal neurons and inhibitory interneurons,

particularly parvalbumin positive fast-spiking basket cells,

probably play a key role [64]. As attention is naturally related

to cognitive processing and learning efficiency, synaptic

plasticity is probably induced during the gamma oscillation

state. Indeed, repetitive phase locked activity of neurons at a

gamma frequency provides a situation favourable for spike-

timing-dependent plasticity [65]. Moreover, this type of

plasticity is enhanced by activation of mAChRs [65].

As neuromodulator release and EEG states are both

highly correlated to an animal’s behaviour, they should natu-

rally be closely linked. As a matter of fact, the gamma states

also coincide with release of neuromodulators. For instance,

gamma oscillations are induced by electrical stimulation of

the NBM in anaesthetized rats [66] or optogenetic stimulation

of cholinergic neurons in the basal forebrain in awake mice

[67]. Moreover, noradrenergic transmission has been shown

to be crucial for waking gamma that appears shortly after

gas anaesthesia wears off [68]. During awake and REM

sleep periods, higher amounts of acetylcholine are released

in the cortex and hippocampus than during slow wave

sleep [69]. In accordance with cortical activation, cholinergic

neurons in the basal forebrain increase their firing rates,

and alter their firing mode from single spike to rhythmic

bursting [70].

Exposure to enriched environments (EE) has been known

to boost animals’ learning ability and its neural circuit remo-

delling effect has been studied for decades. We recently

found that hippocampal gamma amplitude increases in rats

raised in EE, which hints at a possible link between gamma

oscillation and learning [71]. Increases of spine density and

dendritic complexity are common effects of EE in the cortex

and hippocampus. Although the mechanism for chronic

gamma increase is most probably multifactorial, increased

input to pyramidal cells is a conceivable factor, as gamma

is a product of balanced excitatory and inhibitory synaptic

input [72]. The requirement of NMDAR activation for chronic

gamma enhancement [71] also suggests that a long-term

potentiation (LTP)-like mechanism may be involved. Interest-

ingly, GABAergic networks have also been reported to be

altered by EE [73].

As well as neurotransmission, there are notable changes

in neuromodulation after EE. Rats raised in EE after weaning

show increased hippocampal and anterior cortical choline

acetyltransferase activity after maze training [74]. Similarly,

the concentration of released acetylcholine is higher when

rats solve more difficult tasks [75]. The causal relationship

between chronic gamma increase and neuromodulator sys-

tems is not resolved at this time. However, it is remarkable

that many studies report enhanced LTP by neuromodulators

including acetylcholine and noradrenaline, suggesting a per-

missive role of GPCR for synaptic plasticity and learning [76].

As described in §3, GPCRs are not only expressed in neurons.

Given the existence and functional response of GPCRs in
astrocytes, it is logical to ask whether activation of astrocytic

GPCR has a role in synaptic plasticity in vivo.
5. Astrocytic modulation of synaptic plasticity
during gamma states

As gamma states coincide with volume transmission of

neuromodulators including acetylcholine and noradrenaline,

astrocytic Ca2þ dynamics are more active during these states

(§3). Recently, three independent studies have investigated

the role of gamma-state-induced astrocytic Ca2þ elevation

in synaptic plasticity. These studies were performed in the

somatosensory cortex [44], visual cortex [45] and hippo-

campus [46]. In each of these studies, the respective

cholinergic nucleus was stimulated while sensory stimuli

or electrical afferent stimulation was presented to anaesthe-

tized animals. As a result, long-lasting enhancements (more

than 1 h) in stimulus-evoked potential or neuronal firing

rate were observed. These effects were diminished in IP3R2

knockout (IP3R2-KO) mice, in which astrocytic large Ca2þ

elevations are deficient, suggesting the causal relationship

between the astrocytic Ca2þ elevation and induction of the

synaptic plasticity.

NBM-evoked cortical gamma oscillations seem to be unin-

fluenced by astrocytic Ca2þ, as the duration of gamma

oscillations was similar between wild-type and IP3R2-KO

mice [44]. Neuronal activity is temporally coordinated in

gamma rhythms by NBM stimulation and this synchronization

could be a prevailing mechanism of augmented synaptic

plasticity [77]. However, the deficiency of NBM-associated cor-

tical plasticity in IP3R2-KO mice strongly supports a role of

astrocytic Ca2þ signalling in the synaptic plasticity.

