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Direct optical activation of microbial rhodopsins in deep biological tissue suffers from
ineffective light delivery because visible light is strongly scattered and absorbed. NIR light
has deeper tissue penetration, but NIR-activation requires a transducer that converts NIR
light into visible light in proximity to proteins of interest. Lanthanide-doped upconversion
nanoparticles (UCNPs) are ideal transducer as they absorb near-infrared (NIR) light and
emit visible light. Therefore, UCNP-assisted excitation of microbial rhodopsins with NIR
light has been intensively studied by electrophysiology technique. While electrophysiology
is a powerful method to test the functional performance of microbial rhodopsins,
conformational changes associated with the NIR light illumination in the presence of
UCNPs remain poorly understood. Since UCNPs have generally multiple emission peaks
at different wavelengths, it is important to reveal if UCNP-generated visible light induces
similar structural changes of microbial rhodopsins as conventional visible light illumination
does. Here, we synthesize the lanthanide-doped UCNPs that convert NIR light to blue light.
Using these NIR-to-blue UCNPs, we monitor the NIR-triggered conformational changes in
sensory rhodopsin II from Natronomonas pharaonis (NpSRII), blue light-sensitive microbial
rhodospsin, by FTIR spectroscopy. FTIR difference spectrum of NpSRII was recorded
under two different excitation conditions: (ⅰ) with conventional blue light, (ⅱ) with UCNP-
generated blue light upon NIR excitation. Both spectra display similar spectral features
characteristic of the long-lived M photointermediate state during the photocycle ofNpSRII.
This study demonstrates that NIR-activation of NpSRII mediated by UCNPs takes place in
a similar way to direct blue light activation of NpSRII.
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INTRODUCTION

Microbial rhodopsins are retinal-containing membrane proteins pivotal in cellular behaviors. Upon
light illumination, the retinal chromophore that is covalently bound to the protein via a protonated
Schiff base undergoes photoisomerization, followed by a cyclic reaction of conformational changes in
the protein, known as photocycle, which eventually leads to a cellular response. Making good use of
the sensitivity to visible light, microbial rhodopsins present powerful tools in optogenetics, a method
that exploits light to control cellular responses. Limited penetration depth of visible light in biological
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tissue (Yaroslavsky et al., 2002; Bashkatov et al., 2005; Knöpfel
et al., 2010; Lin, 2011; Häusser, 2014), however, is challenging and
ways to effectively deliver light to the target protein in deep tissue
must be found. While implantations of optical fibers (Aravanis
et al., 2007) and miniature light-emitting diode devices (Kim
et al., 2013) into deep-tissue brain succeeded in direct protein
activation by visible light, tissue damage and physical restriction
of the subject remain principal limitations. Genetically
engineered red light-active optogenetic proteins (Lin et al.,
2013; Chuong et al., 2014; Klapoetke et al., 2014; Marshel
et al., 2019) have gained deeper tissue penetration, but
effective light delivery still relies on invasive approaches.

The limitations can be resolved by applying near-infrared
(NIR) light that reaches deeper in biological tissue than visible
light and causes minimal photodamage (Zonios et al., 2001;
Yaroslavsky et al., 2002; Bashkatov et al., 2005). However, the
current lack of NIR-sensitive microbial rhodopsins requires a
local optical transducer that can bridge the gap in wavelengths
between NIR and visible radiation. For this purpose, lanthanide-
doped upconversion nanoparticles (UCNPs) benefit wireless
optogenetics because they convert low-energy NIR radiation
into high-energy visible light (Auzel, 2004; Wang and Liu,
2009; Chen et al., 2014; Zhou J. et al., 2015). These
lanthanide-doped UCNPs are commonly composed of
inorganic host nanocrystals co-doped with lanthanide ions
that have ladder-like energy levels. Upon NIR light excitation,
the incident photons are absorbed by lanthanide ions (sensitizer),
and the harvested energy is transferred to the other lanthanide
ions (activator) that emit upconverted visible light. The
completely shielded 4f orbitals of lanthanide ions account for
the long-lived excited states as well as the narrow-band light
emission, highlighting the unique optical properties of
lanthanide-doped UCNPs. Additionally, they are low cytotoxic
and biocompatible nanocrystals (Haase and Schäfer, 2011; Zhou
B. et al., 2015; Hososhima et al., 2015), which have promoted the
application of lanthanide-doped UCNPs to wireless optogenetics
with NIR light.

