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Background: The melanocortin-1-receptor (MC1R) gene regulates human pigmentation and is highly polymorphic in populations of European
origins. The aims of this study were to evaluate the association between MC1R variants and the risk of non-melanoma skin cancer (NMSC), and to
investigate whether risk estimates differed by phenotypic characteristics.

Methods: Data on 3527 NMSC cases and 9391 controls were gathered through the M-SKIP Project, an international pooled-analysis on MC1R,
skin cancer and phenotypic characteristics. We calculated summary odds ratios (SOR) with random-effect models, and performed stratified
analyses.

Results: Subjects carrying at least one MC1R variant had an increased risk of NMSC overall, basal cell carcinoma (BCC) and squamous cell
carcinoma (SCC): SOR (95%CI) were 1.48 (1.24–1.76), 1.39 (1.15–1.69) and 1.61 (1.35–1.91), respectively. All of the investigated variants showed
positive associations with NMSC, with consistent significant results obtained for V60L, D84E, V92M, R151C, R160W, R163Q and D294H: SOR
(95%CI) ranged from 1.42 (1.19–1.70) for V60L to 2.66 (1.06–6.65) for D84E variant. In stratified analysis, there was no consistent pattern of
association between MC1R and NMSC by skin type, but we consistently observed higher SORs for subjects without red hair.

Conclusions: Our pooled-analysis highlighted a role of MC1R variants in NMSC development and suggested an effect modification by red hair
colour phenotype.
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Non-melanoma skin cancers (NMSC) are the most common
malignancies in fair-skinned populations with a continuing
increase in incidence during recent decades (Levi et al, 2001;
Bath-Hextall et al, 2007; Flohil et al, 2011; Lomas et al, 2012).
According to the estimates of the American Cancer Society, more
than two million NMSC are diagnosed annually in the US
(Housman et al, 2003; Rogers et al, 2010; American Cancer Society,
2012). In 1992, among US Medicare beneficiaries, NMSC ranked
among the top five most costly cancers to treat (Housman et al,
2003). Moreover, from 1992 to 2006 in the same population, there
was a 77% increase in the total number of skin-cancer-related
procedures (B94% NMSC (Rogers et al, 2010)). The vast majority
of NMSC are basal cell carcinomas (BCC) and squamous cell
carcinomas (SCC) with a BCC/SCC incidence ratio in immuno-
competent patients of 4 : 1. BCC is the most common cancer in
populations of European origin and accounts for 29% of all cancers
(DePinho, 2000), although it is less likely to be lethal and rarely
metastasises. Previous studies identified solar UV irradiation, fair
skin, red hair and freckles as the most relevant risk factors
for NMSC development (Rosso et al, 1996; Zanetti et al, 1996;
IARC, 2012).

The melanocortin-1-receptor (MC1R) gene is involved in the
genetics of human pigmentation. Binding of a-melanocyte-
stimulating hormone (a-MSH) to MC1R stimulates the synthesis
of melanin-activating adenylate cyclase enzyme, thereby elevating
intracellular cyclic adenosine monophosphate (cAMP). Pigmenta-
tion is determined by regulation of the melanin proportion of
photoprotective eumelanin and phaeomelanin, the latter being
potentially mutagenic because it generates free radicals following
UV exposure (Garcia-Borron et al, 2005).

MC1R is a highly polymorphic gene: more than 100 non-
synonymous variants have been described to date (Garcia-Borron
et al, 2005; Gerstenblith et al, 2007; Perez Oliva et al, 2009).
Functional analysis of some of these variants revealed partial loss of
the receptor’s ability to stimulate cAMP pathway, leading to a
quantitative shift of melanin synthesis from eumelanin to
phaeomelanin (Duffy et al, 2004). Phaeomelanin is associated
with the ‘red hair colour’ (RHC) phenotype, characterised by fair
skin, red hair, freckles and sun sensitivity (solar lentigines and low
tanning response) (Box et al, 1997). Variant alleles of the following
six single nucleotide polymorphisms rs1805006 (D84E), rs11547464
(R142H), rs1805007 (R151C), rs1110400 (I155T), rs1805008
(R160W) and rs1805009 (D294H) were defined as ‘R’ alleles for
their association with the RHC phenotype in population or
familial association studies. The rs1805005 (V60L), rs2228479
(V92M) and rs885479 (R163Q) variants seem to have a lower
association with RHC phenotype and have been designated as ‘r’
alleles (Garcia-Borron et al, 2005).

Previous studies reported that the risk of NMSC is higher
among carriers of MC1R variants (Smith et al, 1998; Bastiaens et al,
2001; Kennedy et al, 2001; Han et al, 2006; Scherer and Kumar,
2010). However, it is not well known which variants are mostly
associated with NMSC and whether the association completely
depends on pigmentation characteristics.

