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Abstract

consuming and largely manual.

biomedical ontologies.

Background: The use of ontologies to control vocabulary and structure annotation has added value to genome-
scale data, and contributed to the capture and re-use of knowledge across research domains. Gene Ontology (GO)
is widely used to capture detailed expert knowledge in genomic-scale datasets and as a consequence has grown
to contain many terms, making it unwieldy for many applications. To increase its ease of manipulation and
efficiency of use, subsets called GO slims are often created by collapsing terms upward into more general, high-
level terms relevant to a particular context. Creation of a GO slim currently requires manipulation and editing of
GO by an expert (or community) familiar with both the ontology and the biological context. Decisions about
which terms to include are necessarily subjective, and the creation process itself and subsequent curation are time-

Results: Here we present an objective framework for generating customised ontology slims for specific annotated
datasets, exploiting information latent in the structure of the ontology graph and in the annotation data. This
framework combines ontology engineering approaches, and a data-driven algorithm that draws on graph and
information theory. We illustrate this method by application to GO, generating GO slims at different information
thresholds, characterising their depth of semantics and demonstrating the resulting gains in statistical power.

Conclusions: Our GO slim creation pipeline is available for use in conjunction with any GO-annotated dataset, and
creates dataset-specific, objectively defined slims. This method is fast and scalable for application to other

Background

Gene Ontology in annotation and analysis

The abundance of genome-scale data across the many
species and biological contexts of interest to modern
molecular biology and genetics has created substantial
problems for data interoperation and integrated analysis,
particularly when the creation and analysis of these data
is highly distributed. Likewise, the rate of discovery in
molecular genetics has accelerated rapidly, due in no
small measure to new high-throughput genome-scale
technologies and automation. Capturing new knowledge
as annotation, and making it easily accessible to other
research groups and to computational methods, will
remain challenging so long as the primary storehouse of
biological knowledge is natural-language statements
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collected in peer-reviewed scientific literature. An
important way forward is through the adoption of con-
trolled vocabularies that can be used to annotate collec-
tions of biological entities with statements that reflect
the current state of biological knowledge about those
entities. Controlled vocabularies, or ontologies, establish
precise, agreed-upon definitions for terms, and establish
the context in which those terms may be used. In this
way ontologies facilitate the reuse and exchange of
knowledge by researchers, and enable the broader appli-
cation of computational methods over a vocabulary
vastly reduced from that of natural language.

The most widely adopted of these controlled vocabul-
aries is the Gene Ontology (GO; http://www.geneontol-
ogy.org) [1]. GO covers knowledge about the molecular
function of gene products, the biological processes in
which they are active, and the cellular component in
which they function or reside. By coupling GO terms
with gene-product identifiers, the annotation process
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associates biological information with identifiers in for-
mally defined machine-readable formats and thus
enables the exchange, analysis and re-use of biological
knowledge.

The Gene Ontology Consortium, which is responsible
for the ongoing development of GO, draws its members
from a number of organism-specific databases including
FlyBase [2], Mouse Genome Database [3], WormBase
[4], the Arabidopsis Information Resource [5], and the
Zebrafish Information Network [6]. These consortium
members, and others such as the Gene Ontology Anno-
tation Database [7,8], produce GO annotations for pub-
lic use. This community structure has contributed to
the broad acceptance and adoption of GO as the pri-
mary controlled vocabulary for molecular genetics and
genomics.

GO is commonly represented as a tree-like hierarchy
of terms, in which each term can have child terms that
are more-specific subclasses of the parent class. In fact,
the GO hierarchy is a directed acyclic graph (DAG)
rather than a tree, as a GO term can have multiple par-
ents. Indeed, because GO covers three domains of
knowledge and relationships are defined only within
each knowledge type, GO is in fact three distinct, non-
overlapping DAGs identified by their respective name-
spaces: biological_process (BP), molecular_function
(MF), and cellular_component (CC).

Information about the cellular biological context of a
gene product (e.g. protein or RNA) is extremely valu-
able, and GO annotations are used in a wide variety of
domains and applications. For example, GO terms are
commonly used to identify biological processes or mole-
cular functions over- or under-expressed in different cell
types, developmental states or disease conditions [9],
identify likely false positives [10], evaluate predictive
methods [11], and examine whether genes of like func-
tion are clustered along the genome [12]. The success of
GO in these and many other contexts relies on the qual-
ity and currency of its annotation, and considerable
resources must be invested by researchers and commu-
nities into its ongoing manual development and cura-
tion. Even with substantial coordination across these
activities, equivalent parts of the GO graph end up
being developed to very different degrees of resolution
and detail.