UCNP-assisted optogenetics enables less-invasive, deep-tissue
accessible, less tissue-damaging, and physically unrestricted
activation of proteins with NIR light. Previous literature
reports have demonstrated the feasibility of this strategy
(Hososhima et al., 2015; Shah et al., 2015; Ai et al., 2017; Lin
et al., 2017; Pliss et al., 2017; Wang et al., 2017; Yadav et al., 2017;
Chen et al., 2018; Lin et al., 2018; Ma et al., 2019; Miyazaki et al.,
2019), most commonly using electrophysiological technique.
While electrophysiology is a powerful method to test the
functional response of the target protein, mechanistic details
on the photocycle of the target protein when activated with
NIR radiation remain an open question. Unlike conventional
light sources, UCNP-protein interactions may affect the
photoreaction of the target protein. Given that lanthanide-
doped UCNPs have generally multiple emission peaks at
different wavelengths, such mechanistic insight helps elucidate
if the photocycle of proteins activated with NIR light in the
presence of the UCNPs takes place in a similar way to that of
proteins activated with visible light. Herein, we investigate how
the activation of sensory rhodopsin II from Natronomonas

pharaonis (NpSRII) takes place with NIR light in the presence
of lanthanide-doped UCNPs that convert NIR light into blue
light. To probe the conformational changes of NpSRII elicited by
light illumination, we employ FTIR spectroscopy in an attenuated
total reflection (ATR) configuration and record FTIR difference
spectrum between the resting and active states. The acquired
FTIR difference spectra resolve key photointermediate states
prevalent during the photocycle, which is compared with
spectra recorded under blue light illumination. NpSRII is blue
light sensitive microbial rhodopsin and acts as outward directed
proton pump in the absence of its cognate transducer protein
(Sudo et al., 2001). Because NpSRII undergoes much slower
photocycle than bacteriorhodopsin (bR), it provides an ideal
platform for tracking the photointermediate states under
photostationary conditions. The UV/Vis absorption spectrum
of NpSRII is very similar to CrChR2 (channelrhodopsin-2 from
Chlamydomonas reinhardtii) which is the most prominent
optogenetic tool. Lanthanide-doped UCNPs are synthesized by
co-doping two different lanthanide ions, Yb3+ and Tm3+, within
the inorganic framework of NaYF4, and emit blue light upon
irradiation with 980 nm light. Using this lanthanide-doped
UCNP, NpSRII can be indirectly activated by NIR light. The
acquired FTIR difference spectrum reveals that the M state is
mostly accumulated under photostationary conditions,
corroborating that the photocycle of NpSRII under NIR light
illumination is analogous to that under blue light illumination.

MATERIALS AND METHODS

Materials
YCl3.·6H2O (99.99%, metal basis), YbCl3.·6H2O (99.99%, metal
basis), TmCl3·6H2O (99.99%, metal basis), NH4, NaOH and oleic
acid were purchased from Aladdin Reagent Co., Ltd. 1-
Octadecene, methanol and cyclohexane were purchased from
Shanghai Macklin Biochemical Co., Ltd. Cyclohexane (99.5%)
and tris(hydroxymethyl)aminomethane (>99.8%) were
purchased from Sigma Aldrich. NaCl (≥99.5%) was purchased
from Carl Roth. DDM (>99%, n-dodecyl-β-D-maltoside) was
purchased from Glycon Biochemicals. MES (2-
(N-morpholinyl)ethanesulfonic acid) were purchased from
Sigma Aldrich. All chemicals were used without additional
purification. Millipore Type 1 water (18.2 MΩ·cm) was used
throughout the study.