The first aim of this study was to evaluate the association between
specific and combined MC1R variants and the risk of NMSC through
a large multicenter pooled-analysis of individual data from the
melanocortin-1-receptor gene, skin cancer and phenotypic charac-
teristics (M-SKIP) project. The second aim was to evaluate whether
risk estimates differed by phenotypic characteristics.

MATERIALS AND METHODS

Data for the present analyses were gathered through the M-SKIP
project, which was previously described (Raimondi et al, 2012).

Briefly, we collected data from epidemiological studies on MC1R
variants, sporadic cutaneous melanoma (CM), NMSC and
phenotypic characteristics associated with skin cancer from 33
investigators who agreed to participate in the M-SKIP project.
Participant investigators sent their data along with a signed
statement declaring that their original study was approved by an
Ethics Committee and/or that study subjects provided a written
consent to participate in the original study. We created a pooled
database, including data on 8301 CM cases, 3542 NMSC cases and
15 589 controls.

For the present study, we identified in the M-SKIP database 8
independent case–control studies on NMSC (Kennedy et al, 2001;
Dwyer et al, 2004; Scherer et al, 2008; Brudnik et al, 2009; Liu et al,
2009; Nan et al, 2009; Ferrucci et al, 2012; Andresen et al, 2013)
that overall included data on 2587 BCC cases, 788 SCC cases, 152
cases with both BCC and SCC, and 9391 controls.

Statistical analysis. First, we compared population characteristics
reported in publications of non-participant authors with those of
studies included in our analysis, to assess the representativeness of
our study population. Categorical and continuous variables were
compared by the w2-test and by the Wilcoxon two-sample test,
respectively. Small-study effects was graphically represented by
funnel plots and formally assessed by Egger’s test. We verified the
departure of frequencies of each MC1R variant from expectation
under Hardy–Weinberg (HW) equilibrium by the w2-test in
controls for each included study.

We first pooled BCC and SCC together to evaluate the
association between MC1R variants and NMSC risk overall, and
then performed separate analyses to test the association of MC1R
variants with BCC and SCC risk. For the first step, we considered
all 3527 cases (2587 BCC, 788 SCC and 152 with both), while for
the second step we first considered 2739 cases for BCC (2587 BCC
and 152 with both) and then 940 cases for SCC (788 SCC and 152
with both). For all the analyses, controls are subjects free of any
skin cancer.

We previously tested different inheritance models and found
that the dominant model was the one with the lowest Akaike’s
Information Criterion for almost all the studies and variants,
therefore we assumed this model of inheritance in the pooled
analyses (Pasquali et al, 2015). For each study, we calculated the
odds ratio (OR) with 95% confidence interval (CI) of MC1R
variants by applying logistic regression to the data. Beyond MC1R,
each model included, if available, the following covariates: age, sex,
intermittent and chronic sun exposure, lifetime and childhood
sunburns, and smoking status. Coding and standardisation of the
variables in the M-SKIP database has been described elsewhere
(Raimondi et al, 2012). For each study, we imputed missing data
with multiple imputation models for variables with o20% of
missing data, by using the iterative Markov chain Monte Carlo
method, as previously described (Schafer, 1997). We choose this
method because several data sets presented non-monotone missing
data patterns and because it is robust to minor departures from the
assumptions of multivariate normality (Schafer, 1997). For each
imputation procedure, five data sets were generated, which was
considered an adequate number for multiple imputation (Rubin,
1996). The results from the five logistic regression models applied
to the imputed data sets were then combined for the inference with
proc mianalyze (SAS software, Cary, NC, USA).

We performed the analysis using two different criteria to define
the reference category for MC1R: the first one was applied to the
four studies where MC1R was sequenced, and it used the wild-type
(WT) subjects as a reference category for each variant; the second
one was applied to the four studies where MC1R gene was not
sequenced, and it used, for each study, subjects without any of the
tested MC1R variants as a reference category for each variant. For
this latter analysis, it should be noted that reference category
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includes both WT and carriers of any MC1R variant, which was
not specifically assessed in each original study (Table 1).

In all analyses, we took into account all the identified variants
and calculated the OR for: (1) carrying at least one MC1R variant;
(2) carrying just one MC1R variant; and (3) carrying two or more
MC1R variants. Finally, a MC1R score was calculated, by summing
across the MC1R alleles, giving a value of 1 to ‘r’ and 2 to ‘R’
variants. To calculate this score, we considered both common and
rare variants and classified them as previously suggested (Davies
et al, 2012).

