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A B S T R A C T   

This study uses operational data from a 180 kWp grid-connected solar PV system to train and 
compare the performance of single and hybrid machine learning models in predicting solar PV 
production a day-ahead, a week-ahead, two weeks ahead and one month-ahead. The study also 
analyses the trend in solar PV production and the effect of temperature on solar PV production. 
The performance of the models is evaluated using R2 score, mean absolute error and root mean 
square error. The findings revealed the best-performing model for the day ahead forecast to be 
Artificial Neural Network. Random Forest gave the best performance for the two-week and a 
month-ahead forecast, while a hybrid model composed of XGBoost and Random Forest gave the 
best performance for the week-ahead prediction. The study also observed a downward trend in 
solar PV production, with an average monthly decline of 244.37 kWh. Further, it was observed 
that an increase in the module temperature and ambient temperature beyond 47 ◦C and 25 ◦C 
resulted in a decline in solar PV production. The study shows that machine learning models 
perform differently under different time horizons. Therefore, selecting suitable machine learning 
models for solar PV forecasts for varying time horizons is extremely necessary.   

1. Introduction 

Electricity demand has risen globally, driven by population growth and industrialization [1,2]. This increased demand has pri
marily been met by electricity generated from fossil fuel sources. This has contributed to the increased greenhouse gas emissions and 
environmental degradation [3]. Renewable energy sources such as solar PV are increasingly being adopted as an alternative to 
non-renewable sources to reduce greenhouse gas emissions. Yet, their intermittent nature introduces uncertainty and instability into 
the power system [4]. As such, managing modern power systems with high penetration of solar PV has become more complicated, 
requiring accurate forecasts of solar PV production. 

Many studies have proposed several physical and machine learning forecasting models to address this problem [5–9]. Machine 
learning models are, however, widely used due to their use of solar PV’s historical data, which are a more accurate reflection of the 
actual system’s performance. In addition, machine learning models can make forecasts without the design parameters of the solar PV 
system. 

The Decision Tree algorithm with a tree depth of 7 was used in Ref. [10] to predict the output power of a solar PV plant with a Mean 
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Absolute Percentage Error (MAPE) of 0.77%. A similar study by Ref. [11] used Random Forest to forecast the output power of Yarmouk 
University’s PV solar system in Jordan. Their model successfully forecasted a total yield of 5548.96 MWh at a performance ratio of 
95.73%. In Ref. [12], Support Vector Regression achieved a Root Mean Square Error (RMSE) of 318.4 for the hourly forecast of solar PV 
production. 

A further study by Ref. [13] focused on the daily, hourly and 15-min ahead forecast of solar PV production. Observations from their 
study indicated that Random Forest performed better than Support Vector Regression, Linear Regression and Artificial Neural Network 
with an RMSE of 32. Further, in Ref. [14], Random Forest was used to predict solar PV production with an average Mean Absolute Error 
(MAE) of 1.0096 and a RMSE of 1.5878. Again, in Ref. [15], Random Forest performed better than Support Vector Regression and 
Decision Tree in forecasting solar PV production a day ahead. Their model obtained an RMSE of 95.32 and MAE of 50.21. The XGBoost 
algorithm’s effectiveness in forecasting solar PV production was also explored in Refs. [16,17] for day-ahead and hour-ahead sce
narios. Their studies observed significant improvement in the prediction accuracy. 

Other studies also attempted to address this problem using artificial neural networks. For instance Ref. [18], compared the per
formance of an Artificial Neural Network with Random Forest, Decision Tree, XGBoost and LSTM in predicting the intra-day solar PV 
production. The findings showed that ANN performed better than all the other models, with an RMSE of 0.9988. An RMSE of 1.5565 
was achieved by Ref. [19] when ANN was used to forecast solar PV production days ahead. Similarly, using solar irradiation, ambient 
temperature and model temperature as input variables, the study in Ref. [20] built an Artificial Neural Network that successfully 
predicted solar PV production an hour ahead and a day ahead. Further, a 24-h ahead forecast with ANN was experimented with by 
Ref. [21], where a MAPE of 10.6% was obtained on sunny days, and 18.89% was recorded on rainy days. 