The wide adoption of GO has contributed to the pro-
liferation of terms within it, and as of April 2010 GO
contained 18903 terms for biological processes, 8713 for
molecular functions and 2734 for cellular components,
excluding obsoletes. Its size contributes to its broad
applicability, but makes it difficult for users to select
GO terms for annotation, or to compare and analyse
data annotated with GO terms. The hierarchical struc-
ture of GO establishes transitive relationships between
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terms: for any gene product annotated with a term,
annotation with all the parents of that term, back to the
root, must also be biologically sound. This property has
been exploited to create smaller, more-manageable sub-
sets of GO, called GO slims, that focus on terms rele-
vant to a specific problem or data set. These GO slims
can then be used to generate higher-level annotation
more robust to tests of statistical significance [13].

A number of projects have created GO slims, seven of
which are currently maintained by the GO Consortium
http://www.geneontology.org/GO.slims.shtml. Two of
these are general GO slims (Generic GO slim [14] and
Gene Ontology Annotation (GOA) GO slim [15]), while
four are domain-specific (Plant GO slim [16] and GO
slims for three yeasts including Saccharomyces [17]) and
one is specific to the Protein Information Resource
http://pir.georgetown.edu/. Other GO subsets that have
been archived but are not maintained include organism-
specific slims for the honey bee Apis mellifera, the fruit
fly Drosophila melanogaster, the malarial parasite Plas-
modium falciparum and rice Oryza sativa. Tools exist
for mapping between GO-slim sets and full GO annota-
tion, such as the Map2slim application http://search.cpan.
org/~cmungall/go-perl/ for which several web-based
implementations exist (e.g. http://amigo.geneontology.org/
cgi-bin/amigo/slimmer and http://go.princeton.edu/cgi-
bin/GOTermMapper/GOTermMapper).

Efforts have been made to automate or semi-automate
the creation of GO subsets. The OBO Edit application
provides a graphical browser that can be used to mark
terms for inclusion in a GO slim and check that com-
plete paths exist between the selected terms and the
root term of each graph. A taxonomy-based method has
been developed to create species-specific subsets of GO
[18], although it is not extensible to slim creation in
general. To the best of our knowledge, however, no
automated tool support currently exists for the creation
of GO slims. In this paper we introduce a general
approach, based on ontology management principles,
graph theory and information theory, for the automated
generation of ontology slims based on information
obtained from both annotations and the ontology struc-
ture, and we illustrate the application of this method to
the generation of high-quality GO slims at a series of
information content thresholds. This framework also
includes annotation management and semantic synchro-
nisation features that reduce information lost as data
lose currency and terms become obsolete.

Graph and information theory as applied to GO

While GO may be thought of as a hierarchically ordered
controlled vocabulary, it is topologically a directed acyclic
graph (DAG). GO terms form the nodes (vertices) in this
graph, and relationships between terms form the edges.
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Directionality on the edges is established by the is_a and
part_of relations that are transitive in nature, and estab-
lish more-specific terms as sub-classes of more-general
terms, and progressively group information up the hier-
archy to the root term of each graph: biological_process
(GO:0008150), cellular_component (GO:0005575), and
molecular_function (GO:0003674) respectively. Of the
two relationship types, is_a relationships establish con-
ceptual subclass-superclass relationships between terms,
while part_of relationships establish a subset-superset
relationship. This information is contained in the graph
structure itself, while additional information is contained
in the gene-product annotations.

The creation of GO slims, therefore, must carefully
reduce the information loss, from the perspectives of
both graph structure and gene-product annotation.
Information content can be computed from the distribu-
tion of GO terms in annotated datasets, from the struc-
tured relationships between GO terms in the ontology
itself, or from both sources in combination. For exam-
ple, Wang et al. [19] used semantic similarities of GO
terms to find functional similarities of genes by introdu-
cing weights for the different relations, while Tao et al.
[20] introduced semantic similarity for gene-function
prediction based on the node’s location and semantic
relationships [21]. Other approaches have also been
based on topological measures of similarity, such as the
shortest path between terms, to determine similarity
between GO terms [22].

Resnik [23,24] developed an information theoretic
measure of similarity based on the probabilities of co-
occurring terms in a set of instance data (equivalent here
to a dataset of gene products annotated with GO terms),
in order to avoid the unreliability of topology alone in
calculating term similarity. Similarly, using information
available from annotated gene product datasets, Del Pozo
and colleagues [25] introduced a GO similarity measure
based on the simultaneous occurrence of GO terms in a
curated dataset from InterPro [26].

Thus although both graph theory and information the-
ory have been explored to gain biological insight from
datasets annotated using GO, and a number of GO
slims have been created and are being maintained for
use by research communities, to the best of our knowl-
edge no tool support currently exists for the automatic
generation of GO slims. Here we introduce such a
method that can generate customised GO slims for spe-
cific annotated datasets. Our method finds an optimal
reduced GO graph by penalising graph complexity,
while at the same time minimising information loss
(coverage) by retaining terms with high information-
content values. We compute the information content of
a term based both on its position in the GO DAG and
on the gene-product annotations associated with it in a
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given annotated dataset, while taking into account the
information lost if the term is removed. In this our
method differs from classical information-theoretic
approaches that compute information content without
reference to graph structure [23-25].