Following the two-stage analysis approach, we pooled study-
specific ORs using a random-effects model, implemented by the
DerSimonian–Laird method. When there were more than one OR
calculated in a single study (i.e., analysis by MC1R score), we took
into account the correlation between the ORs by using the
multivariate approach of van Houwelingen et al (2002). We
evaluated homogeneity among study-specific estimates by the
Q-statistic and I2, which represents the percentage of total variation
across studies that is attributable to heterogeneity rather than to
chance. We considered that statistically significant heterogeneity

existed when the P-value was p0.10. When significant hetero-
geneity was revealed, we performed sensitivity analysis and meta-
regression by year of publication of the study, geographic area
where the study was carried out, MC1R genotyping methodology,
deviation from HW equilibrium, type of controls and DNA source.
To evaluate the robustness of the results, we also compared the
pooled-OR obtained using the M-SKIP data set with the meta-OR
calculated by pooling risk estimates reported in studies from not-
participating investigators also using DerSimonian–Laird random-
effects models.

We computed the attributable risk (AR) in the population for
the presence of at least one MC1R variant and for the MC1R
variants found to be statistically significantly associated with
NMSC by using the Miettinen’s formula: (OR� 1/OR)�
proportion of cases exposed, with the corresponding 95%CI.

Finally, we performed a stratified analysis, to investigate
whether the observed association between MC1R variants and
NMSC varied according with different phenotypic characteristics.
Phenotypic characteristics were taken into account only in
stratified analysis and were not considered as confounders in

Table 1. Description of the 8 case–control studies included in the pooled-analysis of BCC and SCC

Mean age (s.d.) Males (%)

First author,
publication year Country

MC1R genotyping
variables

Controls
type

N cases/
N controls Cases Controls Cases Controls

Available
confoundersa

BCC
Kennedy et al, 2001 The Netherlands All Hospital 341/378 62 (10) 58 (11) 54 42 Continuous and

intermittent sun
exposure, sunburns,
smoking status

Dwyer et al, 2004 Australia V60L D84E R151C
R160W D294H

Population 157/290 44 (9) 44 (10) 48 46 Continuous and
intermittent sun
exposure, sunburns

Scherer et al, 2008 Hungary,
Romania, Slovakia

All Hospital 529/532 65 (10) 60 (12) 45 51 Intermittent sun
exposure

Brudnik et al, 2009 Poland V60L D84E V92M
R142H R151C I155T
R160W R163Q
D294H

Hospital 110/489 68 (12) 43 (19) 43 40 —

Nan et al, 2009 USA V60L V92M R151C
I155T R160W R163Q
D294H

Population 299/323 64 (7) 59 (7) 0 0 Sunburns

Rotterdam Study
(Liu et al, 2009)

The Netherlands V60L R142H R151C
R160W R163Q

Population 927/6559 73 (8) 72 (9) 48 41 —

Ferrucci et al, 2012 USA All Hospital 376/383 35 (5) 35 (6) 32 30 Continuous and
intermittent sun
exposure, sunburns,
smoking status

Total 2739/8954 62 (15) 66 (14) 40 40

SCC
Kennedy et al, 2001 The Netherlands All Hospital 151/378 66 (8) 58 (11) 66 42 Continuous and

intermittent sun
exposure, sunburns,
smoking status

Dwyer et al, 2004 Australia V60L D84E R151C
R160W D294H

Population 144/290 50 (6) 44 (10) 54 46 Continuous and
intermittent sun
exposure, sunburns

Nan et al, 2009 USA V60L V92M R151C
I155T R160W R163Q
D294H

Population 286/307 65 (7) 60 (7) 0 0 Sunburns

Rotterdam Study
(Liu et al, 2009)

The Netherlands V60L R142H R151C
R160W R163Q

Population 272/6559 74 (8) 72 (9) 53 41 —

Andresen et al, 2013 Norway All Hospitalb 87/130 56 (11) 63 (10) 63 62 —

Total 940/7664 65 (11) 69 (11) 40 40
Abbreviations: BCC¼basal cell carcinoma; MC1R¼melanocortin-1-receptor; SCC¼ squamous cell carcinoma; s.d.¼ standard deviation.
aBeyond age and gender, which were available in all the studies.
bControls are subjects with functional renal grafts at time of invitation.
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previous analyses because they are likely in the pathway between
MC1R and NMSC. Study-specific ORs were adjusted by age, sex,
intermittent and chronic sun exposure, lifetime and childhood
sunburns, and smoking status, where available. The hypothesis of
homogeneity of ORs among strata was tested by meta-regression
models with random-effects and restricted maximum likelihood
estimates, after the calculation of strata-specific OR in each study.
The correlation between the ORs calculated in the same studies
was taken into account by using the approach of van Houwelingen
et al (2002).

The analysis was carried out using SAS (version 9.2, Cary, NC,
USA) and STATA (version 11.2, Lakeway, TX, USA ).

RESULTS

Studies included in our pooled-analysis did not differ from studies
from not-participating investigators according to publication
period, study area, phenotype assessment, source of controls,
genotyping methodology, mean age of cases and controls, sex
distribution of cases and controls.