Methods
NaYF4:20%Yb 0.5%Tm nanoparticles were synthesized according
to the previously reported solvothermal methods (Gong et al.,
2019; Zhang et al., 2019). Briefly, 2 mmol YCl3.6H2O,
YbCl3·6H2O, and TmCl3.6H2O in a ratio of 79.5: 20: 0.5 were
added to the mixture of 15 ml oleic acid and 30 ml 1-octadecene
in a 100 ml flask reactor on a Schlenk line. After the flask was
purged with N2, the mixture was then heated to 160°C and kept
for about 1 h with magnetic stirring to form a clear yellow
solution. After the reaction system was cooled down to room
temperature, 10 ml of methanol containing 5 mmol NaOH and
8 mmol NH4F was slowly added to the three-necked flask. The
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system was kept at 50°C for 30 min, then heated to 70°C and kept
for another 30 min to vaporize most of the methanol. Thereafter,
the system was heated to 100°C and cycled three times between
vacuum and nitrogen atmosphere to remove residual methanol,
water and oxygen. Subsequently, the solution was quickly heated
up to 300°C and maintained at this temperature for 1.5 h under
the protection of nitrogen atmosphere. After the system was
cooled down naturally, the nanoparticles were collected by
centrifugation and washed three times with ethanol.

Themorphology of the synthesized lanthanide-dopedUCNPswas
observed by transmission electron microscope (H-600 electron
microscope, Hitachi). Energy-dispersive X-ray elemental mapping
images were obtained by a FEI TECNAI G2 high-resolution
transmission electron microscope operating with a field-emission
gun operating at 200 kV. Powder X-ray diffraction (XRD) spectra
were gathered using a D8 ADVANCE X-ray diffractometer (Bruker,
Cu Kα radiation, λ � 1.5418 Å). Upconversion emission spectra were
acquired on a Cary Eclipse Fluorescence Spectrometer (Agilent
Technologies) externally equipped with a 980 nm continuous wave
laser (Changchun New Industries Optoelectronics Tech Co.,Ltd.).

NpSRII with a histidine tag at the C-terminus was expressed in
Escherichia coli BL21 (DE3) RP cells and purified on a Ni-NTA
column essentially as described forHsSRI-HtrI (Orekhov et al., 2017).
NpSRII sample (5.2mgmL−1) was washed four times with detergent-
free buffer (50mM NaCl, 5 mM TRIS, pH 8.0) in a concentrator
(Amicon® Ultra-0.5 Centrifugal Filter Devices, Merck Millipore)
using a Hettich Mikro-22R centrifuge at 13540xg for 20min. UV-
Vis absorption spectrum was recorded with a Shimadzu
UV2600 UV-VIS spectrophotometer. FTIR measurements were
conducted using a Bruker Vertex 70 FTIR spectrometer equipped
with a HgCdTe (MCT) detector and an attenuated total reflection
(ATR) accessory. In order to check the dryness of the protein film,
FTIR spectrum of drop-casted 8 μL of NpSRII on the ATR Si surface
was acquired after 0 and 30min with a spectral resolution of 4 cm−1

with 128 co-added scans.
The emission from a 980 nm continuous wave NIR laser

(Changchun New Industries Optoelectronics Tech Co., Ltd.) was
applied for excitation of the lanthanide-doped UCNPs. All FTIR
spectroscopic measurements were carried out on a Bruker Vertex 70
FTIR spectrometer equipped with a HgCdTe (MCT) detector and an
attenuated total reflection (ATR) accessory. Spectra were acquired
with a spectral resolution of 4 cm−1 with 128 co-added scans. This
procedure was repeated four times and the spectra were averaged. For
light-induced FTIR difference spectroscopic measurements with
visible and UV light, NpSRII was illuminated with a light-emitting
diode (LED) with emission maximum at 495 nm (Luxeon Star
LEDs), 475 nm (Roschwege) and 365 nm (Roschwege). The
bandwidths of 495 nm, 475 nm and 365 nm LEDs are 25, 20 and
16 nm, respectively. A single-beam spectrum collected without light
illumination was used as the background spectrum. All experiments
were performed at room temperature.