Results

GO slim for yeast

Here we analyse a set of GO slims generated across a
range of information content thresholds on the yeast
GO annotation contained in the SGD database [27], and
compare them with the manually created yeast GO slim
maintained by the yeast community. We examine the
composition of slims created by our method over a
range of information thresholds, and finally we examine
the improvements in statistical power that result from
conducting functional enrichment analysis based on GO
slim terms compared with full GO annotation.

As expected, when examining GO slims generated at a
range of thresholds, we observe that progressively rais-
ing the information content threshold yields slim ontol-
ogies of reduced complexity, with fewer terms included
in the slim subset (Table 1). Selection of an optimal
threshold for creating a slim will depend on the
intended use(s) of that slim, and on the level of resolu-
tion desired in the resulting GO slim file. The frequency
of information content values I obtained for the input
terms can provide some guide to selecting an appropri-
ate value for the threshold, 7. For example, Figure 1
shows the frequency distribution of 7 for the GO CC
terms in the yeast dataset. Most have values between 0.0
and 0.1, while Table 1 shows that the number of terms
selected becomes relatively stable for values over 0.5
because few terms hold values of I over this threshold.

In additional files 1, 2 and 3, we provide full mappings
between annotation terms and selected slim terms for

Table 1 Size of the slim ontology generated across a
range of thresholds on the Yeast SGD GO annotation
data

IC Threshold Biological Cellular Molecular Total size of
(t) Process Component Function GO slim
0.0 2634 700 1886 5220
0.1 579 189 215 983
0.2 286 120 98 503
03 114 82 74 270
04 57 58 59 174
0.5 41 53 48 142
0.6 33 53 42 128
0.7 33 46 42 121
0.8 33 46 39 118
09 26 46 34 106
1.0 22 46 34 102

Above thresholds of 0.5, the size of the GO slim subset changes little.
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three values of z: 0.1, 0.2 and 0.3. To illustrate the per-
formance of the method at these thresholds, here we
examine in detail the mapping of terms within the top
level of the BP namespace (the immediate children of
biological_process (GO:0008150)), focusing on the des-
cendents of response to stimulus (GO:0050896) at each
threshold (Figures 2, 3 and 4). This example highlights
the trade-off between reducing the complexity of the
GO slim graph, and maintaining detail in the associated
annotation.
It is noteworthy that using our approach and scripts,
slims are automatically generated for the yeast dataset in
less than a minute on a standard system (Red Hat
Enterprise Linux 4 (32 bit), 2x 2.6MHz vCPUs, 1GB
RAM). With this speed of execution, researchers can
easily experiment with a range of 7 values to achieve
their desired level of resolution and conceptual depth.
Response to stimulus has 20 descendents in the GO
slim generated using 7 = 0.1 (Figure 2), nine descendents
at 7 = 0.2 (Figure 3), and five at 7 = 0.3 (Figure 4). The
descendent count for response to stimulus then remains
stable between 0.3-0.5 as child term DNA repair has a
information content of 0.52. Gene products annotated
with specific terms not included in the slim are col-
lapsed upward to the most-specific terms retained. Thus
a term originally annotated with GO:0019236 (response
to pheromone) would retain this annotation if mapped
to a slim generated at z = 0.1, would be collapsed to the
term GO:0042221 (response to chemical stimulus) at

0.2, and would be collapsed to GO:0050896
(response to stimulus) at 7 = 0.3-0.5.

Biological process, which has 32 immediate children in
the full ontology, has 17 immediate children at t = 0.1
(Figure 2), 12 at t = 0.2 (Figure 3), and 10 at t = 0.3
(Figure 4) and five at T = 0.5. Progressive loss of
immediate children of biological_process results in an
increasing number of terms being mapped back to the
root node: while only 10 terms are collapsed non-speci-
fically to the root node at the lower threshold, 105
terms are collapsed to the root node at t = 0.2, and 125
at T = 0.3 (for details see additional files 1, 2 and 3).
This illustrates the loss of resolution inherent in crea-
tion of small, high-level GO subsets. While gene pro-
ducts whose GO annotations are collapsed to the root
node lose their detailed annotation, annotation with the
root node label at least retains the association of the
gene product with a known (although unspecified) bio-
logical process. The extent of collapse can be prioritised
on the basis of an information-content calculation and
is therefore an objective, rather than subjective, process.
Finally, the outcome is repeatable, not dependent on the
vagaries of individual or collective human decisions.