Table 1 summarises the eight case–control studies included in
the pooled analyses, four of which provided information on both
BCC and SCC, three on BCC only and one on SCC only. The
studies were published between 2001 and 2013 and the majority of
them were carried out in Europe (N¼ 4 out of 7 (57%) and N¼ 3
out of 5 (60%), for BCC and SCC subgroups, respectively). For the
BCC analysis, hospital controls were recruited in four studies
(57%) and population controls in three studies (43%), while for the
SCC analysis population controls were included in three studies
(60%) and hospital controls in the remaining two studies (40%).

All the studies included patients with histological confirmed
diagnosis, except the Nurses Health Study (Nan et al, 2009) in
which histological and self-reported diagnosis were collected. For
this latter study, however, the validity of self-reported diagnosis
was reported to be 90% (Nan et al, 2009). A complete sequencing
analysis of the MC1R coding region was performed in three studies
(43%) in BCC subgroup and in two studies (40%) in SCC
subgroup. In general, cases were of a similar age, or slightly older
than controls, and except for a study which only included women
the sex distribution was similar between cases and controls.
Individual information on age and sex were available for each
study, but information on other potential confounders varied
between studies. Among the eight included studies, no deviation
from HW equilibrium was observed for the following MC1R
variants: V60L, D84E, V92M, I155T and R163Q. Deviation from
HW equilibrium was observed in one study for R142H (Liu et al,
2009) and R151C (Dwyer et al, 2004), and in two studies for
R160W (Brudnik et al, 2009; Liu et al, 2009) and D294H (Brudnik
et al, 2009; Andresen et al, 2013). Further information on cases
identification is presented in Supplementary Table S1.

Association between combined MC1R variants and NMSC. We
found that subjects carrying any MC1R variant had a significantly
increased risk of NMSC (Table 2) compared with subjects without
any MC1R assessed variant. In more detail, carrying at least one
MC1R variant increased the risk of NMSC overall, BCC and
SCC: summary OR (SORs) (95%CI) were 1.48 (1.24–1.76), 1.39
(1.15–1.69) and 1.61 (1.35–1.91), respectively.

Carriers of two or more MC1R variants always presented higher
SORs compared with subjects carrying one MC1R variant: SORs
(95%CI) were 1.80 (1.49–2.17) for NMSC overall, 1.70 (1.36–2.12)
for BCC and 2.10 (1.60–2.76) for SCC (Table 2).

Table 2. Summary odds ratios for the association between combined MC1R variants and non-melanoma skin cancer and
heterogeneity estimates

All studies Sequenced studies only

Variant
N studies

(N cases/N controls) SOR (95%CI)
Q-test
P-value I2 (%)

N studies
(N cases/N controls)

SOR
(95%CI)

All
Wild typea 8 (1162/4419) Reference — — 4 (360/539) Reference
Any variant 8 (2365/4972) 1.48 (1.24–1.76) 0.01 60.5 4 (1074/884) 1.78 (1.50–2.11)
1 variant 9 (1628/3942) 1.40 (1.19–1.65) 0.24 22.7 4 (670/650) 1.54 (1.29–1.85)
2þ variants 8 (737/1030) 1.80 (1.49–2.17) 0.001 70.5 4 (404/234) 2.49 (1.99–3.12)
Scoreb 1 8 (776/2043) 1.24 (1.02–1.51) 0.27 19.2 4 (350/371) 1.41 (1.15–1.73)
Scoreb 2 8 (1041/2183) 1.61 (1.33–1.96) 0.31 15.3 4 (422/354) 1.81 (1.47–2.22)
Scoreb 3 8 (351/439) 1.93 (1.52–2.46) 0.001 69.5 4 (199/111) 2.68 (2.01–3.57)
Scoreb

X4 8 (197/307) 1.80 (1.37–2.38) 0.02 57.5 4 (103/48) 2.68 (1.81–3.96)

BCC
Wild typea 7 (937/4288) Reference — — 3 (322/506) Reference
Any variant 7 (1802/4666) 1.39 (1.15–1.69) 0.01 63.6 3 (924/787) 1.75 (1.46–2.09)
1 variant 7 (1244/3720) 1.31 (1.08–1.60) 0.21 28.6 3 (581/588) 1.52 (1.26–1.83)
2þ variants 7 (558/946) 1.70 (1.36–2.12) 0.002 70.8 3 (343/199) 2.48 (1.96–3.15)
Scoreb 1 7 (610/1925) 1.17 (0.94–1.46) 0.26 22.8 3 (308/344) 1.39 (1.12–1.72)
Scoreb 2 7 (786/2046) 1.51 (1.21–1.87) 0.27 20.5 3 (359/307) 1.78 (1.43–2.21)
Scoreb 3 7 (264/399) 1.80 (1.37–2.36) 0.001 72.1 3 (176/91) 2.85 (2.10–3.86)
Scoreb

