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Abstract

We introduce Salmon, a method for quantifying transcript abundance from RNA-seq reads that is 

accurate and fast. Salmon is the first transcriptome-wide quantifier to correct for fragment GC 

content bias, which we demonstrate substantially improves the accuracy of abundance estimates 

and the reliability of subsequent differential expression analysis. Salmon combines a new dual-

phase parallel inference algorithm and feature-rich bias models with an ultra-fast read mapping 

procedure.

Estimating transcript abundance is a fundamental task in genomics. These estimates are used 

for the classification of diseases and their subtypes [1], for understanding expression 

changes during development [2], and tracking the progression of cancer [3]. Accurate and 

efficient quantification of transcript abundance from RNA-seq data is an especially pressing 

problem due to both the wide range of technical biases that affect the RNA-seq 

fragmentation, amplification and sequencing process [4] [5], the exponentially increasing 

number of experiments, and the adoption of expression data for medical diagnosis [6]. 

Traditional quantification algorithms, that use alignments of the sequencing reads to the 

genome or transcriptome, require significant computational resources [7] and do not scale 

well with the rate at which data is produced [8]. Sailfish [9] achieved an order of magnitude 

speed improvement by replacing traditional read alignment with the allocation of exact k-

mers to transcripts. kallisto [10] achieves similar speed improvements and further reduces 

the gap in accuracy with traditional alignment-based methods by replacing the k-mer 
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counting approach with a procedure called pseudoalignment, that is capable of rapidly 

determining the set of transcripts compatible with a given sequenced fragment.

However, existing methods for transcriptome-wide abundance estimation, both alignment-

based and alignment-free, lack sample-specific bias models rich enough to capture important 

effects, like fragment GC content bias. When uncorrected, these biases can lead to, e.g., high 

false positive rates in differential expression studies [5].

Our novel quantification procedure, called Salmon, achieves greater accuracy than tools such 

as kallisto and eXpress, employs sample-specific bias models that account for sequence-

specific, fragment-GC and positional biases, and simultaneously achieves the same order-of-

magnitude speed benefits as kallisto and Sailfish. Salmon consists of three components: a 

lightweight-mapping model, an online phase that estimates initial expression levels and 

model parameters, and an offline phase that refines expression estimates (Supplementary 

Fig. 1). This two-phase inference procedure allows Salmon to build a probabilistic model of 

the sequencing experiment that incorporates information — like terms contributing to the 

conditional probability of drawing a fragment given a transcript — not considered by 

Sailfish [9] and kallisto [10]. Salmon also provides the ability to estimate abundance 

uncertainty due to random sampling and the ambiguity introduced by multimapping reads 

(Online methods).

Unlike pseudoalignment, Salmon’s lightweight mapping procedure tracks, by default, the 

position and orientation of all mapped fragments. This information is used in conjunction 

with the abundances from online inference to compute per-fragment conditional 

probabilities. These probabilities are used to estimate auxiliary models and bias terms, and 

to update abundance estimates, and are subsequently aggregated into weights for the rich 

equivalence classes used during offline inference.

Using experimental data from the GEUVADIS [11] and SEQC [12] studies, and synthetic 

data from the Polyester [13] and RSEM-sim [14] simulators, we benchmark Salmon against 

kallisto [10] and eXpress [15] + Bowtie2 [16]; both of these methods also implement their 

own bias models. We also test Salmon using traditional alignments (from Bowtie2) as input 

(denoted as “Salmon(a)”). We show that Salmon typically outperforms both kallisto and 

eXpress in terms of accuracy (Fig. 1a–d, Supplementary Fig. 2, Supplementary Fig. 3). We 

note that all these tools address transcript quantification, and do not identify or assemble 

novel transcripts (Supplementary Note 1).

Salmon’s dual-phase inference algorithm and sample-specific bias models yield improved 

inter-replicate concordance (Supplementary Fig. 4) compared to both kallisto and eXpress. 

For example, when used for differential expression (DE) testing, the quantification estimates 

produced by Salmon exhibit markedly higher sensitivity at the same false discovery rate 

(Table 1c) — achieving a sensitivity 53% to 250% higher, at the same FDRs. Likewise, 

Salmon produces fewer false-positive differential expression calls in comparisons that are 

expected to contain few or no true differences in transcript expression (Table 1d). Salmon’s 

benefits persist at the gene level as well, where the use of Salmon’s estimates for gene-level 

DE analysis leads to a decrease by a factor of ~2.6 in the number of genes that are called as 
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DE (Supplementary Table 1). Supplementary Fig. 5 shows specific examples from the 

GEUVADIS experiments where dominant isoform switching is observed (p < 1 × 10−6) 

between samples under the quantification estimates produced by kallisto or eXpress, but this 

isoform switching is eliminated under the Salmon’s GC bias aware abundance estimates. 

Supplementary Table 2 provides the rate of isoform switching for the different methods, 

underscoring that Salmon reduces this rate across various thresholds and for various 

categories of genes. In idealized simulations, like those generated by RSEM-sim, where 

realistic biases are not simulated, the accuracy estimates of different methods tend to be 

more similar (Fig. 1b, Supplementary Fig. 6). These idealized simulations, where the 

fragments are generated without bias and in perfect accordance with the generative model 

adopted by the quantifiers, serve as a useful measure of the internal consistency of the 

algorithms [14] [10]. However, we expect results on the SEQC [12], GEUVADIS [11], and 

Polyester [13] (simulated with bias) data sets to be more representative of typical real-world 

performance. On the RSEM-sim data we evaluated all methods without bias correction. On 

all other data, we enabled bias correction for all methods. Additionally, on the Polyester 

simulated data, we enabled --noBiasLengthThreshold (to allow correction of even very 

short transcripts) for Salmon, since we are interested in assessing the maximum sensitivity 

of the model, and the simulator produces fragments that are well-behaved with respect to 

very short transcripts (see Online methods for details).