T =

Comparison of results with manually produced GO slim

We compared the GO slims generated by applying our
automated method on the SGD protein annotations to
the one produced manually by curators associated with
the SGD database, to explore the extent to which our
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process retrieves terms considered important by human
experts. The SGD yeast GO slim (goslim_yeast) is made
available to the community through the Gene Ontology
Consortium website as one of the set of GO slims main-
tained at http://cvsweb.geneontology.org/cgi-bin/cvsweb.
cgi/go/GO_slims/ and includes 94 terms. Our slims
range in size from 6088 to 102 terms (Table 1). We pre-
sent the results of this comparison over a range of infor-
mation content thresholds in Figure 5.

The maximum overlap between the subsets is found at
the lowest threshold value (t = 0.0), where all but one
goslim_yeast term is included. The missing term, spindle
envelope (GO:0070732), is not included in our subset
because it is not used to annotate any gene product in the
set of yeast proteins from SGD. At progressively higher
values of 1 fewer overlapping terms are observed; the pro-
portion of overlapping terms, computed as a proportion of
total terms in our GO slim, peaks at ~22% at t = 0.4.
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Figure 3 GO slim generated using an information content
threshold of 0.2, showing the top level of the Biological
Process hierarchy with full expansion of the children of
response to stimulus.

While our automatically generated GO slims never
achieve full overlap with the manually created subset,
we contend that this is due to bias in the selection of
terms by human curators. For example, no term exists
in the SGD yeast GO slim corresponding to the CC
concept integral to membrane (GO:0016021) despite the
fact that around one quarter of all yeast proteins are
likely to be integral to a membrane [28], and >1500
SGD proteins are annotated with this term. Integral to
membrane has functional implications distinct from
those of the parent term membrane (GO:0016020),
which is included in both slims. Likewise, the molecular
function term ATP binding (GO:0005524) is used to
annotate > 1100 yeast proteins, but is absent from the
yeast slim. Terms such as protein complex biogenesis
(GO:0070271), cellular component morphogenesis
(GO:0032989) and generation of precursor metabolites
and energy (GO:0006091) that are present in the yeast -
slim, but are either not used to annotate gene products,
or used only once, will not appear in our objectively
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Figure 4 GO slim generated using an information content
threshold of 0.3, showing the top level of the Biological
Process hierarchy with full expansion of the children of

response to stimulus.

defined slims, or will appear (in the case of terms used
only once) only at the most permissive of thresholds.

Case study: functional enrichment analysis

To evaluate how effectively our method improves the
clarity of functional enrichment analysis, we use the
hypergeometric test as previously applied [29,30] to
identify GO terms significantly enriched in a set of dif-
ferentially expressed genes identified through microarray
profiling of yeast sporulation [31]. The SGD Expression
Connection interface was used to retrieve 341 genes
with greater than a five-fold increase in expression dur-
ing yeast sporulation. The genes were mapped to SGD
accession numbers, and 339 unambiguously mapped
genes and associated gene ontology annotations are
available in additional file 4.

Because many GO terms occur in the gene lists and
each term is tested individually, multiple hypothesis test-
ing (MHT) correction methods such as the Bonferroni
method [32] or Benjamini-Hochberg false discovery rate
(FDR) correction [33] should be applied. Here we com-
pare the results of the hypergeometric test before and
after mapping genes in the list to a GO slim generated
at T = 0.3 for that experiment. In this sporulation
experiment, 3654 genes have GO annotations of biologi-
cal process, as do 206 of the 339 genes identified in our
Expression Connection search. While 1578 GO BP
terms were used to annotate the full set of yeast gene
products, after mapping to the t = 0.3 GO slim, only
177 GO BP terms are required.
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The p-values for equivalently ranked GO terms are pre-
sented in Table 2, and demonstrate the benefit of reducing
the number of hypotheses (i.e. GO terms) tested.

These results demonstrate that application of our
method at t = 0.3 decreases the Bonferroni correction
by nearly ten-fold: using the full GO annotation set,
p-values are multiplied by 1578, while using our GO
slim, p-values are multiplied by only 177. With the
more-permissive Benjamini-Hochberg correction, only
the first 27 terms (those with the best p-values) from
the full GO annotation tests retain significance after
correction, compared with 40 terms from the GO slim.
Balanced against this increased statistical power is the
reduced detail available from the terms that remain. In
this example, terms covering mitotic spindle elongation

and mitotic sister chromatid segregation were found to
be significant in the full annotation set, but were col-
lapsed to miitotic cell cycle in the GO slim.

Availability

This method has been implemented as a computational
pipeline and is available for download from the Tools
and Data page at http://bioinformatics.org.au. Example
data and a user’s guide are included with this download.