X4 7 (142/296) 1.62 (1.19–2.20) 0.07 48.7 3 (81/45) 2.36 (1.56–3.56)

SCC
Wild typea 5 (272/3783) Reference — — 2 (45/175) Reference
Any variant 5 (668/3881) 1.61 (1.35–1.91) 0.42 0 2 (192/333) 2.17 (1.44–3.28)
1 variant 5 (452/3124) 1.55 (1.24–1.94) 0.70 0 2 (113/237) 1.89 (1.22–2.92)
2þ variants 5 (216/757) 2.10 (1.60–2.76) 0.19 35.3 2 (79/96) 2.80 (1.71–4.57)
Scoreb 1 5 (190/1561) 1.23 (0.92–1.64) 0.59 0 2 (51/120) 1.51 (0.91–2.52)
Scoreb 2 5 (308/1755) 1.94 (1.48–2.53) 0.79 0 2 (80/145) 2.28 (1.42–3.67)
Scoreb 3 5 (105/318) 2.28 (1.59–3.28) 0.11 46.5 2 (34/49) 2.49 (1.37–4.54)
Scoreb

X4 5 (65/247) 2.33 (1.50–3.61) 0.10 48.2 2 (27/19) 4.93 (2.28–10.64)

Abbreviations: CI¼ confidence interval; MC1R¼melanocortin-1-receptor; SOR¼ summary odds ratio. Note: significant ORs and P-values are in bold.
aFor studies that did not sequence MC1R gene it includes both wild-type and carriers of any MC1R variant not specifically assessed in the original study.
bScore calculated as detailed in Davies et al (2012).
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We observed a significant linear trend for one point increase in
MC1R score for NMSC overall, BCC and SCC: per-point SOR
(95%CI) were 1.25 (1.14–1.36), Po0.0001; 1.22 (1.11–1.34),
Po0.0001 and 1.28 (1.17–1.41), Po0.0001, respectively (results
not shown).

We then restricted the analysis only to the studies that
sequenced the MC1R gene. ORs for these studies were always
higher than ORs obtained both on the whole group of studies and
on the studies with MC1R not sequenced (Po0.0001, results not
shown).

Association between single MC1R variants and NMSC. The nine
most prevalent MC1R variants in the M-SKIP database were: V60L,
D84E, V92M, R142H, R151C, I155T, R160W, R163Q and D294H.
Table 3 and Supplementary Figure S1 present SORs for the
association of each variant with NMSC in the whole group of eight
studies, using as reference group for each variant the subjects
without any MC1R assessed variant. Table 3 also presents results
obtained by restricting the analysis only to the studies that
sequenced the MC1R gene. We found positive associations between
all the investigated MC1R variants and NMSC, with SORs always

higher than 1.00 for both the whole group of studies and the
sequenced studies. Particularly, in the whole group of studies, a
statistically significant association with NMSC overall was found
for all variants except R142H and I155T. Furthermore, we
observed a significant association with BCC for six MC1R variants:
V60L, D84E, V92M, R151C, R160W and D294H, and a significant
association with SCC for six variants: V60L, V92M, R151C, I155T,
R160W and D294H. Significant heterogeneity was found for
5 variants in the NMSC pooled analyses (D84E, R151C, I155T,
R160W and R163Q) and for five variants in BCC (V60L, R151C,
I155T, R160W and R163Q).

By meta-regression, we found that genotype methodology
significantly affected the risk estimates for some analysed variants,
probably due to different reference categories. Restricting the
analysis only to the studies that sequenced the MC1R gene, ORs
were almost always higher than ORs obtained both on the whole
group of studies and on the studies with MC1R not sequenced
(Po0.0001, results not shown). ORs significance was consistent for
all MC1R variants with the only exception of the I155T that
reached statistical significance for NMSC overall and BCC, while
lost statistical power to confirm the association with SCC. Other

Table 3. Allele frequency, summary odds ratios for the association between single MC1R variants and non-melanoma skin cancer
and heterogeneity estimates

All studies Sequenced studies only

MC1R variant NMSC

Allele
frequency in
controls (%)

N studies
(N cases/

N controls)
SOR

(95%CI)a
Q-test
P-value I2 (%)

N studies
(N cases/

N controls)
SOR

(95%CI)a

V60L All 9.7% 8 (3403/9129) 1.42 (1.19–1.70) 0.13 36.5 4 (1434/1423) 1.73 (1.39–2.16)

BCC 7 (2664/8695) 1.39 (1.12–1.72) 0.07 48.6 3 (1246/1293) 1.75 (1.39–2.20)

SCC 5 (886/7406) 1.53 (1.22–1.93) 0.67 0 2 (237/508) 1.98 (1.16–3.38)

