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Abstract

Oceanic currents are known to broadly shape the dispersal of juvenile sea turtles during

their pelagic stage. Accordingly, simple passive drift models are widely used to investigate

the distribution at sea of various juvenile sea turtle populations. However, evidence is grow-

ing that juveniles do not drift purely passively but also display some swimming activity likely

directed towards favorable habitats. We therefore present here a novel Sea Turtle Active

Movement Model (STAMM) in which juvenile sea turtles actively disperse under the com-

bined effects of oceanic currents and habitat-driven movements. This model applies to all

sea turtle species but is calibrated here for leatherback turtles (Dermochelys coriacea). It is

first tested in a simulation of the active dispersal of juveniles originating from Jamursba-

Medi, a main nesting beach of the western Pacific leatherback population. Dispersal into the

North Pacific Ocean is specifically investigated. Simulation results demonstrate that, while

oceanic currents broadly shape the dispersal area, modeled habitat-driven movements

strongly structure the spatial and temporal distribution of juveniles within this area. In partic-

ular, these movements lead juveniles to gather in the North Pacific Transition Zone (NPTZ)

and to undertake seasonal north-south migrations. More surprisingly, juveniles in the NPTZ

are simulated to swim mostly towards west which considerably slows down their progres-

sion towards the American west coast. This increases their residence time, and hence the

risk of interactions with fisheries, in the central and eastern part of the North Pacific basin.

Simulated habitat-driven movements also strongly reduce the risk of cold-induced mortality.

This risk appears to be larger among the juveniles that rapidly circulate into the Kuroshio

than among those that first drift into the North Equatorial Counter Current (NECC). This

mechanism might induce marked interannual variability in juvenile survival as the strength

and position of the NECC are directly linked to El Niño activity.

Introduction

Satellite tracking has uncovered the dispersal patterns of various adult sea turtle populations

but, unfortunately, this is not the case for hatchlings and juveniles [1]. Juveniles are indeed
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much more rarely captured and tracked than adults while the tagging of small-sized hatchlings

remains technically challenging and has been rarely achieved so far [2–4] The oceanic juvenile

life stage of most sea turtle populations thus remains largely cryptic which seriously impedes

the development of conservation measures focused on this critical life stage [5].

In that context, numerical models have become popular tools to simulate the movements

and analyze the resulting spatial distribution of hatchlings and then juveniles. Most models

assume that juveniles drift passively with ocean currents [6]. They are thus simple Individual

Based Models (IBM) in which trajectories of thousands of particles, each representing a single

individual, are simulated using readily available Lagrangian particle-tracking software fed with

surface currents produced by ocean circulation models. These trajectories are then used to

characterize the spatial distribution of the studied population and its evolution with time, e.g.

[7–11].

However, evidence is growing that young sea turtles do not drift purely passively [4,12,13]

and a few more elaborate IBMs have been developed to investigate the impact of active move-

ments on juveniles’ dispersal patterns. Quite surprisingly, all models of this type focus on the

impact of occasional movements such as oriented movements elicited by specific values of the

Earth magnetic field [14,15], or movements occurring during the brief frenzy or post-frenzy

period [16]. But none of these models deals with the, likely more usual, habitat-driven move-

ments triggered by the need to find food and suitable water temperatures.

The goal of this paper is thus to develop a simple IBM simulating the dispersal of juvenile

sea turtles under the combined effects of oceanic currents and habitat-driven movements.

After presenting a generic version of this model, we parameterize it specifically for leatherback

turtles (Dermochelys coriacea) and test its impact on the simulated dispersal of juveniles from

the Western Pacific leatherback population. The passive dispersal of this population has

already been investigated by Gaspar et al. [10] (hereafter GAL) which gives us a solid compari-

son basis to assess the various consequences of simulated habitat-driven movements on the

dispersal and, ultimately, the life history of these juveniles.

Materials and methods

Model description

Our Sea Turtle Active Movement Model (STAMM) borrows ideas from previously developed

fish movement and habitat models. In particular, the movement itself is modeled following

Faugeras and Maury [17] while the habitat parameterization is similar to that of the SEAPO-

DYM model [18]. While SEAPODYM was originally developed to simulate the spatial and

temporal evolution of the density distribution of various age cohorts of a tuna population, a

simplified, non age-structured, version of this model was successfully implemented to simulate

the active dispersal of a single cohort of juvenile loggerhead turtles (Caretta caretta) in the

North Pacific [19]. We will not follow this Eulerian modeling approach but will rather stick to

the more flexible IBM (or Lagrangian) approach which has been largely used for passive drift

modeling. A distinct advantage of IBMs is that they allow continuous updating of the age of

each individual without the need to define distinct cohorts. More generally, IBMs, unlike

Eulerian models, are designed take into account the effects of individual properties (such as

sex, natal area, fitness,. . .) and naturally enable behavioral plasticity inside the same cohort.

This shall be an advantage when further developing STAMM to simulate adults’ behavior and

movements, including reproductive migrations.

Movement model. Habitat-driven movements are, by definition, triggered by the need of

individuals to find, and stay in, most suitable habitats. They are therefore expected to possess

the following characteristics:

STAMM: A model for simulating the active dispersal of juvenile sea turtles

PLOS ONE | https://doi.org/10.1371/journal.pone.0181595 July 26, 2017 2 / 30

https://doi.org/10.1371/journal.pone.0181595


1. In the absence of any clear habitat gradient, the movement shall be close to a random walk

(no preferred direction);

2. As habitat gradients increase, the movement shall become more directed and lead individu-

als towards more favorable areas;

3. The movement speed shall decrease with habitat suitability so that individuals move rapidly

through poor habitats and slow down in favorable zones.

Movements with characteristics (i) to (iii) are, quite easily and efficiently, simulated using

the biased random walk model proposed by Faugeras and Maury [17]:

Vsðx; y; t; aÞ ¼ VmðaÞð1 � hÞ d ð1Þ

where Vs(x,y,t,a) is the habitat-driven horizontal swimming velocity vector of an individual of

age a at position (x, y) and time t, Vm is its maximum sustainable speed, h is a normalized habi-

tat suitability index (0� h�1) and d is the unit vector pointing in the direction of movement:

d ¼ ðcos y; sin yÞ ð2Þ

where θ is the heading angle (relative to North). This angle is taken to be a realization of a

stochastic variable having a von Mises distribution νM(μ, κ) with mean direction angle μ and

concentration parameter κ. This distribution (Fig 1) is a circular analogue to the normal distri-

bution. It converges to the uniform distribution as κ! 0 and tends to the point distribution

concentrated in the mean direction μ as κ!1 (e.g. [20]).

The (1 − h) factor in Eq (1) guarantees that the swimming speed Vs (i.e. the norm of the

velocity vector Vs) reaches its maximum value Vm in least suitable habitats (h = 0) and tends to

zero in very favorable habitats (h!1) where individuals generally increase the time spent

Fig 1. von Mises probability density function. The density is plotted for μ = 0 and different values of the

concentration parameter κ.

https://doi.org/10.1371/journal.pone.0181595.g001
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diving, searching for food, capturing and handling preys. Diving behavior however is not

explicitly simulated.