RESULTS AND DISCUSSION

Lanthanide-doped NIR-to-blue UCNPs (NaYF4: 20 mol% Yb3+/
0.5 mol% Tm3+) were synthesized by previously reported

solvothermal methods (Gong et al., 2019; Zhang et al., 2019). Two
different lanthanide ions, Yb3+ and Tm3+, are co-doped within the
inorganic framework of hexagonal phase NaYF4 nanocrystals. Yb

3+

ions have only one excited 4f level that effectively absorbs the energy
from the 980 nm NIR light due to the 2F7/2 → 2F5/2 transition. Tm

3+

ions are chosen because it is known that the energy transfer from
Yb3+ to Tm3+ is efficient and they emit blue light (Wang and Liu,
2009; Haase and Schäfer, 2011). The synthesized lanthanide-doped
UCNPs were characterized by transmission electron microscopy
(TEM), powder X-ray diffraction (XRD), energy dispersive X-ray
spectroscopy (EDX), and FTIR spectroscopy. The spherical
lanthanide-doped UCNPs are monodispersed and uniform in size
as shown in the TEM image, Figure 1A. From a detailed size
distribution analysis, the average particle size was found to be
21.63 nm with a standard deviation of 2.5 nm (Supplementary
Figure S1). Figure 1B reveals that the XRD patterns of the
lanthanide-doped UCNPs correspond to the standard XRD
patterns of β-NaYF4 (JCPDS 16–0334). EDX analysis of the
lanthanide-doped UCNPs confirms the presence of all
components (Supplementary Figure S2). The absence of the
C�O stretching vibration at 1,706 cm−1 in the FTIR spectrum of
the lanthanide-doped UCNPs suggests that the surface of the
lanthanide-doped UCNPs are capped by oleate species originated
from oleic acid used in the synthesis (Supplementary Figure S3),
consistent with previous literature reports (Bogdan et al., 2011; Chen
et al., 2012; Liang et al., 2018; Ao et al., 2019; Thanasekaran et al.,
2019).

To investigate the optical properties of the synthesized lanthanide-
doped UCNPs, upconverted photoluminescence spectra were
recorded. The lanthanide-doped UCNPs were dissolved in
cyclohexane ([UCNP] � 1mg mL−1) and the solution was excited
with a continuous wave 980 nm diode laser. Figure 2 shows the
upconverted photoluminescence spectrum of the lanthanide-doped
UCNPs taken with varied 980 nm NIR excitation output power: 0.4,
0.8, 1.2, 1.6 and 2.0W colored in black, red, green, blue andmagenta,
respectively. Four emission bands characteristic for Tm3+ ions are
observed at 343, 359, 451 and 475 nm, corresponding to the decay of
1I6 → 3F4,

1D2 → 3H6,
1D2 → 3F4, and

1G4 → 3H6, respectively.
Among them, two emission bands of Tm3+ in the blue region, 451
and 475 nm, reveal that the synthesized lanthanide-doped UCNPs
absorb 980 nm NIR light and emit the upconverted blue light, which
was visible to the naked eye (Figure 2, inset). Within the applied
power range, the output power of the NIR laser displays a linear
correlation with the intensity of the emission bands at 451 and
475 nm (Supplementary Figure S4).

NpSRII is a heptahelical transmembrane protein containing a
retinal chromophore, whose photoisomerization is triggered by
blue light illumination. The photocycle of NpSRII contains
several sequential photointermediate states that are spectrally
distinctive (Chizhov et al., 1998): from the ground state to K, L,
M, N and O intermediate state with absorption maximum of 500,
510, 495, 400, 485 and 535 nm, respectively. While NpSRII acts as
phototaxis receptor that mediates blue light avoidance in the
presence of its cognate transducer protein (HtrII), it also acts as
an outward directed proton pump in the absence of HtrII (Sudo
et al., 2001). Prolonged photocycle of NpSRII similar to bR is
suitable for probing the photointermediate state during the
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photocycle with FTIR spectroscopy. Crystal structure of NpSRII
(Luecke et al., 2001; Gordeliy et al., 2002) and spectroscopic
studies on the photocycle of NpSRII under blue light illumination
(Hirayama et al., 1992; Engelhard et al., 1996; Chizhov et al., 1998;
Furutani et al., 2002; Hein et al., 2003; Furutani et al., 2004;
Iwamoto et al., 2004; Bergo et al., 2005; Mironova et al., 2005;
Jiang et al., 2008; Jiang et al., 2010; Tateishi et al., 2011;
Mohrmann et al., 2016; Pfitzner et al., 2018) have been
previously reported. Given this literature precedent, we record
the FTIR difference spectrum of NpSRII under NIR light
illumination. NpSRII proteins were produced and purified as
previously described (Hohenfeld et al., 1999; Orekhov et al.,
2017). The NpSRII film for FTIR spectroscopic measurements
was prepared by drop-casting 8 μL of purified NpSRII on the
silicon ATR crystal. Strong water bands at around 3,400 and