D84E All 0.5% 5 (1720/1703) 2.66 (1.06–6.65) 0.07 53.1 4 (1434/1423) 3.16 (1.06–9.42)

BCC 4 (1396/1573) 3.52 (1.49–8.31) 0.16 42.2 3 (1246/1293) 4.55 (1.75–11.82)

SCC 3 (375/788) 1.96 (0.45–8.55) 0.13 50.5 2 (237/508) 2.01 (0.18–22.76)

V92M All 8.8% 6 (2125/2541) 1.56 (1.23–1.97) 0.20 30.4 4 (1434/1423) 1.74 (1.38–2.20)

BCC 5 (1651/2105) 1.46 (1.09–1.96) 0.13 44.3 3 (1246/1293) 1.74 (1.37–2.22)

SCC 3 (523/814) 1.94 (1.32–2.85) 0.85 0 2 (237/508) 1.81 (1.05–3.10)

R142H All 0.6% 4 (2389/7469) 1.20 (0.74–1.94) 0.40 0 3 (1347/1293) 1.37 (0.66–2.84)

BCC 4 (2123/7469) 1.12 (0.68–1.87) 0.41 0 3 (1246/1293) 1.29 (0.63–2.64)

SCC 2 (412/6554) 1.59 (0.59–4.24) 0.83 0 1 (150/378) 1.87 (0.31–11.22)

R151C All 6.0% 8 (3465/9229) 1.99 (1.50–2.65) 0.002 67.7 4 (1434/1423) 2.57 (1.90–3.48)

BCC 7 (2698/8796) 1.86 (1.35–2.56) 0.004 69.1 3 (1246/1293) 2.52 (1.68–3.77)

SCC 5 (915/7509) 2.10 (1.53–2.87) 0.21 31.3 2 (237/508) 3.16 (1.82–5.50)

I155T All 1.0% 5 (2040/2408) 1.80 (0.87–3.72) 0.06 52.0 3 (1347/1293) 2.38 (1.25–4.53)

BCC 5 (1655/2105) 1.54 (0.69–3.45) 0.07 53.6 3 (1246/1293) 2.33 (1.23–4.44)

SCC 2 (434/681) 4.60 (1.44–14.75) 0.42 0 1 (150/378) 11.46 (0.93–140.38)

R160W All 8.5% 8 (3475/9238) 1.67 (1.37–2.05) 0.08 43.4 4 (1434/1423) 1.92 (1.52–2.43)

BCC 7 (2702/8805) 1.61 (1.26–2.06) 0.03 55.9 3 (1246/1293) 1.89 (1.47–2.42)

SCC 5 (920/7515) 1.97 (1.57–2.47) 0.72 0 2 (237/508) 2.66 (1.60–4.43)

R163Q All 4.9% 7 (3217/9097) 1.50 (1.11–2.02) 0.05 51.0 4 (1434/1423) 1.93 (1.22–3.06)

BCC 6 (2574/8660) 1.39 (0.99–1.94) 0.05 54.3 3 (1246/1293) 1.69 (0.96–2.99)

SCC 4 (792/7374) 1.37 (0.90–2.08) 0.24 28.6 2 (237/508) 1.85 (0.60–5.73)

D294H All 1.2% 7 (2393/2816) 2.06 (1.45–2.93) 0.86 0 4 (1434/1423) 2.37 (1.39–4.05)

BCC 6 (1788/2382) 1.77 (1.17–2.68) 0.97 0 3 (1246/1293) 2.09 (1.17–3.72)

SCC 4 (656/1095) 2.90 (1.70–4.96) 0.39 0.6 2 (237/508) 5.07 (1.79–14.36)

Abbreviations: BCC¼basal cell carcinoma; CI¼ confidence interval; MC1R¼melanocortin-1-receptor; NMSC¼non-melanoma skin cancer; SCC¼ squamous cell carcinoma; SOR¼ summary
odds ratio. Note: significant ORs and P-values are in bold.
aFor studies that did not sequence MC1R gene reference category includes both wild-type and carriers of any MC1R variant not specifically assessed in the original study. For studies that
sequenced MC1R gene it includes only wild type.

BRITISH JOURNAL OF CANCER MC1R and non-melanoma skin cancer

358 www.bjcancer.com | DOI:10.1038/bjc.2015.231

http://www.bjcancer.com


possible sources of between-study heterogeneity, as publication
year, study area, deviation from HW equilibrium, source of
controls and source of DNA, seemed not to play a role to the
observed heterogeneity. Otherwise, sensitivity analysis indicated
that the heterogeneity may be attributable to single studies: when
we excluded the studies that were outliers in the corresponding
funnel plot, we obtained similar pooled-ORs than the original
analysis, but with no more evidence of heterogeneity among study-
specific estimates (results not shown).