Discussion

We have introduced a method, based on graph and infor-
mation theory, for the automatic generation of ontology
subsets (slims). Given an ontology and a particular set of
annotations generated using that ontology, ontology

Table 2 Selected p-values with corresponding multiple hypothesis corrections, with significant values in bold

Rank order according Hypergeometric test

Bonferroni-corrected

Benjamini-Hochberg-corrected

to p-value p-values p-values p-values

Full GO GO slim Full GO GO slim Full GO GO slim
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
20 0.0001 0.0002 0.1578 0.0354 0.0079 0.0018
40 0.0065 0.0104 10.257 1.841 0.2564 0.0462
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slims optimally matched to those terms can be generated
at any permissible threshold of information content. Our
method has potential to supplement, or indeed replace,
the laborious, error-prone and sometimes idiosyncratic
manual creation and curation of ontology slims for speci-
fic species, problems or research areas.

Our method maximises the information content avail-
able in the resulting slim, while minimising its size. Our
node information content metric, I,,, incorporates infor-
mation from both the graph structure and the annotated
data. Existing methods are unsuited for calculating
information content relevant to ontology-subset selec-
tion; Shannon’s mutual information, for example, con-
siders conditional dependency of nodes but not graph
complexity. It was our intention to construct slims that
concomitantly minimise both information loss (through
loss of detail in annotation when specific terms are
removed) and the number of terms used. Likewise,
methods that calculate the information of terms based
only on graph structure neglect the context-specific
information contributed by specific sets of annotated
gene products, and as such are unsuitable for creating
ontology subsets specific to a given biological dataset.

Our approach begins with an annotation processing
phase in which we update the annotation file by identi-
fying and resolving inconsistencies between the annota-
tion and the current version of the GO. Inconsistent
terms that can be clearly mapped to a new term in the
ontology are updated, while annotations using terms
entirely removed from the ontology, or without clear
successors, are removed to a separate file for manual
resolution. This process ensures that information con-
tributed by old annotations is preserved and updated,
and removed only if corresponding concepts no longer
have equivalents in the current GO. These pre-proces-
sing methods are of broader applicability, for example in
updating historical annotation datasets, or automatically
preserving currency in existing annotated datasets.

Our method for creating GO slims is automatic and
fast, generating slims that are complete (each slim cov-
ers all the terms used in annotating the given set of
gene products), well-formed (the subgraphs abide by the
rules for constructing GO, and all terms have at least
one complete path to the root, i.e. orphan terms are
absent), and objectively constituted (each slim contains
only the terms with information content greater than a
user-defined threshold, and those additional terms
required for completeness of paths). These desirable
properties are not necessarily shared by manually
curated slims, as illustrated by our analysis of gosli-
m_yeast. Our information-content metric takes into
account both graph structure and annotation, and as a
consequence annotation is preserved at hierarchical
levels such that information content is maximised across
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the entire annotation set. All gene products are guaran-
teed to map to a term in the slim, although in the worst
(least-informative) case this may be the root term of a
namespace. These properties enable users to balance
generality against specificity, tuning the slim to a granu-
larity appropriate for each individual problem or
application.

Using this approach, small groups or individuals can
create and maintain high-quality customised ontology
slims, and keep these slims up to date with respect to
emerging gene-product datasets and the most recent
version of GO. Presently, the lack of tool support avail-
able for GO slim construction means that the process of
creating and maintaining a GO slim is arduous, and
while many slims are created, fewer are maintained (see
GO website of archived slims). These custom slims pre-
serve relationship types (is_a, part_of), and can be flex-
ibly tailored to storage or computational resources. Like
other slims, our custom slims offer greater statistical
power than full ontologies, as a reduction in the number
of hypotheses lessens the impact of MHT correction.

Although here we illustrate our method only in appli-
cation to GO, it is directly applicable to any ontology
presented in the Open Biomedical Ontology (OBO) for-
mat. Many ontologies are available in this format, cover-
ing such areas as organismal anatomy, taxonomy, mass
spectrometry and chemical entities. A list of OBO ontol-
ogies is available at http://www.obofoundry.org/. Our
method is more-generally applicable to any ontology
with a DAG structure, and for which the relations
between terms are transitive and a corresponding anno-
tated dataset exists. The speed of the method over GO
also indicates that our approach will support the genera-
tion of slims from ontologies much larger than GO.

Conclusion

Our ontology-engineering method enables researchers to
create and maintain an automatically generated GO slim
for a specific dataset of interest. To select informative
terms objectively, we have developed a new information
contents metric that combines information contained in
the GO structure with that obtained from annotated
datasets. By removing the time consuming and subjec-
tive ontology editing procedure previously required for
the creation of a GO slim (and associated maintenance
overheads of maintaining the currency of the slim in the
face of continuing growth and updating of GO), a signif-
icant barrier to the use of engineered GO subsets is
removed.