Salmon’s rich model accounts for the effects of sample-specific parameters and biases that 

are typical of RNA-seq data, including positional biases in coverage, sequence-specific 

biases at the 5′ and 3′ end of sequenced fragments, fragment-level GC bias, strand-specific 

protocols, and the fragment length distribution. These parameters are automatically learned 

in the online phase of the algorithm, which also estimates the conditional probability of a 

fragment being generated from each transcript to which it multimaps, as assessed by a 

general fragment-transcript agreement model (Online methods, Fragment-transcript 
agreement model). This provides considerable information beyond simple fragment-

transcript compatibility. Salmon incorporates these parameters by learning auxiliary models 

that describe the relevant distributions and by maintaining “rich equivalence classes” of 

fragments (Online methods, Equivalence classes).

Salmon encompasses both “alignment” and “quantification” in a single tool. When run in 

quasi-mapping mode, Salmon takes as input an index of the transcriptome and a set of raw 

sequencing reads (i.e., unaligned reads in FASTA/Q format) and performs quantification 

directly without generating any intermediate alignment files. This saves considerable time 

and space, since quasi-mapping is faster than traditional alignment.

Salmon is designed take advantage of multiple CPU cores, and the mapping and inference 

procedures scale well with the number of reads in an experiment. Salmon can quantify 

abundance either via a built-in, ultra-fast read-mapping procedure (quasi-mapping) [17], or 

using pre-computed alignments provided in SAM or BAM format. Salmon can quantify an 

experiment of approximately 600 million reads (75bp, paired-end) in ≈ 23 minutes (1384 

seconds) using 30 threads— this roughly matches the speed of the recently-introduced 

kallisto, which takes ≈ 20 minutes (1198 seconds) to complete the same task using the same 

Patro et al. Page 3

Nat Methods. Author manuscript; available in PMC 2017 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



number of threads on the same machine (a 24 core machine with hyper-threading and 256Gb 

of RAM; each core is Intel® Xeon® CPU E5-4607 v2 2.60GHz).

Salmon’s approach is unique in how it combines models of experimental data and bias with 

an efficient dual-phase inference procedure. Salmon’s ability to compute high-quality 

estimates of transcript abundances at the scale of thousands of samples, while also 

accounting for the prevalent technical biases affecting transcript quantification [18], will 

enable individual expression experiments to be interpreted in the context of many rapidly 

growing sequence expression databases. This will allow for a more comprehensive 

comparison of the similarity of experiments across large populations of individuals and 

across different environmental conditions and cell types. Salmon is open-source and freely-

licensed (GPLv3). It is written in C++11 and is available at https://github.com/COMBINE-

lab/Salmon.

Online methods

Objectives and models for abundance estimation

Our main goal is to quantify, given a known transcriptome  and a set of sequenced 

fragments ℱ, the relative abundance of each transcript in our input sample. This problem is 

challenging both statistically and computationally. The main statistical challenges derive 

from need to resolve a complex and often very high-dimensional mixture model (i.e., 

estimating the relative abundances of the transcripts given the collection of ambiguously 

mapping sequenced fragments). The main computational challenges derive from the need to 

process datasets that commonly consist of tens of millions of fragments, in conditions where 

each fragment might reasonably map to many different transcripts. We lay out below how 

we tackle these challenges, beginning with a description of our assumed generative model of 

the sequencing experiment, upon which we will perform inference to estimate transcript 

abundances.

Our approach in Salmon consists of three components: a lightweight-mapping model, an 

online phase that estimates initial expression levels, auxiliary parameters, foreground bias 

models and constructs equivalence classes over the input fragments, and an offline phase 

that refines these expression estimates. The online and offline phases together optimize the 

estimates of the transcript abundances.

The online phase uses a variant of stochastic, collapsed variational Bayesian inference [19]. 

The offline phase applies either a standard EM algorithm or a variational Bayesian EM 

algorithm [20] over a reduced representation of the data represented by the equivalence 

classes until a data-dependent convergence criterion is satisfied. An overview of our method 

is given in Supplementary Fig. 1, and we describe each component in more detail below.

Here, we use the vertical bar | to indicate that the fixed quantities following are parameters 

used to calculate the probability. For the Bayesian objective, the notation implies 

conditioning on these random variables.
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Generative process—Assume that, for a particular sequencing experiment, the 

underlying true transcriptome is given as  = {(t1, … , tM), (c1, … , cM)}, where each ti is 

the nucleotide sequence of some transcript (an isoform of some gene) and each ci is the 

corresponding number of copies of t in the sample. Further, we denote by ℓi the length of 

transcript t and by ℓ̃ι the effective length of transcript ti, as defined in Equation (1).

We adopt a generative model of the sequencing experiment that dictates that, in the absence 

of experimental bias, library fragments are sampled proportional to ci · ℓ̃ι. That is, the 

probability of drawing a sequencing fragment from some position on a particular transcript ti 
is proportional the total fraction of all nucleotides in the sample that originate from a copy of 

ti. This quantity is called the nucleotide fraction [14]:

The true nucleotide fractions, η, though not directly observable, would provide us with a 

way to measure the true relative abundance of each transcript in our sample. Specifically, if 

we normalize the ηi by the effective transcript length ℓ̃ι, we obtain a quantity

called the transcript fraction [14]. These τ can be used to immediately compute common 

measures of relative transcript abundance like transcripts per million (TPM). The TPM 

measure for a particular transcript is the number of copies of this transcript that we would 

expect to exist in a collection of one million transcripts, assuming this collection had exactly 

same distribution of abundances as our sample. The TPM for transcript ti ti, is given by 

TPMi = τi · 106. Of course, in a real sequencing experiment, there are numerous biases and 

sampling effects that may alter the above assumptions, and accounting for them is essential 

for accurate inference. Below we describe how Salmon accounts for 5’ and 3’ sequence-

specific biases (which are not considered separately by kallisto) and fragment GC bias 

which is modeled by neither kallisto nor eXpress.