Researchers have also explored combining multiple models into hybrid models to improve the predicting performance of individual 
models. In Ref. [22], k-nearest neighbour (k-NN) was combined with an artificial neural network for short-term solar PV forecasts. The 
model showed an improvement in the prediction accuracy over k-NN. A Long-Short Term Model (LSTM) and AdaBoost were combined 
in Ref. [23] for a short-term solar PV forecast. The hybrid model performed better than the single LSTM model with an RSME of 0.0435 
and an MAE of 0.0246. The authors in Ref. [24] also proposed a hybrid deep learning approach based on a convolutional neural 
network (CNN) and long-short-term memory recurrent neural network (LSTM) for forecasting PV output power. 

While many studies have been conducted on using machine learning to forecast solar PV output, most have focused on specific time 
horizons such as an hour ahead, a day ahead and a month ahead. Studies in the literature also indicate that artificial neural networks 
and hybrid models improve prediction accuracy. However, only a few studies exist on how their performance compares with single 
models over different time horizons. 

Therefore, this study seeks to fill this gap in the literature by comparing the performance of single, ensembles and hybrid machine 
learning models in predicting solar PV output power over four different time horizons. The study further analyses the trend in solar PV 
production and how it is influenced by ambient and module temperature. This study will contribute to selecting suitable machine 
learning forecast models and improve understanding of the effect of temperature on solar PV production. 

Fig. 1. Flowchart of research methodology.  

S.T. Asiedu et al.                                                                                                                                                                                                       



Heliyon 10 (2024) e28898

3

2. Materials and methods 

Fig. 1 depicts the research approach of the study. The data analysis, model training and evaluation were performed using Python 
3.10 in Jupyter Notebook 6.5.4. 

2.1. Description of the solar PV plant 

The 180 kWp solar PV plant chosen for this study is an industrial fuel facility located at Tema in Ghana. The site’s geographical 
location is at latitude 5.7348◦ N and longitude 0.0302◦ E in Ghana, where the average annual solar irradiation is 5.1 kWh/m2/day 
[25]. The solar PV plant comprises 462 Mono Perc Diamond cell solar modules, each rated at 390 W. The manufacturer of the module is 
Jinko Solar. The setup has 27 strings of 17 modules per string. However, 3 other strings have 18 modules per string. The strings are 
connected in three groups to one of the eight 20 kVA- 3 phase Fronius SYMO inverters with 97.9% efficiency. The characteristics of the 
solar PV module are presented in Table 1. 

2.2. Data collection and analysis 

The data is collected from the web application of Fronius Solar, the manufacturer of the smart inverters used for this solar PV 
system. The data which is not publicly available was extracted from the company’s webpage [26] with permission from Tino Solutions 
Ltd, a Ghanaian solar PV company based in Accra. 

The PV production, irradiation, module temperature, and ambient temperature data were selected from April 1st, 2021, to March 
31st, 2023, in 5-min timesteps. A similar data for the month of April 2023 was further extracted for model evaluation. Table 2 presents 
the descriptive statistics of the dataset. 

2.3. Data cleaning 

A total of 1590 data points containing missing inputs for any of the variables were excluded from the model training. The presence 
of outliers was checked and excluded from the training. All data points recording more than 10 W/m2 solar irradiation without solar PV 
production were excluded from the model training. Data points with less than 1 kWh for more than 250 W/m2 solar radiation were also 
removed. These assumptions were made based on descriptive statistics where a mean of 184.61 W/m2 radiation produces 1.67 kWh of 
solar PV energy. Other isolated cases of outliers were neglected since their numbers were too small compared to the overall dataset. 

Table 1 
Characteristics of the solar PV module.  

Module Type JKM390M-72L-V 

STC NOCT 

Maximum Power (Pmax) 390Wp 294Wp 
Maximum Power Voltage (Vmp) 41.1 V 39.1 V 
Maximum Power Current (Imp) 9.49A 7.54A 
Open-circuit Voltage (Voc) 49.3 V 48.0 V 
Short-circuit Current (Isc) 10.12A 8.02A 
Module Efficiency STC (%) 19.67% 
Operating Temperature (◦C) − 40 ◦C~+85 ◦C 
Maximum System Voltage 1500VDC (UL)/1500VDC (IEC) 
Maximum Series Fuse Rating 20A 
Power Tolerance 0~+3% 
Temperature Coefficients of Pmax − 0.37%/◦C 
Temperature Coefficients of Voc − 0.28%/◦C 
Temperature Coefficient of Isc 0.048%/◦C 
Nominal Operating Cell Temperature (NOCT) 45 ± 2 ◦C  

Table 2 
Descriptive statistics of dataset.   