The mean direction of movement is chosen to be the direction of the habitat gradient vector

rh:

m ¼ y∇h ð3Þ

Modeled movements thus follow, on average, that gradient and hence tend to maximize

habitat suitability. In addition, the concentration parameter κ is taken to be proportional to

the norm ofrh:

k ¼ a krhk ð4Þ

where α is a scaling parameter. Accordingly, when krhk! 0, κ! 0 and the distribution of θ
becomes uniform. On the contrary, large habitat gradients, and hence large κ values, yield

strongly directed movement as the distribution of θ becomes strongly concentrated around

the optimal direction θ∇h.

Interestingly, the simple movement Eq (1) proves to be the Lagrangian equivalent of an

Eulerian advection-diffusion equation in which advection and diffusion are strongly linked

and governed by habitat values and their gradients [17], as in the SEAPODYM model [18].

Estimation of the maximum sustainable speed. As implied by Eq (1), Vm is the speed at

which a, likely fasting, animal will leave a very unfavorable area. It makes sense to assume that

individuals escaping such areas will try to do so in the most energetically-efficient way, that is

at a speed for which the amount of energy required to move one unit of distance, or work per

meter (WPM), is minimum [21]. For an individual moving at speed Vs, the work per meter is

directly related to the rate of energy expenditure per unit time, that is the metabolic rate (MR):

WPM ¼ MR=Vs ð5Þ

In a fasting individual, MR is the sum of the resting metabolic rate (RMR) plus the energy

expended per second to move against the hydrodynamic drag force [22]:

MR ¼ RMRþ r CDSV
3

s =ð2ZÞ ð6Þ

with ρ the sea water density, CD the drag coefficient, S the surface of the turtle’s body and η is

the overall efficiency coefficient of the flippers which includes their propeller efficiency and

the aerobic efficiency of their muscles. Using Eq (6), Eq (5) can be rewritten:

WPM ¼ RMR=Vs þ r CDSV
2

s =ð2ZÞ ð7Þ

Differentiating Eq (7) with respect to Vs, the velocity that minimizes WPM is easily deter-

mined:

Vm ¼ ðZ RMR=r CDSÞ
1=3

ð8Þ

This velocity can then be expressed as a function of size (L) using simple allometric rela-

tions. Noting M the mass of the individual and assuming that RMR scales with Mb while M
scales with Lc and S scales with L2, one obtains:

Vm ¼ v0 Lbc� 2
3 ð9Þ

where v0 is a scaling parameter that remains to be determined. This equation governs the evo-

lution of Vm with size, or with age provided that a growth curve L(a)is known for the modeled

species.
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Habitat model. Focusing on juvenile sea turtles looking for food and constrained by

water temperatures, we express the habitat suitability index h as the product of a feeding habi-

tat index (hF) and a thermal habitat index (hT) [18,19]:

h ¼ hF hT ð10Þ

The feeding habitat suitability index, at a given place and time, is simply taken to be propor-

tional to P(x,y,t) the local prey density (or a proxy of it), divided by the individual rate of food

consumption F which varies with age (and species):

hF ðx; y; t; aÞ ¼ Min ½1; Pðx; y; tÞ= FðaÞ� ð11Þ

Modulation of hF by the rate of food consumption allows areas with relatively low abun-

dance of preys to be favorable enough to support the foraging activity of young/small individu-

als while adults will seek richer areas.

Like all ectotherms, sea turtles can only perform in a limited range of body temperatures

(Tb). Because of the high thermal conductivity of water, Tb is closely linked to the surrounding

water temperature (Tw) so that sea turtles are forced to occupy a restricted range of water tem-

peratures to avoid cold stunning or overheating. To model such a bounded thermal habitat we

define 4 pivotal water temperatures: T1<T2<T3<T4 (Fig 2) where T1 and T4 are the critical

temperatures below or above which an individual cannot survive for long while T2 and T3 are

the lower and upper bounds of the thermal preferendum, that is the minimum and maximum

water temperatures between which a sea turtle performs optimally or nearly so. The thermal

Fig 2. Thermal habitat suitability index as a function of water temperature.

https://doi.org/10.1371/journal.pone.0181595.g002
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habitat suitability index is then parameterized as:

hTðx; y; t; aÞ ¼ e
� 2

Tw � T2

T2 � T1

� �2

if Tw < T2

¼ 1 if T2 � Tw � T3

¼ e
� 2

Tw � T3

T4 � T3

� �2

if Tw > T3

ð12Þ

Of course, the pivotal water temperatures are species-dependent and can vary with mass, size

or age. Note also that Eq (12) is formulated in such a way that when Tw reaches the critical val-

ues T1 or T4, hT is close to zero but its gradient with respect to Tw remains significant. This

ensures that individuals exposed to critical or near-critical temperatures will display vigorous

movements directed towards more favorable thermal habitats.

Model calibration for leatherback turtles

STAMM is fully defined by the equations determining the swimming velocity vector and the

habitat suitability index. Its formulation is generic and can be used for any sea turtle species.

To calibrate it specifically for leatherback turtles, we have to select the applicable allometric

relationships and then calibrate the different parameters of the movement and habitat models.

Allometric relationships and movement model calibration. For leatherbacks, we

assume that RMR scales with M0.831 [23] and use the growth curve and mass-length relation-

ship of Jones et al. [24]:

LðaÞ ¼ 1:43 ½1 � e� 0:226ðaþ0:17Þ � ð13Þ

M ¼ 112:31 L2:86 ð14Þ

where L is the straight carapace length (SCL) in meters and M is in kilograms. These relation-

ships imply b = 0.831 and c = 2.86, so that the relation defining the maximum sustainable

speed Eq (9) reduces to:

Vm ¼ v0 L0:126 ð15Þ

Interestingly, this expression indicates that Vm increases only slightly, and certainly less

than linearly, with size. This probably holds true for all sea turtles species as, for simple scaling

reasons, the value of c should always be close to 3 while the value of b proves to vary little

between sea turtle species [23], remaining close to the generic value obtained for all reptiles

(b = 0.83) [25].This is consistent with the results of Abecassis et al. [19] who show that, in juve-

nile loggerheads, Vm/L (i.e. the maximum sustainable speed expressed in body lengths per sec-

ond) decreases markedly with size.

The calibration of the movement model finally requires the specification of v0, the velocity

scaling factor in Eq (15) and α, the factor controlling the concentration parameter in Eq (4).

To estimate α, we simply hypothesize that, in the presence of a clear habitat gradient, an

individual will systematically move into the half plane towards whichrh points, that is in a

direction that does not differ by more than 90˚ from the optimal direction given byrh. In

practice, we decide that a clear habitat gradient exists whenever the norm of the habitat gradi-

ent is larger than its median valuerhm. Since κ = 4 is the value of the heading concentration

parameter of the von Mises distribution for which the probability of selecting movement direc-

tions deviating by more than 90˚ from the mean (optimal) direction becomes vanishingly

small (see Fig 1), Eq (4) immediately yields αrhm = 4. Our simulations (see below) show that

rhm is close to 1.3 10−6. We therefore choose α = 3 106.