Effective length—A transcript’s effective length depends on the empirical fragment 

length distribution of the underlying sample and the length of the transcript. It accounts for 

the fact that the range of fragment sizes that can be sampled is limited near the ends of a 

transcript. Here, fragments refer to the (potentially size-selected) cDNA fragments of the 

underlying library, from the ends of which sequencing reads are generated. In paired-end 

data, the mapping positions of the reads can be used to infer the empirical distribution of 

fragment lengths in the underlying library, while the expected mean and standard deviation 

of this distribution must be provided for single-end libraries. We compute the effective 

transcript lengths using the approach of kallisto [10], which defines the effective length of a 

transcript ti as
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Equation 1

where  is the mean of the truncated empirical fragment length distribution. Specifically, 

let d be the empirical fragment length distribution, and Pr{X = x} be the probability of 

drawing a fragment of length x under d, then .

Given a collection of observations (raw sequenced fragments or alignments thereof), and a 

model similar to the one described above, there are numerous approaches to inferring the 

relative abundance of the transcripts in the target transcriptome, . Here we describe two 

basic inference schemes, both available in Salmon, which are commonly used to perform 

inference in such a model. All of the results reported in the manuscript were computed using 

the maximum likelihood objective (i.e., the EM algorithm) in the offline phase, which is the 

default in Salmon.

Maximum likelihood objective—The first scheme takes a maximum likelihood 

approach to solve for the quantities of interest. Specifically, if we assume that all fragments 

are generated independently, and we are given a vector of known nucleotide fractions η a 

binary matrix of transcript-fragment assignment Z where zij = 1 if fragment j is derived from 

transcript i, and the set of transcripts , we can write the probability of observing a set of 

sequenced fragments ℱ as follows:

Equation 2

where |ℱ| = N is the number of sequenced fragments, Pr{ti | η} is the probability of 

selecting transcript ti to generate some fragment given the nucleotide fraction η, and Pr{ti | 
η} = ηi

We have that Pr{fj | ti, zij = 1} is the probability of generating fragment j given that it came 

from transcript i. We will use Pr{fj | ti} as shorthand for Pr{fj | ti, zij = 1} since Pr{fj | ti, zij = 

1} is defined to be uniformly 0. The determination of Pr{fj | ti} is defined in further detail in 

Fragment-transcript agreement model. The likelihood associated with this objective can 

be optimized using the EM algorithm as in [14].

Bayesian objective—One can also take a Bayesian approach to transcript abundance 

inference as done in [21, 22]. In this approach, rather than directly seeking maximum 

likelihood estimates of the parameters of interest, we want to infer the posterior distribution 

of η. In the notation of [21], we wish to infer Pr{η| ℱ, } — the posterior distribution of 

nucleotide fractions given the transcriptome  and the observed fragments ℱ. This 

distribution can be written as:
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Equation 3

where

Equation 4

and

Equation 5

Unfortunately, direct inference on the distribution Pr{η| ℱ, } is intractable because its 

evaluation requires the summation over the exponentially large latent variable configuration 

space (i.e., all Z ∈ ). Since the posterior distribution cannot be directly estimated, we must 

rely on some form of approximate inference. One particularly attractive approach is to apply 

variational Bayesian (VB) inference in which some tractable approximation to the posterior 

distribution is assumed.

Subsequently, one seeks the parameters for the approximate posterior under which it best 

matches the true posterior. Essentially, this turns the inference problem into an optimization 

problem — finding the optimal set of parameters — which can be efficiently solved by 

several different algorithms. Variational inference seeks to find the parameters for the 

approximate posterior that minimizes the Kullback-Leibler (KL) divergence between the 

approximate and true posterior distribution. Though the true posterior may be intractable, 

this minimization can be achieved by maximizing a lower-bound on the marginal likelihood 

of the posterior distribution [21], written in terms of the approximate posterior. When run 

with the VB objective, Salmon optimizes the collapsed variational Bayesian objective [21] in 

its online phase and the full variational Bayesian objective [22] in the variational Bayesian 

mode of its offline phase (see Offline phase).

Fragment-transcript agreement model—Fragment-transcript assignment scores are 

defined as proportional to (1) the chance of observing a fragment length given a particular 

transcript/isoform, (2) the chance that a fragment starts at a particular position on the 

transcript, (3) the concordance of the fragment aligning with a user-defined (or 

automatically inferred) sequencing library format (e.g., a paired ended, stranded protocol), 

and (4) the chance that the fragment came from the transcript based on a score obtained 

from the alignment procedure (if alignments are being used). We model this agreement as a 

conditional probability Pr{fj | t_i} for generating fj given ti. This probability, in turn, depends 

on auxiliary models whose parameters do not explicitly depend upon the current estimates of 

transcript abundances. Thus, once the parameters of these models have been learned and are 

Patro et al. Page 7

Nat Methods. Author manuscript; available in PMC 2017 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fixed, these terms do not change even when the estimate for Pr{ti | η} = ηi needs to be 

updated. Salmon uses the following auxiliary terms:

Equation 6

where Pr{ℓ | ti} is the probability of drawing a fragment of the inferred length, ℓ, given ti, and 

is evaluated based on an observed empirical fragment length distribution. Pr{p | ti, ℓ} is the 

probability of the fragment starting at position p on ti and is a function of the transcript’s 

length. Pr{o | ti} is the probability of obtaining a fragment aligning (or mapping) with the 

given orientation to ti. This is determined by the concordance of the fragment with the user-

specified library format. It is 1 if the alignment agrees with the library format and a user-

defined prior value otherwise. Finally, Pr{a | fj, ti, p, o, ℓ} is the probability of generating 

alignment a of fragment fj, given that it is drawn from ti, with orientation o, and starting at 

position p and is of length ℓ; this term is set to 1 when using quasi-mapping, and is given by 

equation (7) for traditional alignments. The parameters for all auxiliary models are learned 

during the streaming phase of the inference algorithm from the first N′ observations 

(5,000,000 by default). These auxiliary terms can then be applied to all subsequent 

observations.