Methods
Data sets
The Saccharomyces Genome Database (SGD: http://
www.yeastgenome.org/) maintains a set of proteins
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annotated with GO terms in the GOA format. We
downloaded these annotations to assess the ability of
our pipeline to manage obsolete annotations. The Gene
Ontology website also maintains an updated version of
the yeast annotation data. We downloaded the gene
association file (Revision 1.1508, GOC Validation date:
14™ August, 2010) from that site to constitute an appli-
cation dataset for this research. An earlier file, (Revision
1.1398) was used to test the management of obsolete
terms in annotation (see Section 4.3.1, data not shown).
SGD also maintains the Yeast GO slim (provided by the
Gene Ontology Consortium at http://www.geneontology.
org/GO.slims.shtml), which we downloaded for compar-
ison against subsets created automatically by the process
described below.

Yeast gene-expression data and analyses [31] were
extracted from the SGD Expression Connection inter-
face http://www.yeastgenome.org/cgi-bin/expression/
expressionConnection.pl using the option Search III:
Find all genes that change expression in a manner you
define in one or more datasets. We retrieved S. cerevisiae
genes that showed a five-fold increase in expression, or
greater, in sporulation. A GO slim for this experiment
was generated using the method and tools we describe
here. This analysis was performed on the GO (Revision
1.1398), which is archived with our method at http://
bioinformatics.org.au.

Tools

OBO Edit was used to view the Open Biomedical Ontol-
ogy (OBO)-formatted ontology files for GO, and to dis-
play the terms selected for the GO slim subset. OBO
Edit can be downloaded from http://oboedit.org/ and
documentation is available on that website.

MATLAB was used to perform the hypergeometric
tests on these data, and to apply the Bonferroni and
Benjamini-Hochberg false discovery rate (FDR) correc-
tions for multiple hypothesis testing.

Ontology Engineering Methods

Annotation management

The time and effort required to annotate datasets ren-
ders them valuable resources, and their re-use within or
across research communities could be highly desirable.
Once a dataset has been annotated with GO associa-
tions, however, it rapidly becomes out-of-date as GO is
itself further revised and updated. As a result, terms
used in annotating a dataset may become obsolete, and
attempts to map such terms to up-to-date GO slims fre-
quently result in loss of information associated with
such an annotation. To address the issue of obsolete
annotation terms in datasets, we developed pre-proces-
sing steps that detect inconsistencies between ontology
versions, and create updated annotation files. We first
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identify terms used in the data annotation but not used
as primary identifiers in the most-recent version of GO,
and extract entries for these terms from the GO OBO
file (where entries for all terms used historically in the
ontology are maintained). We consider five classes of
inconsistency between ontology versions: 1) alternative
identifier usage for a current term; 2) obsolete term
replaced with a current term; 3) obsolete term with a
suggested replacement term; 4) obsolete term with mul-
tiple suggested replacements; and 5) obsolete term with
complete removal of the concept.

Inconsistencies of the first two types can be resolved
automatically by replacing an alternative identifier with
the primary identifier, or by replacing the obsolete term
identifier with the replacement term identifier. Inconsis-
tencies of types 3 and 4 are removed from the annota-
tion file and flagged for supervised resolution, while
type 5 inconsistency is resolved by removing the obso-
lete annotation. A new annotation file is then written.
This file can be used to generate a GO slim set using
terms mapped to the current version of GO, or used in
its own right as an updated annotation file.

Term selection and sub-graph definition

Terms used in the annotation of gene products are
selected separately for each of the three component
graphs of GO. The paths from these terms back to the
root of each respective component graph are then calcu-
lated from the ontology definition provided in the GO
OBO definition file, using only the transitive relations
is_a and part_of as defined in that file. Relations of
other types (such as regulates) are not used because
they do not establish transitive relationships between
terms. These paths define the sub-graph of each GO
graph, G,,, G, and G,,; implicit in the annotation of
the dataset under analysis.

Once the sub-graphs supporting the annotation data-
set have been extracted, information on gene-product
annotation present in the annotation file is transferred
to the sub-graph: each term in the sub-graph is asso-
ciated with a count of the number of gene products
annotated with that term. In this way, the sub-graph is
annotated with the information contained in the gene-
product annotation file, unifying information from the
graph structure with that from the annotations. These
annotated subgraphs are used to calculate the informa-
tion contents I of each term (Section 0).