PV production (kWh) Irradiation (W/m2) Ambient temperature (oC) Module temperature (oC) 

count 210235 208649 208648 208648 
mean 1.67 184.61 26.05 32.50 
std 2.47 263.99 2.73 9.10 
min 0 0 20 19 
25% 0 0 24 26 
50% 0 7.03 25 28 
75% 3.04 332 28 39 
max 16.98 1344.11 54 72  
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2.4. Correlation and feature selection 

Before model training, a Pearson correlation heatmap was generated to determine how the selected variables explain the changes in 
solar PV production. More importantly, this technique helps to detect multicollinearity among the explainable variables. The corre
lation formula is shown in equation (1) [18]. 

r=

∑n

i=1
(x1 − x )(pi − pi)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=i
(xi − xi)

∑n

i=i
(pi − pi)

2
√ (1)  

Where xi is the target value, xi is the mean of the target value, pi is the predicted value, pi is the mean of the predicted value, and n is the 
number of datasets. 

2.5. Data preprocessing 

The date and time were engineered using Label Encoder into year, month, day, hour and minute components. The input data for the 
Artificial Neural Network was transformed using the ‘MinMaxScalar’ from the ‘Sklearnpreprocessing’ module. The data was then split 
into 80% training and 20% testing to train and evaluate the machine learning models. 

2.6. Model training 

The cleaned and pre-processed data were used as inputs to train the Linear Regression model, Ridge Regression, Lasso Regression, 
k-nearest neighbour, Random Forest, AdaBoost, XGBoost and Artificial Neural Network. The input parameters used for the training 
were solar irradiation, ambient temperature, module temperature, year, month, day, hour and minutes of the dataset. 

The three best-performing models were stacked to generate hybrid models to improve the prediction performance. The prediction 
performances of the models were compared using coefficient of determination (R2 score), Mean Absolute Error (MAE) and Root Mean 
Square Error (RMSE), and the overall best model was selected for the final predictions. 

2.6.1. Linear regression 
The linear regression model makes predictions based on a linear function relating the independent variable to the feature variables 

of the data. The goal of machine learning when training a linear regression model is to learn from the data to generate the parameters 
for the linear function that accurately predicts the output variable for each input value. The best-fit model is achieved by error 
minimization to reduce the variance between the predicted values and the actual values of the output variables to the barest minimum. 
The relationship between the dependent variable Y and the independent variable X is determined by equation (2) [12]. 

Y= βo + β1X + ϵ (2)  

where: 
β0 is a constant (the point where it intersects the y-axis), 
β1 is the regression coefficient (the slope of the regression line), 
∈ is the error term to minimize for best-fit model. 
Real-life regression problems involve several predictive variables (x1, x2, x3, …, xn). This, in a number of cases, results in multi

collinearity, where some of the independent variables linearly depend on themselves. This can introduce distortions into the regression 
model. Instances also exist where the presence of less relevant feature variables in the dataset results in overfitting of the model. These 
anomalies in the regression model are addressed by introducing a regularization term to shrink the parameters of the colinear and less 
relevant feature variables to zero or a lower value. This regularization technique is achieved by performing techniques such as LASSO 
Regression or Ridge Regression. 

2.6.2. k-Nearest Neighbour (KNN) regression 
The k-nearest neighbours (k-NN) regressor is a non-parametric supervised machine learning approach for forecasting continuous 

numerical values. In k-nearest neighbour regression, the algorithm forecasts the target variable of a new data point by considering the 
values of its k-nearest neighbours in the training dataset [27]. These neighbours are chosen based on their proximity to the newly 
added data point [28]. 