STAMM: A model for simulating the active dispersal of juvenile sea turtles
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In the absence of speed measurements in juvenile leatherbacks, the calibration of ν0 can

only rely on velocities measured in tracked adults. Based on growth curve Eq (13), simulated

adults reach an SCL close to 1.4 m for which Eq (15) yields Vm� ν0 and Eq (1) accordingly

implies:

Vs � v0 ð1 � hÞ ð16Þ

This shows that v0 could readily be determined using either measurements of the maximum

sustainable speed of adult leatherbacks or joint measurements of their swimming speed and

habitat suitability. Unfortunately, a review of the literature on leatherback tracking experi-

ments did not allow us to obtain such measurements. The most commonly reported speed

estimate actually is the average speed, that is the mean speed computed over the complete tra-

jectories of all turtles tracked in an experiment. Such average speeds typically range between

0.5 and 0.7 m/s [26–28]. Assuming that these average speeds are typical of an average habitat

value (h = 0.5), Eq (16) indicates that v0 shall be between 1 and 1.4 m/s. We accordingly select

v0 = 1.2 m/s. Simulation results (see below) show that with this choice of v0, the simulated

swimming velocities of less than 3-year old individuals range between 0 and 0.3 m/s, while

over 10-year old individuals have swimming velocities varying typically between 0.2 and 0.8

m/s, their mean speed being close to 0.6 m/s.

Thermal habitat calibration. The thermal habitat suitability index Eq (12) is character-

ized by 4 pivotal temperatures (T1 to T4) that define the range of water temperatures within

which the modeled sea turtle species can maintain suitable body temperatures. Determination

of the range of suitable body temperatures is thus requested before pivotal water temperatures

can be specified.

Body temperatures measured in adult leatherbacks are typically in the range 24 to 28˚C for

individuals foraging in cold high-latitude areas [29,30] and 28 to 31˚C for individuals tracked

in the tropics [26,31]. Similar measurements are largely missing for hatchlings and juveniles.

However, since hatchlings have a very small thermal inertia and little peripheral insulation,

their body temperature has to be very close to the temperature of the water in which they are

swimming. Hughes [32] analyzed ocean temperatures offshore several nesting beaches and

concluded that leatherback hatchlings usually encounter waters between 25 and 31˚C. A some-

what lower temperature of 24˚C is also certainly suitable as it is the water temperature in

which Jones et al. [24] successfully raised several leatherback hatchlings. We thus conclude

that leatherbacks of all ages commonly experience body temperatures between 24 and 31˚C.

But does this range of observed body temperatures cover the whole range of suitable tempera-

tures? The lowest suitable body temperature might actually be somewhat lower than 24˚C, but

not much. Indeed, the coagulation efficiency of leatherback’s blood decreases dramatically

around 23˚C [33] which suggests that such a low body temperature is not normally experi-

enced [33,34]. We will accordingly assume that the lowest body temperature suitable for leath-

erbacks of all ages is 24˚C.

On the contrary, the maximum suitable body temperature likely is well above 31˚C: body

temperatures reported in nesting females typically range between and 30.5 and 34.5˚C [26,35–

37] and hatchlings have an observed critical thermal maximum as high as 40.2˚C [38], proba-

bly like adults [39]. The highest suitable body temperature shall thus be around 35˚C or above.

Such a high body temperature might be reached in the course of nesting activities but is proba-

bly never experienced at sea where water temperatures rarely exceed 30˚C.

Assuming that leatherbacks never encounter unsuitably warm waters so that the condition

Tw> T3 is never met in Eq (12), we can just skip the specification of the upper pivotal water

temperatures T3 and T4. The specification of T1 and T2, the lower pivotal water temperatures,

STAMM: A model for simulating the active dispersal of juvenile sea turtles
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is less simple. Indeed, thanks to various morphological, physiological and behavioral adapta-

tions, leatherbacks are able to maintain Tb well above Tw [22,29,30,40,41] and the temperature

gradient (Tb -Tw) that they can maintain proves to increase with their mass [40] and level of

activity [41]. The evolution of this gradient is actually governed by the heat budget of the con-

cerned individual. Based on the steady-state version of this budget, Bostrom et al. [41] deduce

that, for a leatherback of mass M:

Tb � Tw ¼ d M 0:5 ð17Þ

where d is a coefficient directly proportional to the individual’s metabolic heat production.

The evolution of d with the metabolic rate (MR) can be made more explicit by rewriting Eq

(17) under the form:

Tb � Tw ¼ d0 ðMR=RMRÞM 0:5 ð18Þ

where d0 is the value of d for a resting individual. Based on observations of quiescent captive

juveniles, Bostrom et al. [41] estimated d0 = 0.21. As 24˚C is the assumed minimum suitable

body temperature for leatherbacks of all ages/mass, Eq (18) implies that this value of Tb is

obtained for:

Tw ¼ 24 � 0:21 ðMR=RMRÞM 0:5 ð19Þ

This equation provides the basis for estimating T1 and T2. Indeed, T1 can be defined as the

strictly minimum water temperature within which a most active individual is able to maintain

Tb = 24˚C while T2 is the water temperature within which a resting individual will effortlessly

obtain this same body temperature. Therefore:

T2 ¼ 24 � 0:21 M0:5 ð20Þ

Then, the estimation of T1 depends on the maximum value of the MR/RMR ratio that a

leatherback can sustain. We expect this maximum value to be somewhere between 4 and 5 as

nesting is often quoted as leatherbacks’ most strenuous activity, and metabolic rates measured

in nesting females reach 4 to 5 times their RMR [40,41]. Such an estimate is consistent with the

results of Peterson et al. [42] who analyzed the sustained metabolic rate (SMR) in a number of

free ranging vertebrates. They observed that the SMR/RMR ratio is always smaller than 7 and,

in most case, smaller than 5. In particular, this ratio remains below 5 in all surveyed ectother-

mic species (lizards).

We thus conservatively estimate that leatherback turtles can sustain metabolic rates up to 5

times their RMR so that the minimum water temperature (T1) in which a (very) active individ-

ual will be able to maintain a minimum body temperature of 24˚C is:

T1 ¼ 24 � 1:05 M0:5 ð21Þ

Using Eqs (13) and (14) to express mass as a function of age, T1 and T2 can then readily be

expressed as a function of age as needed:

T1 ¼ 24 � 18:56 ½1 � e� 0:226ðaþ0:17Þ � 1:43 ð22Þ

T2 ¼ 24 � 3:71 ½1 � e� 0:226ðaþ0:17Þ � 1:43 ð23Þ

It is worth noting that the minimum tolerated temperature (Tmin) empirically determined

by GAL for leatherbacks fits right in-between these two pivotal temperatures (Fig 3).
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We have now completed the parameterization of the thermal habitat suitability index. This

index is shown in Fig 4 for leatherbacks of various ages. As expected for hatchlings, this index

falls almost immediately down to zero in water temperatures below 24˚C. For larger/older

individuals, markedly colder waters remain suitable, but the suitability index becomes very

small so that modeled individuals will tend to move out of these cold waters.