Funnel plots for each MC1R variant are presented in
Supplementary Figure S2 for the whole set of eight studies. We
found suggestion of small-study effects for R151C and R160W
variants, with P-values of 0.021 and 0.006, respectively.

Figure 1 presents AR for MC1R variants significantly associated
with NMSC in the previous analysis. The highest AR for both BCC
and SCC was observed for R151C (7.3% and 11.1%, respectively),
followed by R160W (7.0% and 11.2%, respectively).

Meta-ORs calculated for studies not included in the M-SKIP
project were similar to those obtained from our pooled-analysis for
all variants (results not shown).

Analysis stratified by phenotypic characteristics. Table 4
presents SORs for the association between NMSC and any
MC1R variant stratified by skin type, hair colour and freckles.
For this analysis, subjects without any MC1R assessed variant were
the reference group for each variant. We consistently observed
higher SORs for the association between MC1R and NMSC for
subjects without red hair and without freckles. For hair colour, the
difference between SOR of red-haired and not red-haired subjects
was statistically significant for SCC and borderline for NMSC
overall (P¼ 0.01 and 0.06, respectively), indicating that MC1R is
more important for subjects with darker hair colour than with red
hair. Similarly, although not significant, subjects without freckles
have greater MC1R-associated risk than subjects with freckles.
Stratified analyses on the four studies that sequenced the MC1R
gene were not feasible due to the limited sample size in each strata-
specific analysis.

DISCUSSION

We found a statistically increased risk of NMSC for carriers of at
least one MC1R variant, with slightly higher SOR observed for SCC
than for BCC. Although these two kinds of tumours share many
similarities, they present rather different incidence rates and

aetiological factors. It has been suggested that neoplastic
transformation of epithelial cells requires significantly less UV
for BCC than for SCC (Rosso et al, 1996). Cumulative exposure to
sunlight was indeed found to be the main risk factor for SCC, while
intermittent sun exposure plays a major role in BCC development
(IARC, 2012).

We consistently observed significant MC1R-associated NMSC
risk only for subjects without red hair, while in subjects with red
hair MC1R seemed not to have an effect in addition to phenotype.
Previous studies (Bastiaens et al, 2001; Liboutet et al, 2006; Scherer
et al, 2008; Ferrucci et al, 2012; Andresen et al, 2013) also
suggested that MC1R variants had an independent role in NMSC
by phenotypic characteristics, and a similar finding has been
observed for melanoma development (Pasquali et al, 2015). MC1R
may therefore contribute to skin carcinogenesis through other
mechanisms than pigmentation. MC1R signalling has been
implicated in a number of key biological pathways involved in
cell cycle control (April and Barsh, 2007), apoptosis (Hauser et al,
2006), and activation of DNA repair mechanisms and antioxidant
defenses (Bohm et al, 2005; Kadekaro et al, 2010; Maresca et al,
2010; Kadekaro et al, 2012). In addition, stimulation of MC1R also
activates the MAPK pathway and regulates target genes involved in
inflammation through the NF-kb pathway (Wikberg et al, 2000).
Finally, a-MSH affects proliferation and differentiation of both
melanocytes and keratinocytes (Slominski et al, 1991).

Concerning individual variants, all of them showed a positive
association with NMSC, with a consistent statistically significant
association with either NMSC overall, BCC and SCC observed for
V60L, V92M, R151C, R160W and D294H. Functional studies
revealed that these variants resulted in inefficient or even absent
activation of the cAMP pathway downstream. Specifically, V60L,
R151C and R160W variants reduced cell-surface expression with a
corresponding impairment in cAMP activation, while the loss-of-
function phenotype of the D294H variant is probably due to
inability to properly undergo the agonist-induced transition to the
active state and/or to impaired coupling to the Gs protein (Schioth
et al, 1999; Beaumont et al, 2007; Herraiz et al, 2012). Only a
marginal effect of the V92M substitution on cell-surface expression
or ability to activate the cAMP and ERK cascades has been
reported (Beaumont et al, 2007; Herraiz et al, 2012).

The R163Q variant reached statistical significance only for the
analysis of NMSC overall, while the D84E variant was associated
with both NMSC overall and BCC. Furthermore, the I155T variant
was associated only with SCC, although after restricting analysis to
sequenced studies there was a suggestive association of I155T
with BCC and NMSC overall. For D84E and I155T, receptor
impairment in cAMP coupling is largely accounted by reduced
cell-surface expression (Beaumont et al, 2007; Sanchez-Laorden
et al, 2007, 2009). It is not clear whether our results are attributable
to a specific role of the above-mentioned variants in the
pathogenesis of each tumour type. This would need to be further
investigated in functional studies focused on the carcinogenic
mechanisms leading to BCC and SCC, respectively.