Sequence-specific bias—It has been previously observed that the sequence surrounding 

the 5′ and 3′ ends of RNA-seq fragments influences the likelihood that these fragments are 

selected for sequencing [4]. If not accounted for, these biases can have a substantial effect on 

abundance estimates and can confound downstream analyses. To learn and correct for such 

biases, Salmon adopts a modification of the model introduced by Roberts et al. [4]. A 

(foreground) variable-length Markov model (VLMM) is trained on sequence windows 

surrounding the 5′ ( ) and 3′ ( ) read start positions. Then, a different (background) 

VLMM is trained on sequence windows drawn uniformly across known transcripts, each 

weighted by that transcript’s abundance; the 5′ and 3′ background models are denoted as 

 and  respectively.

Fragment GC-bias—In addition to the sequence surrounding the 5’ and 3’ ends of a 

fragment, it has also been observed that the GC-content of the entire fragment can play a 

substantial role in the likelihood that it will be selected for sequencing [5]. These biases are 

largely different than sequence-specific biases, and thus, accounting for both the context 

surrounding the fragments and the GC-content of the fragments themselves is important 

when one wishes to learn and correct for some of the most prevalent types of bias in silico. 

To account for fragment GC-bias, Salmon learns a foreground and background model of this 

fragment GC-bias (and defines the bias as the ratio of the score of a fragment under each). 

Our fragment GC-bias model consists of the observed distribution of sequenced fragments 

for every possible GC-content value (in practice, we discretize GC-content and maintain a 

distribution over 25 bins, for fragments with GC content ranging from 0 to 1 in increments 

of 0.04). The background model is trained on all possible fragments (drawn uniformly and 

according to the empirical fragment length distribution) across known transcripts, with each 

fragment weighted by that transcript’s abundance. The foreground and background fragment 
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GC-bias models are denoted as bgc+ and bgc− respectively. Additionally, we note that 

sequence-specific and fragment GC biases do seem to display a conditional dependence. To 

account for this, Salmon learns (by default) 3 different bias models, each conditioned on the 

average GC content of the 5′ and 3′ sequence context of the fragment. A separate model is 

trained and applied for fragments with average GC content between [0, 0.33), [0.33, 0.66), 

and [0.66, 1]. The performance of the model appears robust to the number of conditional GC 

models used (Supplementary Fig. 7).

Incorporating the bias models—These bias models are used to re-estimate the effective 

length of each transcript, such that a transcript’s effective length now also takes into account 

the likelihood of sampling each possible fragment that transcript can produce — an 

approach to account for bias first introduced by Roberts et al. [4]. Before learning the bias-

corrected effective lengths, the offline optimization algorithm is run for a small number of 

rounds (10 by default) to produce estimated abundances that are used when learning the 

background distributions for the various bias models. For a transcript ti, the effective length 

becomes:

where Pr{X = j} is the probability, under the empirical fragment length distribution, of 

observing a fragment of length j, L is the maximum observed fragment length, fi(j, L) 

= min(ℓi − j + 1, L),  is the score given to transcript ti’s jth position under the 

foreground, 5’ sequence-specific bias model (  are defined 

similarly) and bgc+ (ti, j, j + k) is the score given by the foreground fragment GC-content 

model for the sequence of transcript ti from position j to j + k (and similarly for bgc− (ti, j, j + 

k)).

Once these bias-corrected lengths have been computed, they are used in all subsequent 

rounds of the offline inference phase (i.e. until the estimates of α — as defined in 

Algorithms — converge). Typically, the extra computational cost required to apply bias 

correction is rather small, and the learning and application of these bias weights is 

parallelized in Salmon (for example, when processing sample ERR188021 of the 

GEUVADIS dataset using 16 threads, the full fidelity bias modeling added 2 minutes (119 

seconds) to the non-bias-corrected quantification time. Moreover, since the bias model 

works by evaluating the bias along bases of the reference transcriptome, it scales in the 

number of active (i.e., expressed) transcripts rather than in the number of reads, so the extra 

cost of bias modeling is almost entirely independent of the number of fragments in an 

experiment. However, both the memory and time requirements of bias correction can be 

adjusted by the user to trade-off time and space with model fidelity. To make the 

computation of GC-fractions efficient for arbitrary fragments from the transcriptome, 

Salmon computes and stores the cumulative GC count for each transcript. To reduce 

memory consumption, this cumulative count can be sampled using the --gcSizeSamp. This 

will increase the time required to compute the GC-fraction for each fragment by a constant 
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factor. Similarly, when attempting to determine the effective length of a transcript, Salmon 
will evaluate the contribution of all fragments longer than the shortest 0.5% and shorter than 

the longest 0.5% of the full empirical fragment length distribution, that could derive from 

this transcript. The program option --biasSpeedSamp will instead sample fragment 

lengths at a user-defined factor, speeding up the computation of bias-corrected effective 

lengths by this factor, but coarsening the model in the process. However, sampling the 

fragment length distribution tends to produce substantial speed improvements with only a 

very moderate effect on the model fidelity. For example, setting --biasSpeedSamp to 5 

reduces the additional bias correction time on sample ERR188021 mentioned above from 

119 to 20 seconds, yet it leads to only a marginal increase in the number of false positive 

calls on the GEUVADIS data (from 1183 to 1190 total transcripts, 228 to 231 transcripts 

from two isoform genes, and it actually decreased the number of false positive calls at the 

gene level slightly from 455 to 451). All results reported in this manuscript where bias 

correction was included were run without either of these sampling options (i.e. using the 

full-fidelity model).