GO slim creation and visualisation

Once the set of GO terms with information content / > t
is selected (Section 0), the set of all paths leading to
these terms in each full GO graph is selected. The terms
with 7 > t and associated path terms are then annotated
in the Gene Ontology OBO file as a defined subset. This
subset is established with a subset definition line in the
file header (Figure 6A) and each term that is a member
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A.

format-version: 1.0

date: 1 :2010 19:30

gubaet goslim candida "Candida GO slim™
subset goslim generic "Generic GO slim™
subgetdef: goslim goa "GOA and protecme 3lim”

subsetdef: goslim pir "PIR GO 3lim™

subsetdef: goslim plant "Plant G0 slim™
subsetdef: geoslim pombe "Fissicn yeast GO slim™
subsetdef: goslim yeast "Yeast GO slim™

goaubset prok "Prokaryotic G0 subset™
subgetdef: unvetted "unvetted”

'synonymtypedef: systematic synonym "3Jystematic
gynonym” EXACT ! synonymtypedef not supported by
CBO 1.0

default-namespace: gene ontelogy
remark: cv3 version: sRevision:

1.1373 &

statement.

Figure 6 Specification of GO slim subsets in the GO OBO file: (A) GO slim subsets are initially specified with a subsetdef: statement in
the header; (B) each individual term that is a member of the GO slim is annotated with a subset: property in the term definition

B.

[Term]

id: G0:0000746

name: conjugation

namespace: biolegical process

def: "The unicn or intreducticn of genetic
informaticn from compatible mating types that
results in a genetically different individual.
Conjugation reguires direct cellular contact
between the organisms.™ [GOC:elh]

goslim candida

: goslim pir

: goslim yeast

gubget: gosubset prok

xref analog: Wikipedia:Conjugation

is a: GO:0051704 ! multi-organism process

of the GO slim is annotated with a subset membership
property (Figure 6B).

Once terms are annotated as members of a subset, the
subgraph defined by membership of this set may be
viewed in OBO Edit by using a term filter to select all
terms that are members of the specified subset (Figure 7).
OBO Edit can also be used to create, define and specify
categories manually through the GUI, or to manually
curate the sets of terms included in any specific GO slim
http://oboedit.org/docs/index.html.

Mapping annotation to GO slim

Once a GO slim is created, the original set of annotated
gene products must be mapped to the high-level terms
in the slim. This mapping is generated by collapsing the
terms originally used in annotating the data set upward
to the most-specific terms available in the slim. For
example, consider the DAG fragment presented in
Figure 8: terms 1-3 have been used to annotate a set of
gene products and all terms 1-10 have node information
values calculated according to equations 1-4; terms 7
and 10 have information content values exceeding the
selected threshold, and therefore terms 7 and 10, along
with terms 8 and 11, are selected for inclusion in the
GO slim subset derived from the annotated data.

Annotation terms are mapped to the slim term(s) in
closest proximity to the annotation term in the path(s)
from the annotation term to the root node. As shown in
Figure 8, term 1 would be mapped to terms 10 and 11,
term 2 would be mapped to terms 7 and 10, and term 3
would be mapped to term 7. The mapping algorithm
also distinguishes the type of relationship that exists
between the annotation term and the slim term to
which it is mapped: if they are connected by paths that
contain only is_a relations, then the relationship
between the annotation term and a mapped slim term is
assigned as is_a. On the other hand, if the path contains
at least one part_of relation, then that mapped relation-
ship is assigned as part_of.

Calculating information content of a term

The information content I of each term # in each sub-
graph G (as defined in the process described above in
Term selection and sub-graph definition) is computed
using

— O (1)

where P, represents information gained if node # is
retained in the graph, and ©,, is a penalty term that
penalises node # for the information lost (by loss of cov-
erage) if the children of term # are collapsed to n (i.e.
child terms removed from the ontology). The term
information content used here is different from that
commonly encountered in information theory; in this
context, information content of a node refers to infor-
mation carried by a node based on its annotation and
its position within the DAG, as described above.

P, of n is calculated as

B
p, = /1—2[ N )
=1

where ¢ is the total number of terms in the subgraph G,
and A; is the annotation count attached to each node i.
Due to sparseness of the ontology graph, the information
content values can be very small. For convenience, we
introduce a constant A by which the information-content
values are rescaled; here we use A = 100.

B, is calculated such that

B,=0Vnel

3
ﬁn:An+Z;ﬁi‘v’neLcmdneG ®)

where A, is the annotation count attached to n, { are
the immediate children of node n, f; is the annotation
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£ DBO-Edit version 1.101: test_slim

File Edit Flugins Help

1ol x]

4

E— Classes
[F— cellular_componant
H4+E cell
4+ cell part
[H4+8 envelope
[ 48 extracellular matrix
H4+&) extracellular matrix part
[ 4 extracellular region
8 extracellular region part
+) macromolecular complex
+&) membrane-enclosed lumen
+ organelle
8 organelle part
H+8) synapse
4 synapse part
— Relationz
—— Obsolete

Search & Filter Iﬁ
l/ Term filter r {% Advanced Options |

Term filter

hurman_scl

I:‘ Ilgnore obsoletes @ Search all C. Search children of selection D Search ontology of selection

I & 00005623
Mamespace
Mame cell |

Definition

Dbirefs

The basic structural and functional unit of all organisms. G0C:go_curators
Inzludes the plasma membrane and any external

encapsulating structures such asthe cell wall and cell

envelope.