Feeding habitat calibration. The definition of the feeding habitat suitability index Eq

(11) is based on the local prey density (P) and the individual rate of food consumption F(a). In

the absence of synoptic estimates of the distribution of jellyfish, the main diet of leatherbacks,

we follow Saba et al [43] and use satellite-derived estimates of the net primary production

(NPP) as a proxy for P.

The rate of leatherback’s food consumption has been estimated by Jones et al. [44]. This

estimate is expressed in kilograms of jellyfish consumed per year and must thus be rescaled to

account for the fact that NPP is used as a proxy for P instead of jellyfish density. To do so, we

first define F0(a), a normalized and nondimensionalised version of the Jones et al [44] estimate

of the rate of food consumption:

F0ðaÞ ¼ f0
x ð1 � xÞ1:86

1 � ð1 � xÞ0:094
with x ¼ e� 0:299ðaþ0:17Þ ð24Þ

where f0 = 0.094 so that F0(a)!1 when a!+1 (Fig 5).

The actual rate of food consumption is then given by:

FðaÞ ¼ P0 F0ðaÞ ð25Þ

where P0 is a scaling factor expressed in the same units as P, the prey field or its proxy (in this

Fig 3. Evolution with age of the lower pivotal water temperatures T1 andT2, and the minimum tolerated

temperature (Tmin) defined by GAL.

https://doi.org/10.1371/journal.pone.0181595.g003
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Fig 4. Thermal habitat suitability index as a function of water temperature for leatherbacks of different

ages.

https://doi.org/10.1371/journal.pone.0181595.g004

Fig 5. Normalized rate of food consumption F0(a)as a function of age.

https://doi.org/10.1371/journal.pone.0181595.g005
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case, NPP). The feeding habitat suitability index Eq (11) thus finally reads:

hF ðx; y; t; aÞ ¼ Minf1; NPPðx; y; tÞ=½P0 F0ðaÞ�g ð26Þ

This expression thus clearly shows that P0 is the threshold value of NPP above which the

adults’ habitat suitability reaches its maximum value (hF = 1). Estimation of that parameter is

probably the most uncertain part of the model’s calibration. One could simply decide that

hF = 1 for the maximum NPP value encountered in the North Pacific. However, this would

yield a very high P0 value, only encountered in the richest coastal areas where the accuracy of

satellite-derived NPP estimates is, unfortunately, the weakest [45]. Furthermore, known favor-

able pelagic foraging areas (such as the North Pacific Transition Zone) have much weaker

NPP levels than most productive coastal areas. They would thus only have a weak suitability

index if P0 was set at a high coastal NPP value. We therefore set the value of P0 at the level

corresponding to the 90th percentile of the NPP distribution in the North-Pacific. With this

choice, P0 = 55 mmol C m2 day-1. This is well below the high NPP values measured in coastal

regions and typically in the range of the NPP values found in productive pelagic areas of the

North Pacific [46].

Model simulations

GAL previously investigated the passive dispersal of juveniles from the western Pacific leather-

back population nesting in New Guinea. They simulated 6-year long passive drift trajectories

of hatchlings emerging from (a) Jamursba-Medi, the major nesting beach of this population

situated on Bird’s Head Peninsula, and (b) Kamiali, a less used nesting beach in the Huon Gulf

[47]. They identified several dispersal pathways from these beaches into the North and South

Pacific Ocean, the Indonesians seas and the Indian Ocean. As a first test for STAMM, we will

focus here on the main nesting beach of Jamursba-Medi and more specifically on the dispersal

from this beach into the North Pacific Ocean. This is indeed a pathway along which large habi-

tat variations, and hence significant habitat-driven movements, are expected.

Technical set up

The technical setup of our simulations is similar to that of GAL. In particular, we use the same

surface current data, the same trajectory simulation software, the same daily time step and the

same hatchlings release procedure.

Surface currents vectors (Vc) are taken from daily outputs of the GLORYS-1 (G1) reanalysis

of the World Ocean circulation [48] performed by the Mercator-Ocean centre (www.

mercator-ocean.fr) with the NEMO numerical ocean model (www.nemo-ocean.eu). The G1

model has an eddy-permitting horizontal resolution of 0.25˚ and 50 vertical layers. It covers

the 7-year period going from 01/01/2002 to 31/12/2008. The G1 reanalysis assimilates satellite-

derived sea level anomalies and sea surface temperature (SST) data as well as in situ tempera-

ture and salinity measurements. It provides a close-to-reality simulation of the World Ocean

dynamics that proves to be specially well suited for simulating surface drifter trajectories [49].

Trajectories are simulated using the ARIANE Lagrangian trajectory simulation software

(www.univ-brest.fr/lpo/ariane). This program uses an accurate quasi-analytical solution of the

advection equation [50]. To produce passive drift trajectories, GAL fed ARIANE with daily

surface currents (Vc) provided by G1. In STAMM, we feed ARIANE with turtles’ velocities on

the ground (Vg = Vc +Vs) and thus obtain trajectories resulting from the combined effect of

current drift and active swimming. Surface current values are used as diving is not explicitly

simulated here. Parameterization of the diving activity might be envisioned in subsequent ver-

sions of STAMM. In that case, currents at different depths shall be taken into account.
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To simulate the effect of the swimming frenzy, hatchings are released offshore, in a 0.25˚ x

0.25˚ area centered about 40 km off Jamursba-Medi. The release positions are uniformly dis-

tributed inside this area. The nesting season at Jamursba-Medi extends from April to Septem-

ber, peaking in July [51]. Taking into account a 2-month incubation period, simulated

hatchlings are released between June and November. The number of releases per day fits a

truncated normal distribution that peaks in mid-September, exactly as in GAL.

Estimation of the habitat suitability index and its gradient

The thermal habitat suitability index Eq (12) is computed using the water temperature simu-

lated in the first layer (0 to 1 m) of the G1 reanalysis. This temperature is given at the center of

each grid cell and is close to the satellite-derived SST assimilated into G1. For feeding habitat

determination, NPP is obtained from the Ocean Productivity web site (www.science.

oregonstate.edu/ocean.productivity/), using the VGPM algorithm [52]. This NPP estimate is

available for the entire G1 period (2002 to 2008) with a spatial resolution of 1/6˚ and a tempo-

ral resolution of 8 days. Simple linear interpolation in time and bilinear interpolation in space

is used to estimate daily values of the NPP at the center of each G1 grid cell. Habitat gradients

are then computed at the center of these grid cells using simple centered finite differences.

Daily values of the habitat suitability and their gradients are then used to produce daily swim-

ming speeds.

Simulation period and number of particles

STAMM is designed to simulate the swimming activity of juvenile sea turtles motivated by the

search for food and suitable water temperatures. In leatherbacks, such a model shall be valid

from the end of the swimming frenzy until the onset of the first reproductive migration. The

age at which leatherbacks reach sexual maturity is still largely uncertain. Published estimates

range from a few years up to nearly 30 years but most results situate sexual maturity between

12 and 18 [53]. We therefore chose to run STAMM over a 18-year-long period which likely

covers the complete pelagic juvenile stage. For comparison purposes, we also ran an 18-year

long passive simulation which is simply an extended version of the 6-year-long passive drift

simulation of GAL. For the sake of simplicity we will refer to this passive-drift simulations and

the one performed with STAMM as the passive dispersal and active dispersal simulations

respectively. Similarly, simulated individuals will be referred to as passive and active turtles.