Alignment model—When Salmon is given read alignments as input, it can learn and 

apply a model of read alignments to help assess the probability that a fragment originated 

from a particular locus. Specifically, Salmon’s alignment model is a spatially varying first-

order Markov model over the set of CIGAR symbols and nucleotides. To account for the fact 

that substitution and indel rates can vary spatially over the length of a read, we partition each 

read into a fixed number of bins and learn a separate model for each of these bins. This 

allows us to learn spatially varying effects without making the model itself too large (as if, 

for example, we had attempted to learn a separate model for each position in the read). We 

choose 4 bins by default since this allows different models for the beginning, middle, and 

trailing segments of a read, which tend to display distinct error profiles. However, we note 

that even a single, spatially homogeneous error profile appears to work reasonably well [22], 

and that given sufficient training data, it is even possible to learn a separate bin for each 

position of a read [15]. Given the CIGAR string s = s0, … , s|s| for an alignment a, we 

compute the probability of a as:

Equation 7

where Pr{s0} is the start probability and Pr(ℳk}{·} is the transition probability under the 

model at the kth position of the read (i.e., in the bin corresponding to position k). To compute 

these probabilities, Salmon parses the CIGAR string s and moves appropriately along both 

the fragment fi and the reference transcript ti, and computes the probability of transitioning 

to the next observed state in the alignment (a tuple consisting of the CIGAR operation, and 

the nucleotides in the fragment and reference) given the current state of the model. The 

parameters of this Markov model are learned from sampled alignments in the online phase 

of the algorithm (see Supplementary Algorithm 1). When quasi-mapping is used instead of 

user-provided alignments, the probability of the “alignment” is not taken into account (i.e. 

Pr{a | fj, ti, p, o, ℓ} is set to 1 for each mapping).
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Algorithms—We describe the online and offline inference algorithms of Salmon, which 

together optimize the estimates of α — a vector of the estimated number of reads originating 

from each transcript. Given α the η can be directly computed. An overview of the Salmon 
execution “timeline”, which describes when, during the execution of the algorithm different 

estimates are made and quantities of interest are computed, is given in Supplementary Fig. 1.

Online phase—The online phase of Salmon attempts to solve the variational Bayesian 

inference problem described in Objectives and models for abundance estimation, and 

optimizes a collapsed variational objective function [21] using a variant of stochastic 

collapsed variational Bayesian inference [19]. The inference procedure is a streaming 

algorithm, similar to [15], but it updates estimated read counts α after every small group Bτ 

(called a mini-batch) of observations, and processing of mini-batches is done 

asynchronously and in parallel. The pseudo-code for the algorithm is given in 

Supplementary Algorithm 1.

The observation weight vτ for mini-batch Bτ, in line 15 of Supplementary Algorithm 1, is an 

increasing sequence in τ, and is set, as in [15], to adhere to the Robbins-Monroe conditions. 

Here, the α represent the (weighted) estimated counts of fragments originating from each 

transcript. Using this method, the expected value of η can be computed directly from α 
using equation (16). We employ a weak Dirichlet conjugate-prior with α0 = 0.001 · ℓ̃ι for all 

ti ∈ . As outlined in [19], the SCVB0 inference algorithm is essentially equivalent to 

variants of the online-EM [23] algorithm with a modified prior. The procedure in 

Supplementary Algorithm 1 is run independently by as many worker threads as the user has 

specified. The threads share a single work-queue upon which a parsing thread places mini-

batches of alignment groups. An alignment group is simply the collection of all alignments 

(i.e. all multi-mapping locations) for a read. The mini-batch itself consists of a collection of 

some small, fixed number of alignment groups (1,000 by default). Each worker thread 

processes one alignment group at a time, using the current weights of each transcript and the 

current auxiliary parameters to estimate the probability that a read came from each potential 

transcript of origin. The processing of mini-batches occurs in parallel, so that very little 

synchronization is required, only an atomic compare-and-swap loop to update the global 

transcript weights at the end of processing of each mini-batch — hence the moniker laissez-

faire in the label of Supplementary Algorithm 1. This lack of synchronization means that 

when estimating xy, we cannot be certain that the most up-to-date values of α are being 

used. However, due to the stochastic and additive nature of the updates, this has little-to-no 

detrimental effect [24]. The inference procedure itself is generic over the type of alignments 

being processed; they may be either regular alignments (e.g. coming from a bam file), or 

quasi-mappings computed from the raw reads (e.g. coming from FASTA/Q files). After the 

entire mini-batch has been processed, the global weights for each transcript are updated. 

These updates are sparse; i.e., only transcripts that appeared in some alignment in mini-

batch Bτ will have their global weight updated after Bτ has been processed. This ensures, as 

in [15], that updates to the parameters α can be performed efficiently.