Without assuming specific data distribution, k-NN captures complex relationships in the data and makes predictions based on the 
values of the nearest data points. The value of the predicted data point is the average value of the k-nearest neighbours [22]. The choice 
of k, the number of nearest neighbours considered for the prediction, determines the bias-variance trade-off. A more flexible model 
with lower bias with higher variance is obtained when the value of k is small, while larger k values result in smoother predictions with 
higher bias but lower variance. For this study, the 3 nearest neighbours were chosen. 

2.6.3. Decision tree regression 
The decision tree is a machine learning algorithm for predicting continuous numerical values. It functions by building a model that 
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resembles a tree and partitions the data recursively according to the values of input features. The tree’s leaf nodes reflect the projected 
output values, whereas each interior node represents a choice based on a feature. The best feature and split point optimizing the 
reduction in variance or mean squared error are chosen as part of the decision tree construction process. As a result, partitions are made 
that reduce prediction error and guarantee the tree includes the most informative features [18]. For this study, the default values of 2 
and 1 were selected for the minimum split node and minimum leaf sample. The maximum leaf node was not explicitly set to allow the 
tree to keep growing until no further split improves the model’s performance. 

2.6.4. Random Forest regression 
Random Forest uses an ensemble of decision trees as base learners to make predictions. Through bootstrap sampling, the trees are 

randomly selected for training. The randomly selected trees’ prediction average is calculated as the ensemble model’s predicted value. 
For this reason, Random Forest Regressor gives marginally different values for each round of training. As a result, the random state is 
set to a given value to have repeated results for the same input parameters. Equation (3) presents the underlying equation of this 
ensemble model. 

y(x)=
1
N

∑n

i=i
hi(x) (3)  

where N is the total number of decision trees in the ensemble and hi is the ith base learner [29]. 
Random Forest algorithm, however, incorporates randomness and ensemble techniques to reduce overfitting and improve the 

model’s predictive power as compared to individual decision trees. In this study, 200 decision trees (n estimators = 200) were used and 
the trees were allowed to grow until they reach their maximum depth potential. 

2.6.5. XGBoost and AdaBoost 
XGBoost combines the predictions of weak decision trees using an optimised objective function to generate a strong predictive 

model. XGBoost minimises the error function of the weak decision trees by employing a gradient boosting technique and iteratively 
adding decision trees that focus on reducing the errors of previous trees. 

The underlying mathematical equation of XGBoost is given in equation (4). 

yi = yo + ղ
∑n

k=1
fk(Ui) (4)  

Where: yi is the predicted value of the parameter vector Ui, yo is the average of the parameters in the training data, n denotes the 
number of estimators, and ղ represents the learning rate of the model [29]. 

XGboost further introduces a regularization term to reduce the complexity of the model to prevent overfitting. A total number of 
200 decision trees were used for this model with a default depth of 6. 

While XGboost sequentially adds decision trees to the ensemble model to correct the errors of the previous model, AdaBoost applies 
a weighting technique in iteration to each weak decision tree added to the ensemble. The weighting is assigned based on the per
formance of each decision tree in predicting the desired outcome. The weight is then adjusted in each iteration to give more emphasis 
to the data points that were poorly predicted. This technique seeks to improve the overall prediction of the ensemble of weak models 
[7]. 

During model training, a weighted voting system based on the performance of each decision tree is used to generate the final 
prediction. The final prediction is then obtained by the mean of the weighted prediction of all the decision trees. 

2.6.6. Artificial Neural Network (ANN) 
An Artificial Neural Network is a biology-inspired machine learning algorithm that learns complex relationships in datasets to make 

predictions. ANN consists of interconnected nodes called neurons. These neurons are arranged into input layers, single or multiple 
hidden layers and an output layer. Each neuron receives input signals, assigns weights, and computes the weighted sum using an 
activation function. Based on the value of the weighted sum, the activation function chooses the neuron’s output. The number of 
feature variables determines the number of neurons on the input layer. 