To perform 18-year-long simulations with 7-year-long forcing data sets (G1 and NPP), we

simply loop the forcing fields. This means that the simulations continue after December 2008

using again data starting in January 2002. This process is repeated until the last released turtle

reaches the age of 18.

All simulations involve 5000 particles (simulated turtles) released off Jamursba-Medi

between June and November 2002. Note that out of the 5000 simulated turtles, roughly 3000

(passive and active) individuals finally circulate in the North Pacific while the others drift into

the Indonesian seas, the Indian Ocean or the South Pacific. Only the dispersal into the North

Pacific is analyzed here.

Results and discussion

The simulated 18-year long trajectories of active and passive turtles dispersing from Jamursba-

Medi into the North Pacific are shown in Fig 6. An animation of their evolution with time is

provided as supporting information (S1 and S2 Figs).
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Similarities between passive and active dispersal patterns

Our results (Fig 6) show that the simulated active and passive spatial dispersal patterns are

broadly similar and clearly shaped by the ocean currents. During their two first years of life,

simulated juveniles disperse mostly into the western tropical Pacific Ocean, at latitudes below

25˚N. In this area, the similarity between the active and passive dispersal simulations is striking

and indicates that the simulated swimming velocities are very weak compared to the current

velocities. This occurs because (a) water temperatures in the dispersal area never fall below T2

(except near 25˚N, in wintertime) and (b) food requirements of young individuals are small

and easily met in the visited areas. Therefore h� 1 (Fig 7a and 7b) and thus Vs� 0.

Fig 6. Simulated 18-year long trajectories of (a) passive and (b) active leatherbacks dispersing in the North

Pacific. Individuals are released offshore Jamursba-Medi nesting beach (white dot on the map). The color along each

track evolves with the age of the simulated turtle.

https://doi.org/10.1371/journal.pone.0181595.g006
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During their two first years, the Jamursba-Medi hatchlings entrained into the North Pacific,

first circulate around the anti-cyclonic Halmahera eddy (Fig 8) and can then follow two main

pathways. Some individuals leave the Halmahera eddy to circulate anti-clockwise around the

Mindanao eddy and then enter the Philippines current before reaching the powerful Kuroshio

which rapidly entrains them northward, towards Japan. This pathway will be referred to as the

Kuroshio pathway. Hatchlings following the second pathway leave the Halmahera eddy to

flow eastward directly into the North Equatorial Counter-Current (NECC) until shear-

induced lateral mixing entrains them into the North Equatorial Current (NEC), that is back

Fig 7. Maps of habitat suitability index. Maps for 1- and 9-year-old leatherbacks during winter (January to March) and

summer (July to September).

https://doi.org/10.1371/journal.pone.0181595.g007

Fig 8. Schematic map of surface currents in the North Pacific. NECC: North Equatorial Countercurrent; NEC: North

Equatorial Current; HE Halmahera Eddy; ME: Mindanao Eddy; KEC: Kuroshio Extension Current; NPC: North Pacific

Current; NPTZ: North Pacific Transition Zone. Underlying current speeds are those of the G1 ocean reanalysis on October

1st, 2002.

https://doi.org/10.1371/journal.pone.0181595.g008
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westward into the clockwise circulation of the North Pacific subtropical gyre. Drift into the

NECC can be very brief or extend far into the Central Pacific, sometimes as far as 170˚W. All

NECC individuals finally recirculate inside the subtropical gyre and reach the North Pacific

Transition Zone (NPTZ) in a quite scattered way, generally well offshore Japan. The NPTZ is

the broad frontal area separating the warm subtropical gyre from the colder, but more produc-

tive subpolar gyre. It is situated typically between 30 and 40˚N.

At the end of their second year of life, most passive and active turtles have reached middle-

latitude areas. The Kuroshio individuals are found off Japan, close to 30˚N. The NECC indi-

viduals are more scattered, but generally positioned further east and at somewhat lower lati-

tudes. Both groups then keep moving broadly northward, rapidly for the Kuroshio individuals

and more slowly for the NECC individuals. As they progressively approach 35˚N their drift

motion becomes predominantly eastward, following first the Kuroshio extension current and

then the North Pacific current. After several years, both the active and passive individuals

finally reach (or nearly so) the west coast of North America.

This broad similarity between the simulated active and passive dispersal patterns clearly

shows that the ocean circulation is the main factor governing broad-scale dispersal in juvenile

sea turtles. This likely is the main reason why the passive drift hypothesis has been so successful

at explaining the large-scale distribution of oceanic juveniles in many sea turtle populations

[10–12,54].

However, beyond this apparent similarity, a closer examination of our results reveals signif-

icant differences between the passive and active dispersal scenarios. Active turtles do not dis-

perse as far north as passive turtles. They undertake seasonal migrations and cross the Pacific

more slowly. Then, having crossed the Pacific, active turtles tend to concentrate along the

coast of California and Baja California while passive turtles remain somewhat offshore. These

differences have important consequences on the vital rates, spatial distribution, individual fit-

ness, likelihood of interactions with fisheries, and thus whole population dynamics. These are

analyzed below.

Differences between passive and active dispersal scenarios

Seasonal migrations. Seasonal migrations are commonly observed in both juvenile and

adult chelonid sea turtles, e.g. [55–57]. They are known to occur in sub-adult and adult leather-

backs [58,59] and are thus expected in juvenile leatherbacks. Such migrations cannot be gener-

ated by the passive drift mechanism but naturally appear when habitat-driven movements are

added. The S2 animation clearly shows that, as soon as active turtles reach the middle latitudes,

they undertake north-south migrations following the seasonal movements of the habitat suit-

ability index. Two conditions need to be met to trigger a complete seasonal migration cycle.

The first one is that juveniles need to have reached latitudes where wintertime water tempera-

tures fall below the lower bound of their thermal preferendum (T2). In that case, the thermal

habitat suitability gradient leads simulated individuals to retreat southward towards warmer

waters. The second condition is that turtles must move back north as the water warms up dur-

ing spring. This is achieved when simulated juveniles reach an age at which their food require-

ments are large enough to create a foraging habitat gradient that leads them towards richer

foraging grounds, generally found northward.

The need to move south to escape cold waters first appears in the Kuroshio individuals, at

the end of the second year of simulation (note that, at that time, these individuals are only

1-year old, as they were born between June and November of the first simulation year). Unfor-

tunately many of these individuals appear to be unable to swim fast enough to avoid overly

cold waters (see the discussion about mortality in the next section). The need to move north in
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search for better foraging grounds appears later, mostly during the fourth year of simulation,

when seasonal migrations become fully visible in the S2 animation.

The NECC individuals remain longer in warmer and sufficiently productive waters and ini-

tiate seasonal migrations only when they reach the colder waters of the NPTZ. This typically

happens when they are 3 up to 6-year old.