Equivalence classes—During its online phase, in addition to performing streaming 

inference of transcript abundances, Salmon also constructs a highly-reduced representation 
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of the sequencing experiment. Specifically, Salmon constructs “rich” equivalence classes 

over all the sequenced fragments. Collapsing fragments into equivalence classes is a well-

established idea in the transcript quantification literature, and numerous different notions of 

equivalence classes have been previously introduced, and shown to greatly reduce the time 

required to perform iterative optimization such as that described in Offline phase. For 

example, Salzman et al. [25] suggested factorizing the likelihood function to speed up 

inference by collapsing fragments that align to the same exons or exon junctions (as 

determined by a provided annotation) into equivalence classes. Similarly, Nicolae et al.[26] 

used equivalence classes over fragments to reduce memory usage and speed up inference — 

they define as equivalent any pair of fragments that align to the same set of transcripts and 

whose compatibility weights (i.e. conditional probabilities) with respect to those transcripts 

are proportional. Turro et al. [27], introduced a notion of equivalence classes that considers 

as equivalent any pair of fragments (sequenced reads and read pairs) that multimap to the 

same set of target transcripts. The model of Turro et al. does not have the same restriction as 

that of Nicolae et al. on the proportional conditional probabilities of the equivalent 

fragments. Patro et al. [9] define equivalence classes over k-mers, treating as equivalent any 

k-mers that appear in the same set of transcripts at the same frequency, and use this 

factorization of the likelihood function to speed up optimization. Bray et al. [10] define 

equivalence classes over fragments, and define as equivalent any fragments that pseudoalign 

to the same set of transcripts, a definition which, like that of Turro et al., does not consider 

the conditional probabilities of the equivalent fragments with respect to the transcripts to 

which they map.

To compute equivalence classes, we define an equivalence relation ~ over fragments. Let 

A( , fx) denote the set of quasi-mappings (or alignments) of fx to the transcriptome , and 

let M(fx) = {ti | (ti, pi, oi) ∈ A( , fx)} be the set of transcripts to which fx maps according to 

A( , fx). We say fx ~ fy if and only if M(fx) = M(fy). Fragments which are equivalent are 

grouped together for inference. Salmon builds up a set of fragment-level equivalence classes 

by maintaining an efficient concurrent cuckoo hash map [28]. To construct this map, we 

associate each fragment fx with tx = M(fx), which we will call the label of the fragment. 

Then, we query the hash map for tx. If this key is not in the map, we create a new 

equivalence class with this label, and set its count to 1. Otherwise, we increment the count of 

the equivalence class that we find in the map with this label. The efficient, concurrent nature 

of the data structure means that many threads can simultaneously query and write to the map 

while encountering very little contention. Each key in the hash map is associated with a 

value that we call a “rich” equivalence class. For each equivalence class j, we retain a count 

dj = | j|, which is the total number of fragments contained within this class. We also 

maintain, for each class, a weight vector wj. The entries of this vector are in one-to-one 

correspondence with transcripts i in the label of this equivalence class such that

Equation 8
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That is,  is the average conditional probability of observing a fragment from j given ti 
over all fragments in this equivalence class. Though the likelihood function over equivalence 

classes that considers these weights (Equation (10)) is no longer exactly equivalent to the 

likelihood defined over all fragments (Equation (9)), these weights nonetheless allow us to 

take into consideration the conditional probabilities specified in the full model, without 

having to continuously reconsider each of the fragments in ℱ. There is a spectrum of 

possible representations of “rich” equivalence classes. This spectrum spans from the notion 

adopted here, which collapses all conditional probabilities into a single aggregate scalar, to 

an approach that clusters together fragments based not only on the transcripts to which they 

match, but on the vector of normalized conditional probabilities for each of these transcripts. 

The former approach represents a more coarse-grained approximate factorization of the 

likelihood function while the latter represents a more fine-grained approximation. We 

believe that studying how these different notions of equivalence classes affect the 

factorization of the likelihood function, and hence its optimization, is an interesting direction 

for future work.

Offline Phase—In its offline phase, which follows the online phase, Salmon uses the 

“rich” equivalence classes learned during the online phase to refine the inference. Given the 

set  of rich equivalence classes of fragments, we can use an expectation maximization 

(EM) algorithm to optimize the likelihood of the parameters given the data. The abundances 

η can be computed directly from α, and we compute maximum likelihood estimates of these 

parameters which represent the estimated counts (i.e., number of fragments) deriving from 

each transcript, where:

Equation 9

and . If we write this same likelihood in terms of the equivalence classes , we 

have:

Equation 10

This likelihood, and hence that represented in equation (9), can then be optimized by 

applying the following update equation iteratively

Equation 11
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We apply this update equation until the maximum relative difference in the α parameters 

satisfies:

Equation 12

for all . Let α′ be the estimates after having achieved convergence. We can 

then estimate ηi by , where:

Equation 13

Variational Bayes optimization—Instead of the standard EM updates of equation (11), 

we can, optionally, perform Variational Bayesian optimization by applying VBEM updates 

as in [22], but adapted to be with respect to the equivalence classes:

Equation 14

where:

Equation 15

Here, Ψ(·) is the digamma function, and, upon convergence of the parameters, we can obtain 

an estimate of the expected value of the posterior nucleotide fractions as:

Equation 16

where . Variational Bayesian optimization in the offline-phase of Salmon is 

selected by passing the --useVBOpt flag to the Salmon quant command.

Sampling from the posterior—After the convergence of the parameter estimates has 

been achieved in the offline phase, it is possible to draw samples from the posterior 

distribution using Gibbs sampling to sample, in turn, from the transcript abundances given 

the fragment assignments, and then to re-assign the fragments within each equivalence class 

given these abundances. To perform this Gibbs sampling, we adopt the model of Turro et al. 