Similarly, the number of output variables corresponds to the number of neurons in the output layer. The underlying equation that 
governs the computations performed by the neurons is presented in equation (5), and the activation function is shown in equation (6) 
[29]. 

y=
∑n

i=1
(wixi) + b (5)  

F(y)= f

(
∑n

i=1
(wixi)+ b

)

(6) 

ANN performs several rounds of learning to improve the outcome of the predicted value. Each prediction phase is followed by 
backpropagation to modify the weight and biases of the connections and nodes to minimize the error difference between the predicted 
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output and the desired value. One complete iteration of this process is known as an epoch, and several epochs are performed during a 
typical ANN training until the error stops reducing. An early stopping function terminates the learning process when the error function 
stops decreasing. The chosen ANN for this study has one input layer with eight neurons. This is followed by one hidden layer with 64 
neurons, succeeded by two more hidden layers with 32 neurons each. The output layer finally generates the predicted value. The 
Rectified Linear Unit (ReLU) activated and trained the model using TensorFlow’s Adam optimiser for 100 epochs. Fig. 2 presents the 
schematic diagram of the ANN used in this study. 

2.6.7. Hybrid models 
The stacking approach was used to build the hybrid machine-learning models for this study. The three hybrid models developed in 

this study are XGBoost-RandomForest Regressor, ANN-RandomForest Regressor and ANN-XGBoost-RandomForest Regressor. This was 
intended to improve the performance of the individual models. 

The hybrid models in this study were built by combining the original features of the dataset with the predictions of ANN and 

Fig. 2. Schematic diagram of the ANN.  

Fig. 3. Process flow of the hybrid models.  
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XGBoost as input for the Random Forest Regressor. The parameters of ANN and XGBoost were maintained in the hybrid models just as 
during their model training. Fig. 3 presents the process flowchart for building the ANN-XGBoost-Random Forest hybrid model. The 
ANN-XGBoost and ANN-Random Forest models were built similarly but using only two individual models. 

2.7. Evaluation of the models 

The evaluation metrics used to evaluate the performance of the machine learning models in this study are Coefficient of Deter
mination (R2 score), Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). 

The value of R2 was computed using equation (7). 

R2 = 1 −

∑n

i=1

⃒
⃒yforecasted − yobserved |

∑n

i=1

⃒
⃒yforecasted − ymean |

(7) 

Fig. 4. Monthly Solar PV Production over 2 years.  

Fig. 5. Correlation heatmap.  
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Fig. 6. Effect of Irradiation on solar PV production.  

Fig. 7. Effect of Temperature on solar PV output.  

Table 3 
Performance of the machine learning models.   

No.  
Evaluation Metrics 

Model (Regressors) R2 Score MAE RMSE 

1 Ridge Regression 0.8376 0.5381 0.9999 
2 Linear Regression 0.8443 0.5535 0.9792 
3 Lasso Regression 0.8443 0.5535 0.9792 
4 AdaBoost 0.8605 0.4545 0.9267 
5 K-Nearest Neighbhour 0.8737 0.3678 0.8820 
6 Decision Trees 0.9076 0.2492 0.7542 
7 Random Forest 0.9525 0.2115 0.5410 
8 XGBoost 0.9529 0.2311 0.5385 
9 Artificial Neural Network (ANN) 0.9569 0.2246 0.5180  
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Fig. 8. Regression plot of predicted and actual values using (a) Linear Regression (b) Riddge Regression (c) Decision Tree (d) K-Nearest Neighbour 
(e) AdaBoost (f) Random Forest (g) XGBoost and (h) Artificial Neural Network. 
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The MAE was generated using equation (8) [30]. 

MAE=
1
N
∑N

i=1

⃒
⃒yforecasted − yobserved

⃒
⃒ (8)  

And the RMSE was obtained using equation (9) [31]. 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1

(
yforecasted − yobserved

)2

√
√
√
√ (9) 

The hybrid models and their individual models were finally used to forecast the solar PV production for the next day, the next week, 

Table 4 
Performance of Hybrid Machine Learning Models after training.   

No.  
Evaluation Metrics 

Hybrid Model (Regressors) R2 Score MAE RMSE 

1 ANN-Random Forest 0.9580 0.2010 0.5096 
2 XGBoost-Random Forest 0.9608 0.1830 0.4916 
3 ANN-XGBoost-Random Forest 0.9659 0.1682 0.4579  

Fig. 9. Comparison of the training performance of hybrid and individual models.  

Table 5 
A day ahead and a week ahead forecast evaluation result. 
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the next two weeks and the next month to evaluate their performance on actual predictions. The best performing model for each time 
horizon was finally selected using the evaluation metrics. 