Simulated habitat-driven movements, and the resulting seasonal migrations, also clearly

shape the northern boundary of the dispersal area. In the passive dispersal simulation, this

boundary is very diffuse and situated roughly between 40 and 50˚N (Fig 6a). In the active dis-

persal simulation, a more clear-cut boundary is observed around 40˚N (Fig 6b). This is the lati-

tude above which the water temperature falls below T2 towards the end of the fall and leads

active turtles to undertake their southward wintertime migration.

Cold-induced mortality. The pivotal water temperature T1 being defined as the tempera-

ture below which a turtle cannot survive long, we will accordingly assume that a simulated

turtle dies if it experiences Tw<T1 during 10 days or more. A simple analysis of the water tem-

peratures encountered along the trajectories of all active and passive turtle thus immediately

reveals when and where cold-induced mortality occurs. The very first deaths actually occur at

the end of the second year of simulation (Fig 9), that is when the first (both active and passive)

Kuroshio individuals arrive offshore Japan in wintertime. During that first winter spent at

mid-latitudes, death is diagnosed for 16% of the passive individuals and 10% of the active ones.

The difference between the passive and active cases is even larger during the next winter:

another 29% of the passive individuals, but only 6% of the active ones, die from hypothermia.

During the following winters, an additional 25% of the passive individuals, but only 3% of the

Fig 9. Cumulative cold-induced mortality in passive and active turtles.

https://doi.org/10.1371/journal.pone.0181595.g009
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active ones suffer cold-induced mortality. This indicates that, after about 3 years, most active

individuals are sufficiently cold-resistant and powerful swimmers to efficiently exploit the

rich waters found in the northern part of the NPTZ during summer and fall and then rapidly

retreat southward as winter arrives and water temperature drops down. At the end of the simu-

lation, the cumulative mortality reaches 70% in passive individuals but only 19.3% in active

turtles. This clearly shows that simulated habitat-driven movements, and seasonal migration

in particular, are very efficient at limiting, but not completely suppressing, cold-induced

mortality.

Death events in passive turtles are widely dispersed in the North Pacific (Fig 10a). Young

(a� 3 yr) passive turtles die from hypothermia generally north of 25˚N and west of the date-

line. These are mostly Kuroshio individuals. Older, more cold-resistant, passive individuals are

observed to die mostly above 35˚N and east of the dateline. Death events in active turtles are

much less dispersed. They mostly occur offshore Japan, in 2- to 3-year-old Kuroshio individu-

als. (Fig 10b). Somewhat older individuals are also observed to die further east offshore Japan

and in the Sea of Japan.

The link between cold-induced mortality in active turtles and their initial dispersal pathway

(Kuroshio or NECC) is easily highlighted by analyzing their mortality as a function of the

Fig 10. Spatial distribution of cold-induced death events in passive (a) and active (b) turtles.

https://doi.org/10.1371/journal.pone.0181595.g010
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easternmost longitude reached south of 10˚N, that is when simulated turtles (possibly) circu-

late into the NECC. Turtles that do not drift further east than 140˚E have a mortality rate

approaching 50% (Fig 11). These are the Kuroshio individuals plus some individuals that cir-

culate only briefly into the NECC. Turtles that circulate further east into the NECC have much

lower mortality rates, well below 10% for the individuals drifting east of 170˚E. This decrease

in the mortality rate is clearly related to the age at which individuals enter the colder mid-lati-

tude waters. Kuroshio individuals reach 30˚N at a mean age between one and two. Individuals

that drift past 170˚E are typically 3- to 4-year-old when they reach that latitude. By then they

are more cold-resistant and sufficiently powerful swimmers to escape overly cold waters when

needed.

North Pacific crossing time. GAL defined the North Pacific crossing time (PCT) as the

age at which simulated individuals first reach the longitude of 140˚W and showed that passive

turtles emerging from Jamursba-Medi can reach that longitude within 5 to 6 years. However,

in doing so, all of them encounter water temperatures below their minimum tolerated temper-

ature (Tmin) and thus likely die. Furthermore GAL noted that the presence of 5 to 6-year old

leatherbacks in the eastern North Pacific is unlikely as all leatherbacks incidentally caught east

of 150˚W by the Hawaii-based longline fleet are large individuals (SCL>1.3m), likely older

than 10 years. GAL thus concluded that (a) Jamursba-Medi hatchlings are unlikely to achieve a

fast, purely passive, crossing of the North Pacific Ocean and (b) a slower crossing, lasting over

10 years or more, would be more consistent with observations. GAL then argued that an active

dispersal scenario involving active seasonal north-south migrations could generate such a

slower crossing of the North Pacific basin. Indeed, individuals retreating each winter towards

the center of the subtropical gyre would encounter weaker eastward currents and would thus

cross the North Pacific basin more slowly. A detailed analysis of our passive and active

Fig 11. Link between cold-induced mortality and initial dispersal pathway. Cold-induced mortality rate

and mean age (±1 std) when reaching 30˚N in active turtles pooled as a function of the easternmost longitude

reached in the NECC (south of 10˚N).

https://doi.org/10.1371/journal.pone.0181595.g011
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simulations actually reveals that, besides the weaker eastward currents encountered by season-

ally-migrating individuals, another more important mechanism explains why active turtles

likely cross the Pacific more slowly than the passive ones.

Using the PCT definition of GAL, we observe that the number of individuals reaching the

longitude of 140˚W indeed peaks at 5–6 years for passive turtles and much later (12–13 years)

for active turtles (Fig 12). In addition, passive turtles with a short PCT prove to suffer massive

cold-induced mortality, as previously observed by GAL. Actually, all passive turtles with a PCT

shorter than 6 years die in the GAL simulation while a few of them survive in our passive

Fig 12. Histogram of the North Pacific crossing times (PCT) for (a) passive and (b) active turtles.

https://doi.org/10.1371/journal.pone.0181595.g012
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dispersal simulation. This is simply due to the fact that our cold-induced mortality criterion is

less stringent than the one used by GAL (i.e. T1< Tmin, see Fig 3).

Interestingly also, we observe that about one third of our passive turtles cross the Pacific in

more than 6 years and have a significantly lower mortality rate than those with a shorter PCT.

On the contrary, the mortality rate of active turtles bears no apparent correlation with the

PCT. This difference in the mortality rates is easily understood looking at the speed at which

passive and active turtles with different PCT move towards higher latitudes and thus encounter

cold waters.

Passive turtles with different PCT display markedly different trajectories (Fig 13a). Those

with the shortest crossing time are clearly Kuroshio individuals: they have the fastest north-

ward progression and hence the highest cold-induced mortality rate. They reach 35˚N, the

mean latitude of the Kuroshio, within 2 years and then circulate rapidly into this mighty east-

ward current towards the other side of the Pacific. Passive turtles with a longer crossing time

progress more slowly towards North and are thus more cold-resistant when entering cold

mid-latitude waters. Their crossing time is longer mostly because they reach 35˚N later (and

more to the East) than the Kuroshio individuals. They thus encounter weaker eastward cur-

rents and therefore take longer to cross the Pacific.

On the contrary, groups of active turtles with different crossing times prove to have very

similar trajectories (Fig 13b). They thus visit similar latitudes at similar times and accordingly

have similar cold-induced mortality rates.