Categaories ™ |

Candida G0 slim (geslim_candida)

04 and proteame slim (goslim_goa)

Generic &0 slim (goslim_generic)

FIR 0 slim (goslim_pir)

Flant 30 zlim (goslim_plant)

Prokanrotic G0 subzet (gosubset_prok)

Uniprot Human SCL annaotation chuman_scl)

“reast 30 slim (goslim_yeast)

1 |

|
q] DE

BO0OREEAB B R

Figure 7 Selection of a specific GO slim subset in the OBO Edit application: screen shot from OBO Edit showing the term filter set to
view the human_scl category. The Search & Filter tab is selected in the top right panel, and the term filter is set to select terms for which the
category contains human_scl. The term cell is highlighted in the viewing panel on the left, and the term definition and other information (e.g.
category membership) is displayed on the right. Categories to which a term belongs are ticked.

count associated with child i of #, and L 5 LCG is a set
of leaf nodes which have no children. As indicated in
the first part of equation 3, in the case where the node
is a leaf node, 3, is equal to zero.

The penalty term (information loss) ®,, is computed
as

0,=0Va=0

4)
0,= ).z; Plog,(a)Va#0

where P; is computed for each child i of # using (2),
and « is the number of children of node n. After com-
puting I for each node, a threshold 7 is applied to I to
select a set of nodes. Note that we use log base k, where
k is the number of children of the root node. The A in
(4) is the same constant used in (2) following the same
rationale.

Values of I, as defined here can range between [-1,1]
when 4 = 1. A node will have maximum information
content value if it is the only node in the graph: in that
case P, = 1 and ®,, = 0, hence I, = 1. On the other
hand, information content has minimum value in a 2-
node graph where the parent node has no annotation
attached to it while the child node has annotations; then
the P, for the parent node will be zero while ®, = 1
because P; = 1 and log;(1) = 1 in (4). We selected log
base k in (4) to provide a minimum limit to the infor-
mation content values, as just shown. Also, using log
base k provides flexibility for information-content values
to be adapted to the size of the graph.

A detailed description of the algorithm implementing
these calculations over the GO sub-graphs is presented
in additional file 5 (Supplementary Methods). A set of
calculations on an example ontology graph is also pro-
vided in this file.
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Terms Q Ancestor of term with /» above threshold
included in

Slim O Term with I» above threshold

Terms not Term used in annotation of data set
included in

slim

Q Term not used in annotation of dataset

) 4
©
) 4
=
o

»10

5

0

=
h 4
(6]
b 4
z

»10

@

I’E
&

I’
@ 06

—®
@
T—C—®

@ @ D

I

Figure 8 DAG fragment to illustrate mapping between terms used in annotation to terms selected for GO slim using all paths
through the graph to the root term. In this DAG fragment, terms 1-3 are used to annotate gene products, and term 11 represents the root of
the graph fragment. Paths from terms used in annotating gene products back to the root term are used to map from the full graph to the slim
graph. All possible mappings are created, and account for the kinds of relations (either is_a, or part_of) used to construct the graph.

Additional material

Additional file 1: GO slim at z = 0.1 mapped to yeast annotation
terms. This file contains GO slim terms mapped to the full set of GO
terms used in the GOA annotation of yeast. The GO slim was generated
using a threshold 7 = 0.1

Additional file 2: GO slim at z = 0.2 mapped to yeast annotation
terms. This file contains GO slim terms mapped to the full set of GO
terms used in the GOA annotation of yeast. The GO slim was generated
using a threshold 7 = 0.2.

Additional file 3: GO slim at z = 0.3 mapped to yeast annotation
terms. This file contains GO slim terms mapped to the full set of GO
terms used in the GOA annotation of yeast. The GO slim was generated
using a threshold = = 0.3.

Additional file 4: SGD Expression Connection results for genes with
increased expression in yeast sporulation. This file contains genes
retrieved from the SGD Expression Connection interface with greater
than a five-fold increase in expression during yeast sporulation.
Associated gene ontology annotations are also contained in this file.

Additional file 5: Supplementary Methods. This file contains
implementation details for the information contents calculation
algorithm.

Abbreviations

(BP): Biological Process namespace; (CC): Cellular Component namespace;
(DAG): Directed Acyclic Graph: Gene Ontology; (MF): Molecular Function
namespace; (OBO): Open Biomedical Ontology.
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