3. Results and discussion 

3.1. Solar PV production trend 

Fig. 4 shows a declining trend of the solar PV output of the 2-year period after its installation. A negative slope regression line 
confirms the theory of the degradation of solar PV system over time [32]. The estimated slope of the trend line of − 244.37 reveals that 
the output production of the solar PV system reduces steadily by an average of 244.37 kWh per month. This effect can be attributed to 
factors such as soiling, dust, and the self-degrading effect of the solar PV modules [33]. 

3.2. Effect of the predictive variables on the solar PV output 

As depicted in Fig. 5, the Pearson correlation matrix shows that all the chosen predictive variables positively correlate with solar PV 
Production. Solar irradiation, however, has the highest effect on the output power of the solar PV system, explaining 92% of the 
variation in the output power. Fig. 6 further shows that this relationship between solar irradiation and solar PV production is quasi- 
linear and positive. 

The solar PV production also shows a significant dependency on the module temperature with a correlation coefficient (r) of 0.85. 
Though this coefficient of correlation is positive, Fig. 7 shows that solar PV production increases steadily with an increase in module 
temperature until it reaches a peak value. Then, a further increase in module temperature results in a decline in PV production. Fig. 7 
shows this peak value to be 47 ◦C. This corresponds to the solar PV module’s Nominal Operating Cell Temperature (NOCT) as specified 
in Table 2. 

Finally, the ambient temperature shows the least correlation with solar PV production, explaining only 12% of the changes in solar 
PV production. However, like the module temperature, solar PV production increases marginally with a rise in the ambient tem
perature until it peaks at around 25◦C. Afterwards, it begins to decline with a further increase in the ambient temperature. This peak 
temperature of 25 ◦C is the temperature at the Standard Test Condition (STC) [34]. This confirms that solar PV systems’ optimal 
ambient temperature is 25 ◦C 

3.3. Performance of machine learning models 

Table 3 displays the results of the training performance of the machine learning models. The results show that Random Forest, 
XGBoost and Artificial Neural Network outperform all the other models during the training phase. Artificial Neural Network emerged 
as the best performing model on the training phase. Random Forest however, performed better than Artificial Neural Network and 
XGBoost on the Mean Absolute Error (MAE) metrics, but when all metrics were considered, Artificial Neural Network demonstrated a 
superior performance. Linear Regression and its regularization models; Ridge and Lasso Regression showed a comparatively low 
performance at the training stage. 

The regression plots of the actual solar PV production and the predicted values of the different machine learning models are shown 
in Fig. 8. 

The regression plots reveal that all the models show significant errors in predicting solar PV production. Given the mean value of 
the solar PV production from Table 2 to be 1.67 kWh, the MAE of ANN of 0.2246 kWh represents an average error of 13.45% for every 
predicted value. XGBoost’s predictions deviate by an average of 13.83%, and Random Forest records 12.66%. On the Mean Absolute 
Error metric, Random Forest showed the slightest error. Using the MAE as the benchmark, hybrid models are created to further reduce 
these observed error margins. 

3.3.1. Performance of hybrid models 
Table 4 shows the performance of the three hybrid models. The models after training were used to predict the solar PV production 

Table 6 
Two weeks ahead and a month ahead forecast evaluation result. 
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for the month of April 2023, and their performances were evaluated using the same evaluation metrics. The first observation was that 
all the hybrid models performed better than the individual models as presented in Table 4. This shows that combining two or more 
machine learning models can improve their forecasting performance. 

Among the three hybrid models, the stacking of Artificial Neural Network, XGBoost and Random Forest (ANN-XGB-RF) gave the 
best forecast performance. With its MAE of 0.1682, the average percentage forecast error of 12.66% obtained by training the individual 
models has been reduced to 10.10%. Fig. 9 compares the evaluation scores of the three hybrid models with the individual models. 