Fig 13. Mean latitude as a function of simulation time for groups of (a) passive and (b) active turtles

with the same PCT. A group with a crossing time of N years is actually made of all turtles having a crossing

time between N years– 6 months and N years + 6 months.

https://doi.org/10.1371/journal.pone.0181595.g013
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We finally have to explain why the PCT of active turtles is, on average, much longer than

that of passive turtles. To do so, let us concentrate on the two most numerous groups: the

group of passive turtles with a PCT of 6 years and the group of active turtles with a PCT of 13

years. As the swimming velocities are initially very small, the mean trajectories of the active

and passive groups remain close to each other during their two first years of life. At the end of

this period, the mean positions of the two groups are close to (25˚N, 148˚E). From there, both

groups have to cover a distance towards East of about 6600 km before reaching 140˚W. The

passive group does that in 4 years, the active one in 11 years. To cover that distance, the passive

group is pushed by currents having a mean zonal (eastward) component uc = 0.052 m/s. As

expected, this is almost exactly the speed needed to cover 6600km in 4 years. For the reason

explained by GAL, the active group experiences a weaker mean eastward current speed:

uc = 0.039 m/s. At such a speed however, this group would cover the distance of 6600 km in

5.4 years and would thus have a PCT of 7.4 years, not 11 years! The missing part of the puzzle

is that active turtles actually swim (on average) towards west, at a mean zonal speed us = -0.02

m/s. Their zonal speed on the ground (ug = uc + us) is thus only 0.019 m/s, which is indeed the

speed needed to cover 6600 km in 11 years.

This, possibly surprising, result must be properly interpreted: that active turtles have a

mean westward swimming speed of -0.02 m/s does not imply that they permanently swim

against the dominant eastward flow. They actually swim faster (daily mean Vs = 0.42±0.23

m/s) but in all directions (Fig 14). The distribution of their heading angles however is clearly

skewed towards west so that the resulting mean value of us is negative (i.e. westward). The ori-

gin of this westward bias in swimming velocities is analyzed in the next section.

Fig 14. Circular histogram of the daily swimming velocities. This histogram includes the daily swimming

velocities of all active turtles found between 120˚E and 140˚W and north of 25˚N. The color in each 10˚-wide

heading bin reflects the number of daily swimming velocities found in this bin. This number is normalized so

that the most populated bin has an index of 100.

https://doi.org/10.1371/journal.pone.0181595.g014
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Habitat gradients and swimming speeds. Simulated habitat-driven swimming velocities

being directed towards more favorable habitats, these velocities shall be westward if better hab-

itats are found to the west. This is indeed the case in the 30-to-40˚N latitude band within

which active turtles cross the Pacific. Productivity triggered by the highly turbulent Kuroshio

extension current is specially high offshore Japan and more generally in the western part of the

NPTZ (Fig 7c and 7d). Active turtles crossing the Pacific Ocean thus encounter favorable feed-

ing conditions in the western part of the basin before moving through progressively poorer

areas of the central and eastern Pacific. Fig 15a confirms that the foraging habitat suitability

index (hF) is maximum to the west of the basin, decreases steadily through the central and east-

ern Pacific and finally increases again when active turtles reach the productive California cur-

rent region. The total habitat suitability index (h) displays similar longitudinal variations as the

thermal habitat suitability index (hT) proves to vary little with longitude, except off California

where colder waters induce a decrease in hT). In agreement with these zonal variations of h
and its gradient, the mean value of us remains close to zero in the westernmost part of the

basin (Fig 15b). It becomes clearly negative in a broad longitude band between 170˚E and

150˚W and then comes back to zero near 135˚W, before finally changing sign when the zonal

habitat gradient also changes sign and leads active turtles to swim towards the rich Californian

feeding grounds.

Spatial density distribution. The spatial density distribution of juvenile sea turtles is a

critically needed information to locate high use areas and evaluate risks of interactions with

fisheries. A simple way of obtaining density maps from individual tracking experiments is to

bin daily positions (or “turtle days”) in regular boxes and then use the number of turtle days

per box as an estimate of the turtle density [60,61]. This is actually only a proxy of the turtle

density as the number of turtle days per box increases not only with the local density of turtles

but also with the residence time of each turtle in the box.

Using the daily positions generated by our passive and active dispersal simulations, the

number of turtle days per 1˚x1˚ boxes is easily computed. Even if the passive and active dis-

persal patterns are broadly similar (Fig 6), the corresponding density maps are strikingly dif-

ferent (Fig 16). Pushed by (on average) faster eastward currents and not forced to converge

towards favorable habitats, passive turtles disperse widely in the North Pacific and rapidly

cross it. Low turtle densities are thus recorded almost everywhere in the basin, except in the

easternmost part of the subtropical gyre where the convergence of Ekman currents tend to

aggregate passive turtles, just like passive plastic debris [60]. On the contrary, active turtles tar-

get favorable habitats and follow them seasonally. They thus gather in the same latitude band

in the same season. This latitude band oscillates typically between 25 and 40˚N (see Fig 13b) so

that the turtle density is especially high between these two latitudes. In that latitude band also,

the density clearly increases from west to east. The relatively low densities in the western part

of the basin are due to the fact that simulated individuals are still widely dispersed in latitude.

NECC individuals only progressively reach 25˚N, sometimes at longitudes as far east as 170 to

180˚E. However, once most individual are gathered in the 25 to 40˚N latitude band, the num-

ber of turtle days keeps increasing towards East. This is mostly due to the fact the mean zonal

velocity on the ground (ug) decreases nearly steadily towards east (Fig 15b) and causes simu-

lated turtles to stay longer in each longitude box. The density distribution finally changes

shape at about 135˚W, where the mean swimming speed changes direction and becomes

westward. From there active turtles start spreading along the coast of California and Baja

California.

Although no juvenile leatherback tracking data are available to validate the simulated den-

sity map, we note that Briscoe et al. [61] recently produced a comparable map for juvenile log-

gerheads tracked in the North Pacific. Interestingly, their density distribution displays some
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similarity with ours. In particular, loggerhead trajectories are also concentrated in the 30 to

40˚N latitude band and residence times are especially high in the central part of the basin

(180˚W to 160˚W).

Food availability, growth and energy accumulation. As discussed in the previous sec-

tion, active turtles initiate their crossing of the Pacific in the productive waters found in the

Fig 15. Zonal variations in habitats and speeds. Averaged longitudinal variations of (a) habitat suitability indices (h, hT,

hF) and (b) zonal speeds (us, uc, ug) along the trajectories of active turtles crossing the North Pacific.

https://doi.org/10.1371/journal.pone.0181595.g015
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western part of the NPTZ. They then transit through the less-productive central and eastern

North Pacific before finally entering the rich waters of the California current system. Model

results accordingly indicate that the NPP encountered by active turtles during their 3 first

years of life is, on average, more than sufficient to meet their daily food requirements, i.e.

NPP > F(a) (Fig 17). During the next 4 year, that is when active turtles move between 150˚W

and 180˚, NPP is only marginally (seasonally) sufficient. NPP then becomes insufficient to

fully meet the food requirements of the simulated individuals crossing the eastern part of the

basin. Slower growth and increased starvation-induced mortality is thus expected in this area.