[27] (details in Supplementary Note 2).
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Additionally, inspired by kallisto [10], Salmon also provides the ability to draw bootstrap 

samples, which is an alternative way to assign confidence to the estimates returned by the 

main inference algorithm. Bootstrap samples can be drawn by passing the --

numBootstraps option to Salmon with the argument determining the number of bootstraps 

to perform. The bootstrap sampling process works by sampling (with replacement) counts 

for each equivalence class, and then re-running the offline inference procedure (either the 

EM or VBEM algorithm) for each bootstrap sample.

Validation

Metrics for Accuracy—Throughout this paper, we use several different metrics to 

summarize the agreement of the estimated TPM for each transcript with the TPM computed 

from simulated counts. While most of these metrics are commonly used and self-

explanatory, we here describe the computation of the mean absolute relative difference 

(MARD), which is less common than some of the other metrics.

The MARD is computed using the absolute relative difference ARDi for each transcript i:

Equation 17

where xi is the true value of the TPM, and yi is the estimated TPM. The relative difference is 

bounded above by 1, and takes on a value of 0 whenever the prediction perfectly matches the 

truth. To compute the mean absolute relative difference, we simply take 

. We note that Salmon and kallisto, by default, truncate very tiny 

expression values to 0. For example, any transcript estimated to produce < 1 × 10−8 reads is 

assigned an estimated read count of 0 (which, likewise, affects the TPM estimates). 

However, eXpress does not perform such a truncation, and very small, non-zero values may 

have a negative effect on the MARD metric. To mitigate such effects, we first truncate to 0 

all TPMs less than 0.01 before computing the MARDs.

Ground truth simulated data—To assess accuracy in a situation where the true 

expression levels are known, we generate synthetic data sets using both Polyester [13] and 

RSEM-sim [14].

RSEM-sim simulations: To generate data with RSEM-sim, we follow the procedure used in 

[10]. RSEM was run on sample NA12716_7 from the GEUVADIS RNA-seq data to learn 

model parameters and estimate true expression, and the learned model was then used to 

generate 20 different simulated datasets, each consisting of 30 million 75 bp paired-end 

reads.

Polyester simulations: In addition to the ability to generate reads, Polyester allows 

simulating experiments with differential transcript expression and biological variability. 

Thus, we can assess not only the accuracy of the resulting estimates, but also how these 
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estimates would perform in a typical downstream analysis task like differential expression 

testing.

The Polyester simulation of an RNA-seq experiment with empirically-derived fragment GC 

bias was created as follows: The transcript abundance quantifications from RSEM run on 

NA12716_7 of the GEUVADIS RNA-seq data [11] were summed to the gene-level using 

version 75 of the Ensembl gene annotation for GRCh37. Subsequently, whole-transcriptome 

simulation was carried out using Polyester. Abundance (TPMs) was allocated to isoforms 

within a gene randomly using the following rule: for genes with two isoforms, TPMs were 

either (i) split according to a flat Dirichlet distribution (α = (1,1)) or (ii) attributed to a single 

isoform. The choice of (i) vs (ii) was decided by a Bernoulli trial with probability 0.5. For 

genes with three or more isoforms, TPMs were either (i) split among three randomly chosen 

isoforms according to a flat Dirichlet distribution (α = (1,1,1)) or (ii) attributed to a single 

isoform. Again, (i) vs (ii) was decided by a Bernoulli trial with probability 0.5. The choice 

of distributing expression among three isoforms was motivated by exploratory data analysis 

of estimated transcript abundance revealing that for most genes nearly all of expression was 

concentrated in the first three isoforms for genes with four or more isoforms.

Expected counts for each transcript were then generated according to the transcript-level 

TPMs, multiplied by the transcript lengths. 40 million 100bp paired-end reads were 

simulated using the Polyester software for each of 16 samples, and 10% of transcripts were 

chosen to be differentially expressed across an 8 vs 8 sample split. The fold change was 

chosen to be either  or 2 with probability of 0.5. Fragments were down-sampled with 

Bernoulli trials according to an empirically-derived fragment GC content dependence 

estimated with alpine [5] on RNA-seq samples from the GEUVADIS project. The first 8 

GEUVADIS samples exhibited weak GC content dependence while the last 8 samples 

exhibited more severe fragment-level GC bias. Paired-end fragments were then shuffled 

before being supplied to transcript abundance quantifiers. Estimated expression was 

compared to true expression calculated on transcript counts (before these counts were down-

sampled according to the empirically-derived fragment GC bias curve), divided by effective 

transcript length and scaled to TPM. Global differences across condition for all methods 

were removed using a scaling factor per condition. Differences across condition for the 

different methods’ quantifications were tested using a t-test of log2 (TPM + 1).

Software versions and options—All tests were performed with eXpress v1.5.1, kallisto 
v0.43.0, Salmon v0.8.0 and Bowtie2 v2.2.4. Reads were aligned with Bowtie2 using the 

parameters --no-discordant -k 200, and -p to set the number of threads. On the 

RSEM-sim data, all methods were run without bias correction. On all other datasests, 

methods were run with bias correction unless otherwise noted. Additionally, on the Polyester 
simulated data, Salmon was run with the option --noBiasLengthThreshold, which 

allows bias correction, even for very short transcripts, since we were most interested in 

assessing the maximum sensitivity of the model.

GEUVADIS data—The analyses presented in Fig. 1d, Supplementary Table 1 and 

Supplementary Fig. 5 were carried out on a subset of 30 samples from the publicly-available 

GEUVADIS [11] data. The accessions used and the information about the center at which 
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the libraries were prepared and sequenced is recorded in Supplementary Table 3. All 

methods were run with bias correction enabled, using a transcriptome built with the RefSeq 

gene annotation file and the genome FASTA contained within the hg19 Illumina iGenome, 

to allow for comparison with the results in [5].