3.3.2. Final prediction and evaluation 
The performance of the hybrid and individual models is evaluated by making predictions on unseen datasets for different fore

casting horizons. The predictions by the selected six models are made for a day-ahead, a week-ahead, two weeks-ahead, and finally, a 

Fig. 10. Day ahead solar PV forecast using (a) XGBoost-Random Forest (b) ANN-Random Forest (c) ANN-XGB-RF (d) ANN (e) XGBoost (f) 
Random Forest. 
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month-ahead. Tables 5 and 6 present the evaluation results of the hybrid models and ANN, XGBoost, and Random Forest models for the 
four selected forecasting horizons. 

The results clearly show that all the models performed lower at the validation phase. However, satisfactory performance was 
recorded by some of the models. Artificial Neural Network performed better than all the other models with an R2 score of 0.8702, 
RMSE of 0.5352 and an MAE of 0.3043 for the day ahead prediction. However, ANN did not perform well on the long-term predictions. 
This study shows that for this kind of dataset, the ANN model is more suitable for short-term forecasts than long-term forecasts. 

Further, the hybrid models that performed best during the training phase failed to perform in the final prediction. This suggests that 
stacking models to form hybrids does not necessarily improve the actual prediction accuracy of the model in the short term. 

The results further reveal that, though XGBoost and Random Forest did not perform better on short-term predictions, they did 
comparatively well on long-term predictions than ANN. Table 4 shows that XGBoost-Random Forest hybrid model performed better 

Fig. 11. A month ahead solar PV forecast using (a) XGBoost-Random Forest (b) ANN-Random Forest (c) ANN-XGB-RF (d) ANN (e) XGBoost (f) 
Random Forest. 
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than all the other models on the one-week ahead prediction with an R2 score of 0.8556 and MAE and RMSE of 0.4669 and 1.0771, 
respectively. The finding further shows that the hybrid model XGBoost-Random Forest improved the performance of its individual 
models’ performance for the week ahead prediction. 

Finally, the two-weeks and one-month predictions were dominated by Random Forest with R2 scores as shown in Table 6. 
Following closely with a comparable performance was XGBoost and its Random Forest Ensemble. This further proves that Random 
Forest and XGboost perform better than Artificial Neural Network on long-term predictions. 

Figs. 10 and 11 show the final predictions for the day ahead (April 1) and a month ahead (April 1–30) of solar PV production. 
Figs. 10 and 11 show that Artificial Neural Network produced the best day-ahead prediction of solar PV production, and Random 

Forest produced the best performance for the month-ahead prediction. However, the models did not achieve perfect prediction, and 
significant errors could be observed. This requires further studies to improve upon the model’s performance. 

4. Conclusion 

In this paper, a 180 kWp case study solar PV plant was used for the comparative assessment of different machine learning models in 
predicting solar PV production a day ahead, a week ahead, two weeks ahead and one month ahead. Hybrid models composed of 
Artificial Neural Network, Random Forest and XGBoost were developed to improve the forecasting performance of the models. The 
trend in solar PV production was also analysed alongside the effect of temperature on solar PV output power. 

Observations indicated that solar irradiation, ambient temperature and module temperature can be used to predict solar PV 
production and that solar irradiation and module temperature have the most significant effect on the output power of the solar PV 
systems. Solar PV production decreased by an average of 244.37 kWh per month over the two years. It was also observed that solar PV 
production declines when the module temperature exceeds 47 ◦C (NOCT) and when the ambient temperature rises beyond 25 ◦C (the 
temperature at STC). 

Furthermore, the study showed Artificial Neural Network gave the best performance for the day-ahead prediction with an R2 Score 
of 0.8702 and an MAE and RMSE of 0.5352 and 0.3043, respectively. However, for the long-term solar PV forecast up to a month, 
Random Forest performed better with an R2 score of 0.7681 and an MAE and RMSE of 0.5384 and 1.2319, respectively. The results 
show that the general performance of the models declines with increasing time horizons. The study also concludes that machine 
learning models perform differently over different time horizons. 

The forecasts in this study showed significant errors, and further studies should target minimising the error. The study is also 
limited in scope as it focused on a single solar PV setup in Ghana. It is possible the models could perform differently on different 
dataset. Further research could incorporate spatial components into the models and explore their performance at different locations. 
Additionally, this study used irradiation, temperature, and time as the predictive variables. Future study could include other weather 
variables such as wind speed and relative humidity to improve the performance of the models. 
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