1,600 cm−1 in the FTIR spectrum taken right after drop-casting
gradually declined over time, and no significant changes were
probed in their intensities after 30 min of air-drying. This decline
in water bands is accompanied by the rise in methyl bands
(3,000–2,800 cm−1), amide I band (1,654 cm−1) and amide II
band (1,545 cm−1), resulting in the final amide I band
intensity of around 0.5 (Supplementary Figure S5). In
Figure 3, the UV-Vis absorption spectrum of the NpSRII film,
colored in red, is overlaid with the emission spectrum of the
lanthanide-doped UCNPs, colored in black. The emission bands
at 451 and 475 nm of the lanthanide-doped UCNPs overlap with
the absorption maxima of NpSRII centered at 471 and 497 nm,
indicating that the blue light generated by lanthanide-doped
UCNPs is capable of activating NpSRII. In addition, it is
worthwhile to note that photonic excitation at shorter
wavelengths is advantageous to avoid photoactivation of red-
shifted intermediate states.

FIGURE 1 | (A) TEM image and (B) XRD patterns of the lanthanide-doped UCNPs (NaYF4: 20 mol% Yb3+/0.5 mol% Tm3+), top, and the β-NaYF4, bottom.

FIGURE 2 | Upconverted photoluminescence spectrum of the
lanthanide-doped UCNPs excited with 980 nm continuous wave laser at
varied output power: 0.4, 0.8, 1.2, 1.6 and 2.0 W colored in black, red, green,
blue and magenta, respectively. The lanthanide-doped UCNPs are
dissolved in cyclohexane ([UCNP] � 1 mg mL−1). Inset shows a photograph of
the blue light emission generated by the lanthanide-doped UCNPs upon NIR
excitation at 1.0 W.

FIGURE 3 | UV-Vis absorption spectrum of NpSRII (red trace), overlaid
with the emission spectrum of the lanthanide-doped UCNPs in cyclohexane
([UCNP] � 1 mg mL−1) excited with 980 nm continuous wave laser at 0.6 W
(black trace).
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To investigate the effect of the UCNP-generated blue light on the
activation of NpSRII, FTIR difference spectroscopy measurements
were carried out on the same NpSRII film under two different
conditions: (ⅰ) direct excitation of NpSRII with 495 nm blue LED
light, colored in black, (ⅱ) indirect excitation ofNpSRII with blue light
generated by the lanthanide-doped UCNPs upon NIR irradiation at
0.6W, colored in red (Figure 4). Powdery lanthanide-doped UCNPs
were manually cast over the entire surface of the NpSRII film to
obtain a fairly homogeneous distribution of the UCNPs on the
protein. For both conditions, the background spectrum was
recorded without light illumination, and therefore the negative
and positive bands in the spectrum correspond to the vibrations
in the dark state and of photointermediate states prevalent during the
photocycle, respectively. The spectral features observed in both
spectra reveal striking similarities, inferring that blue light
generated from the lanthanide-doped UCNPs upon NIR
excitation activates NpSRII in a similar way as the conventional
blue light does. It is known for NpSRII that under photostationary
conditions, a mixture of M and O photointermediate states is formed
and the relative abundance of each of these states is highly dependent
on experimental conditions (Chizhov et al., 1998; Klare et al., 2002;
Furutani et al., 2004; Iwamoto et al., 2004; Jiang et al., 2010). Four