For each transcript, a t-test was performed, comparing log2 (TPM + 1) from 15 samples 

from one sequencing center against 15 samples from another sequencing center. P values 

were then adjusted using the method of Benjamini-Hochberg, over the transcripts with mean 

TPM > 0.1. The number of positives for given false discovery rates was then reported for 

each method, by taking the number of transcripts with adjusted p value less than a given 

threshold.

Because the samples are from the same human population, it is expected that there would be 

few to no true differences in transcript abundance produced by this comparison. This 

assumption was confirmed by permuting the samples and performing t-tests as well as 

making t-test comparisons of random subsets within sequencing center, which consistently 

produced ≪ 1 DE transcript on average for all methods. Such an analysis comparing 

samples across sequencing center was specifically chosen to highlight transcripts with false 

quantification differences arising from technical artifacts.

SEQC data—The consistency analysis presented in Supplementary Fig. 4 was carried out 

on a subset of the publicly-available SEQC [12] data. Specifically, the accessions used, 

along with the corresponding information about the center at which they were sequences is 

recorded in Supplementary Table 4. For each sample, “same center” comparisons were made 

between all unique pairs of replicates labeled as coming from the same sequencing center, 

while “different center” comparisons were made between all unique pairs of replicates 

labeled as coming from different centers (“Center” column of Supplementary Table 4).

Statistics—Comparisons of RSEM-sim simulated data mean absolute relative differences 

(MARD) and Spearman correlations had sample sizes n1 = 20, n2 = 20. A Mann-Whitney U 

test (two-sided) was performed. Dominant isoform switching on GEUVADIS data had 

sample sizes n1 = 15, n2 = 15. A t-test (two-sided) was performed. Polyester simulated data 

differential expression analysis had sample sizes n1 = 8, n2 = 8. A t-test (two-sided) was 

performed. FDR sets were defined using Benjamini-Hochberg multiple test correction.

Salmon development, support and validation—Salmon is developed openly on 

GitHub (https://github.com/COMBINE-lab/Salmon), which is the primary venue for users to 

make feature requests and to file bug reports. However, support is also provided via a 

Google Users Group (https://groups.google.com/forum/#!forum/Sailfish-users) and a gitter 

channel (https://gitter.im/COMBINE-lab/Salmon). This provides multiple venues for users 

to have questions answered quickly and efficiently. Further, Salmon is available through 

both homebrew-science [29] and bioconda to ease installation and upgrading of the package.

Testing during the Salmon development and release process is highly-automated. In addition 

to any major feature branches, the Salmon repository retains both a master and develop 

branch. The master branch corresponds to the most recent tagged release of the software, 
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while the develop branch is where new feature development takes place before they have 

been sufficiently well-tested to be included in a tagged release. A publicly-facing continuous 

integration service (Travis-CI) automatically builds each commit, and runs a small set of 

functionality tests to ensure that no breaking changes have been committed. However, these 

tests do not assess or track quantification accuracy. For this task, a parallel, self-hosted 

continuous integration system has been created. On each commit to the Salmon repository, a 

Drone (Drone-CI) server pulls the latest commit, and builds it in a clean CentOS5 

environment using Docker [30]. In addition to the functionality tests, Salmon is run on 

simulated samples (generated using Polyester [13]). These test (automated using Next Flow 

[31]), build the Salmon index, quantify all of the simulated samples, and store the resulting 

accuracy metrics in a JSON formatted file. These results are copied back from the Docker 

container to the host, and are placed in a uniquely-named directory that corresponds with the 

SHA1 hash of the commit that produced them. This allows us to track accuracy over various 

Salmon commits, and to identify the commit corresponding to any performance regressions. 

We note that this setup overlaps considerably with the setup suggested for “continuous 

analysis” by Beaulieu-Jones and Greene [32]. Going forward, we anticipate expanding the 

test suite to include even more data and performance metrics.

Data availability—Accession information for experimental data used in this manuscript 

have been provided in the text and in Supplementary Tables 3 and 4. Simulated data has 

been carried out in accordance with the procedures detailed in Ground truth simulated 
data.

Code availability—The source code for Salmon is freely available, and licensed under the 

GNU General Public License (GPLv3). The latest version of Salmon can be obtained from 

https://github.com/COMBINE-lab/salmon.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) The median of absolute log fold changes (lfc) between the estimated and true abundances 

under all 16 replicates of the Polyester simulated data. The closer the lfc to 0, the more 

similar the true and estimated abundances. The left and right panels show the distribution of 

the log fold changes under samples simulated with different GC-bias curves learned from 

experimental data (details in Online methods, Ground truth simulated data). (b) The 

distribution of mean absolute relative differences (MARDs), as described in Online 
methods, Metrics for accuracy, of Salmon, Salmon using traditional alignments (“Salmon 
(a)”), kallisto and eXpress under 20 simulated replicates generated by RSEM-sim. Salmon 

and kallisto yield similar MARDs, though Salmon’s distribution of MARDs is significantly 

smaller (Mann-Whitney U test, p = 0.00017) than those of kallisto. Both methods 

outperform eXpress (Mann-Whitney U test, p = 3.39781 × 10−8). (c) At typical FDR values, 

the sensitivity of finding truly DE transcripts using Salmon’s estimates is 53%–450% greater 

than that using kallisto’s estimates and 210%–250% greater than that using eXpress’ 

estimates for the Polyester simulated data. (d) For 30 GEUVADIS samples, the number of 

transcripts called as DE at an expected FDR of 1% when the contrast between groups is 

simply a technical confound (i.e. the center at which they were sequenced). Salmon 
produces fewer than half as many DE calls as the other methods. Permuting samples, or 

testing for DE within sequencing center resulted in ≪ 1 transcript called as DE on average 

for all methods.
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