Finally, NPP increases markedly as active turtles get into the California current region (at

about 130˚W) where high productivity allows larger/older individuals to fulfill their food

requirements. This likely signals the beginning of a period of energy accumulation after which

the first reproductive migration might occur. If this was the case, sexual maturity would be

reached after about 15 years, the mean time needed for active turtles to reach 130˚W.

A similar analysis of the NPP encountered by passive turtles shows that (a) passive turtles

which cross the Pacific without encountering lethal temperatures experience generally lower

NPP values than active turtles and (b) their food requirements are no longer met after the age

of 7. Death through starvation is thus likely. This reinforces the idea that passive dispersal

across the North Pacific basin is definitely not a viable hypothesis for juvenile western Pacific

leatherbacks.

Fig 16. Number of turtle days in 1˚x1˚ boxes for (a) the passive and (b) the active dispersal simulations.

https://doi.org/10.1371/journal.pone.0181595.g016
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Summary and conclusion

This paper introduces STAMM, a new IBM simulating the dispersal of juvenile sea turtles

under the combined effects of simulated oceanic currents and habitat-driven movements. The

modeling of habitat-driven movements derives from previous fish movement [17] and habitat

models [18]. It remains quite simple as information is still scarce concerning juveniles’ swim-

ming activity, thermal biology and food requirements. Nevertheless, the first active sea turtle

dispersal simulation performed with STAMM yields valuable results concerning the impact of

simulated habitat-driven movements on the distribution of juvenile leatherbacks in the North

Pacific Ocean. While oceanic currents still appear to be the main factor shaping the dispersal

area, simulated habitat-driven movements prove to strongly structure the spatial and temporal

distribution of the juveniles within this area.

Quite expectedly, simulated habitat-driven movements lead active juveniles to gather in the

NPTZ and to undertake seasonal north-south migrations. They swim towards south and

warmer waters as winter approaches and come back towards higher latitudes, where food

abounds, during spring.

More surprisingly, juveniles in the NPTZ are simulated to swim mostly towards west, that

is against the prevailing eastward oceanic currents. The western part of the North Pacific being

more productive than its central part, these dominantly westward habitat-driven movements

are generated by the zonal gradient of the feeding habitat. The westward swimming tendency

only disappears in the easternmost part of the basin (around 135˚W) when simulated juveniles

finally get attracted towards the rich waters of the California current ecosystem. This westward

swimming activity proves to be the main reason why active turtles cross the Pacific more

slowly than the passive ones. This slower crossing scenario is in better agreement with the size

Fig 17. Mean value of the NPP encountered by active turtles crossing the Pacific alive. The food

requirement curve F(a) is that of individuals born at the peak of the emergence period, that is on September

15 of the first simulated year. Tags with the mean longitude of the simulated turtles are inserted at various

simulation times to establish the link between the position and simulation time.

https://doi.org/10.1371/journal.pone.0181595.g017
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distribution of leatherbacks incidentally caught by the Hawaii-based pelagic longline fishery

[10].

Swimming velocities not only affect the whole Pacific crossing time but also, and more

importantly, the residence time and the spatial distribution of simulated juvenile leatherbacks

in different parts of the North Pacific basin. The combination of a mean westward swimming

speed with an eastward current speed yields a small mean eastward speed on the ground that

steadily decreases from the western to the eastern part of the basin. This speed decrease

induces higher residence times in the central and eastern part of the basin so that the zone

with the largest number of simulated turtle days is located in the NPTZ roughly between the

dateline and 135˚W. This unfortunately is a zone where the Hawaii longline fishery is particu-

larly active [62] and where the risk of incidental catch shall thus be increased.

Interestingly, Briscoe et al [61] recently observed that juvenile loggerheads also display high

residency in the Central North Pacific. They envision different hypotheses possibly explaining

this increased residence time, including scenarios relying on navigational markers linked to

the Earth magnetic field. Although STAMM is tuned here to simulate the movements of leath-

erback rather than loggerhead turtles, our results suggest that a simple dispersal model forced

only by ocean currents, surface temperatures and NPP fields can produce a similar increase of

the residence time in the central and eastern North Pacific.

Besides inducing a generally westward swimming activity, the simulated zonal distribution

of the feeding habitats also likely induces important variations in individual fitness. While

juveniles likely find sufficient food in the Western North Pacific, they probably know harsh

times in the central and eastern part of the basin before finally thriving when reaching the rich

California current region. They shall accumulate there large amounts of energy and could then

initiate their first reproductive migration. Under that hypothesis, the juvenile western Pacific

leatherbacks that cross the Pacific shall reach sexual maturity after 15 years, the mean age at

which active turtles reach the California current region. This appears to be a reasonable esti-

mate [53].

Last but not least, the comparison of passive and active dispersal simulations shows that

simulated habitat-driven movements strongly reduce the risk of cold-induced mortality. The

mortality rate reaches 70% in passive turtles but remains below 20% in active turtles. Simula-

tions also show that cold-induced mortality is more frequent among the simulated juveniles

that rapidly circulate into the Kuroshio than among those that first drift into the North Equa-

torial Counter Current (NECC). The position and strength of the NECC being directly related

to El Niño activity [63], this mechanism might induce marked inter-annual variability in juve-

nile survival. More generally, our results suggest that inter-annual or longer-term variability in

ocean currents can induce significant variations in dispersal patterns, leading different propor-

tions of hatchlings, and then juveniles, towards different (more or less favorable) developmen-

tal areas. This can, in turn, influence population resilience to regional or global perturbations

and possibly allow the emergence of new migration destinations [9]. This shall be further

investigated when longer ocean reanalyses, (preferably including multiple El Niño/La Niña

events) will become available.

Ultimately, we want to emphasize that the calibration and validation of a sea turtle move-

ment model like STAMM critically depends on the availability of precise information not only

concerning juvenile movements but also juvenile thermal biology and energetics. Recent work

of Jones and colleagues [22,24,41,44] provide invaluable information on these last two subjects,

at least concerning leatherbacks. More work of this type is clearly needed for all sea turtle spe-

cies. More tracking data are also needed to document movements of young sea turtles. The

number of juvenile tracking experiments is steadily growing [4,12,55,61,64,65] but these
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mostly concern loggerheads. We recommend that such experiments be continued and

extended to other sea turtle species, in particular leatherbacks.

Supporting information

S1 Fig. Animated 18-year-long dispersal of passive leatherbacks in the North Pacific

Ocean. Simulated individuals are released offshore Jamursba-Medi nesting beach (white dot

on the map). Their positions (blue dots) are displayed at 10-day intervals. Dots turn black

when cold-induced death occurs.

(AVI)

S2 Fig. Animated 18-year-long dispersal of active leatherback and maps of habitat suitabil-

ity index (h) in the North Pacific Ocean. Simulated individuals are released offshore

Jamursba-Medi nesting beach (white dot on the map). Their positions (blue dots) are dis-

played at 10-day intervals. Dots turn black when cold-induced death occurs.

(AVI)
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