In our investigation on plasticity in the somatosensory

cortex, astrocytic Ca2þ activities were elevated during costi-

mulation of whiskers and NBM. Similarly, the extracellular

concentration of D-serine is elevated during NBM stimulation

and returns to the baseline thereafter. Considering the major

role of NMDARs in LTP [78], the lack of extracellular D-serine

increase in IP3R2-KO mice suggests a pivotal role of astrocytic

Ca2þ signalling during the induction phase of the synaptic

plasticity. Chen et al. [45] showed that single unit activities

in the visual cortex are enhanced when visual orientation

stimuli are combined with NBM stimulation. Importantly,

the neuronal response is enhanced only for the orientation

paired with NBM stimulation. As the orientation tunings of

individual synapses are intermingled in mouse primary

visual cortex [79], this result advocates the importance of

sensory input as the determinant for specificity of plasticity.

Further investigation on spatio-temporal relationship of

active astrocytes and augmented synapses should characterize

the effective range of gliotransmission.

While the synaptic plasticity in our study is NMDAR-

dependent, a study by Navarrete et al. [46] investigated

cholinergically augmented hippocampal CA3–CA1 plasticity

in the presence of an NMDAR blocker. Their results

suggest that glutamate acts as the gliotransmitter affecting

neuronal mGluRs to express presynaptic plasticity, whereas

a recent paper suggests other interpretations such as tran-

sient change of extracellular ionic composition [48]. These

differences suggest that the molecular mechanisms of

astrocyte-assisted synaptic plasticity may be diverse, but

the common denominator of all in vivo experiments is the



attentive state

post

pre

plasticity

gliotransmission
(D-Ser/Glu)

volume transmission
(ACh/NA)

Ca2+

E I

sensory and social
experience

astrocyte

cytokines
(S100b)?

neuromodulator
production

spike-timing
modulation

g activity

Figure 2. Schematic diagram for neuron – astrocyte interaction in the context of gamma-state-induced synaptic plasticity. Attentive states drive volume transmission
of subcortical neuromodulators which in turn activates neuronal gamma oscillations and astrocytic gliotransmission to establish a state for synaptic plasticity induc-
tion. Sensory and social experience enhances neuromodulator production and gliotransmission of cytokines enhances gamma oscillations, although the exact
mechanism remains to be elucidated. ACh, acetylcholine; NA, noradrenaline; E, excitatory neuron; I, inhibitory neuron.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130604

5

activation of cholinergic volume transmission (figure 2).

Notably, similar hippocampal plasticity was evoked when

medial septum stimulation was replaced by tail pinch [46],

and atropine could largely, but not completely, block the

field response potentiation, suggesting that other neuro-

modulators such as noradrenaline could also be involved.

Additionally, in prolonged gamma states, astrocytes can

secrete cytokines including S100B and influence network

synchronization [80] and synaptic plasticity [81].
6. Concluding remarks
We have discussed a possible role of cortical astrocytes as an

element enhancing cortical plasticity via gliotransmission.

Volume transmission of subcortical neuromodulators serves

as the drive for activation of astrocytes and gamma oscillations.

Gamma oscillations appear during attentive states and provide

temporally synchronized activation of groups of neurons

(i.e. cell assembly), association of which will lead to formation

of memory and learning. Considering the astrocytic expres-

sion of functional GPCRs for neuromodulators and the tight

relationship between the subcortical neuromodulator system

and the cognitive states of an animal, the framework of this

model is sound. Recently, multiple groups have shown that
the cholinergic system can mediate such a mechanism

in rodent cortex and hippocampus [44–46,82]. Remarkably,

noradrenergic transmission is reported to provide a dominant

drive for astrocytic Ca2þ elevations during awake states

[43]. Cholinergic volume transmission may provide an

additional input to enhance Ca2þ elevations in astrocytes

during attention. Indeed, a synergistic effect of acetylcholine

and noradrenaline in synaptic plasticity has been described

[83,84]. It is conceivable that similar operating principles are

in effect in extracortical areas. For instance, the basal ganglia

system is under the strong control of dopaminergic inner-

vation, whereas the cerebellar cortex receives significant

serotonergic and noradrenergic innervations. Molecular

and physiological investigations on the heterogeneity of

astrocytes will be important to understand the regional oper-

ational characteristics of astrocyte–neuron interactions.

Response to neuromodulators is widespread across the astro-

cytic syncytium owing to the nature of volume transmission,

and possibly owing to interastrocytic Ca2þ wave propagation

[85]. Synaptic activity-driven elevation of focal Ca2þ rise in

astrocytes [32,33] may provide us an additional mechanism

to promote synaptic efficacy.
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