specific frequency ranges of the spectra are marked in a different
color: the C�O stretching vibration of carboxylic amino acid side
chains (1,790–1,700 cm−1, pale blue), the amide I vibration of the
peptide bonds (1,690–1,620 cm−1, pale purple), the C�C
(1,570–1,500 cm−1, pale orange) and C-C stretching vibrations
(1,240–1,160 cm−1, pale red) of the retinal chromophore. The
appearance of a band at 1,764 cm−1, assigned to the C�O
stretching vibration of Asp75, indicates proton transfer from the
retinal Schiff base to the counterion Asp75. Negative bands at
1,544 cm−1 and 1,200 cm−1 are indicative for the retinal in all-
trans configuration. These spectral features, together with a
positive band at 1,643 cm−1 in the amide I region, suggest that the
M photointermediate state is prevalent during the photocycle in this
study, carried out with NpSRII in detergent under weak alkaline
conditions, which is consistent with previous literature reports
(Engelhard et al., 1996; Jiang et al., 2010).

While direct activation of NpSRII is conventionally carried
out with narrow-band blue light, the synthesized lanthanide-
doped UCNPs emit not only blue light but also UV light. To
examine if UV illumination has an effect on the photoreaction
of NpSRII, FTIR difference spectra were recorded under both
blue and UV light illumination, thereby simulating the
experiments of UCNP-mediated NIR activation of NpSRII.
Figure 5 shows the light-induced FTIR difference spectra of
NpSRII recorded under 475 nm illumination only (black trace),
and with simultaneous illumination of 475 nm and 365 nm light
(red trace). While general spectral features in both spectra
resemble well regardless of the different wavelengths used for
photoexcitation, the difference spectrum taken together with
UV light exhibits weaker band intensities compared to the one
taken with only blue light. This result apparently demonstrates
quenching of the M state by UV light (Balashov et al., 2000).
Furthermore, characteristic bands of the M state (1,764 cm−1,
1,643 cm−1, 1,569 cm−1, and 1,544 cm−1) display reduced
intensities. Appearance of a shoulder at 1,757 cm−1 and the

FIGURE 4 | Light-induced FTIR difference spectrum of NpSRII acquired
in two different conditions (ⅰ) NpSRII was directly illuminated with 495 nm blue
LED light (ⅱ) NpSRII was indirectly illuminated with blue light generated by the
lanthanide-doped UCNPs upon NIR excitation at 0.6 W, black and red
traces, respectively. The colored areas refer to the frequency ranges of the
C�O stretching vibration of carboxylic amino acid side chains
(1,790–1,700 cm−1, pale blue), the amide I vibration of the peptide bonds
(1,690–1,620 cm−1, pale purple), the C�C (1,570–1,500 cm−1, pale orange) and
C-C stretching vibrations (1,240–1,160 cm−1, pale red) of the retinal
chromophore.

FIGURE 5 | FTIR difference spectrum of NpSRII illuminated with 475 nm
LED light, and with both 475 nm and 365 nm LED lights (black and red,
respectively).
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higher intensity of the ethylenic mode of retinal at 1,534 cm−1

(Furutani et al., 2004) indicate that the photostationary state is
shifted towards the O state by UV light illumination. Time-
resolved FTIR studies are underway to gain further insight into
the kinetics of NIR-activated NpSRII in the presence of the
UCNPs.

CONCLUSION

In conclusion, we have synthesized the lanthanide-doped UCNPs
(NaYF4: 20 mol% Yb3+/0.5 mol% Tm3+) that absorb 980 nm NIR
light and emit UV and blue light. With these UCNPs, we have
conducted the FTIR spectroscopic measurements on the NIR
activation of NpSRII to probe the conformational changes in the
protein. The FTIR difference spectrum of NpSRII recorded under
NIR illumination in the presence of the lanthanide-doped UCNPs
exhibits spectral features characteristic of the M state during the
photocycle, consistent with the one recorded under blue light
illumination in the absence of UCNPs. We show that UCNP-
generated UV light affects the photocycle of NpSRII by
quenching the M photointermediate states. This work
provides the first spectroscopic insight into the photoreaction
of NpSRII activated with NIR light in the presence of UCNPs,
and, thus contributes to further establish UCNP-assisted
optogenetics with NIR light of bulk biological materials such
as tissue and organs.
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