Finally, the R142 variant did not show a statistically significant
association with NMSC, probably due to its low allele frequency
(o1%) and, consequently, limited statistical power.

In previous studies, contradictory results were reported for the
associations of the most common MC1R variants and NMSC
(Smith et al, 1998; Jones et al, 1999; Bastiaens et al, 2001; Dwyer
et al, 2004; Han et al, 2006; Liboutet et al, 2006; Scherer et al, 2008;
Andresen et al, 2013), probably due to small sample size of single
studies, especially for variants with relatively low allele frequencies.

To the best of our knowledge, our study has for the first time
put together and meta-analysed results from different studies on
MC1R and NMSC, thus providing powerful estimates of the
association between single and combined MC1R variants and
NMSC risk in populations living in different geographical areas.
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Figure 1. Attributable risksa with 95% confidence intervals in the
population for non-melanoma skin cancer according to different MC1R
variantsb (percentages). Black bars represent BCC, white bars represent
SCC. aMiettinen’s formula (OR�1/OR�proportion cases exposed).
bOnly variants significantly associated with BCC and/or SCC are
represented.
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Moreover, the availability of individual data from each study
allowed a stratified analysis by phenotypic characteristics to be
performed, and thus the independent contribution of MC1R
variants on NMSC risk to be assessed. We were also able to provide
both separate risk estimates for BCC and SCC and a combined risk
estimate for NMSC overall. A further strength is that we took into
account in our centralised statistical analysis all the available
confounders, with a homogeneous plan of analysis and homo-
geneous definition of co-variables. Our results might have an
important impact on public health since MC1R variants may be
considered, along with other epidemiological risk factors, in both
primary and secondary prevention strategies for NMSC, the most
common neoplasm in populations of European origin. The
improved identification of at risk subjects might enable public-
health messages and early diagnostic procedures to be targeted to
the population at risk.

One limitation of our study is that MC1R gene sequencing
was completed in only four out of the eight studies included
in our pooled-analysis, and thus we were able to compare carriers
of MC1R variants with WT subjects only in a small subset of
studies. As was previously pointed out (Williams et al, 2011;
Pasquali et al, 2015), the inclusion of some MC1R variants in the

reference category for the analyses would lead to underestimate the
true risk of disease, because MC1R variants are very common
among populations of European origins (66–67% of our study
population had at least one variant). We sought to overcome this
problem in our analysis by excluding from the reference category
all the MC1R variants that were specifically assessed in each study.
Since the nine most common variants were examined in the
majority of studies, the reference category would mainly include
WT and rare variants that were observed in B4% of the study
subjects in the M-SKIP data set. We performed separate stratified
analyses on subjects with and without red hair, skin type I/II and
freckles, but unfortunately we could not compare subjects with and
without any of these at risk phenotypic characteristics because they
were collected jointly only in two studies (Kennedy et al, 2001;
Ferrucci et al, 2012). Lack of availability of information on other
genes in most studies prevented the analysis of possible gene–gene
interactions. Other genes have been indeed involved in NMSC
development and include pigmentation genes like ASIP, TYR,
TYRP1 OCA2, SLC, POMC and IRF4 (Nan et al, 2009; Scherer
and Kumar, 2010), and, for BCC, the inactivating mutations in
the PTCH gene (Liboutet et al, 2006). Since we carried out a
retrospective pooled-analysis, we did not perform centralised

Table 4. Stratified analysis for any MC1R variants and non-melanoma skin cancer association, according with skin type, hair
colour and freckles

Phenotypic characteristic Strata MC1R variant
N studies

(N cases/N controls) SOR (95%CI) P-valuea

All
Skin type I/II Wild typeb 7 (224/279) 1.00 (reference) 0.29

Any variant 7 (861/738) 1.42 (1.12–1.80)
III/IV Wild typeb 7 (382/736) 1.00 (reference)

Any variant 7 (872/972) 1.66 (1.38–1.99)
Hair colour Red Wild typeb 4 (17/31) 1.00 (reference) 0.06

Any variant 4 (105/211) 0.67 (0.32–1.44)
Other Wild typeb 7 (971/4145) 1.00 (reference)

Any variant 7 (1796/4394) 1.40 (1.18–1.66)
Freckles Yes Wild typeb 3 (171/217) 1.00 (reference) 0.51

Any variant 3 (545/428) 1.52 (1.08–2.15)
No Wild typeb 3 (122/190) 1.00 (reference)

Any variant 3 (275/214) 1.79 (1.18–2.71)

BCC
Skin type I/II Wild typeb 6 (176/258) 1.00 (reference) 0.13

Any variant 6 (642/654) 1.28 (0.97–1.69)
III/IV Wild typeb 6 (289/633) 1.00 (reference)

Any variant 6 (638/766) 1.63 (1.31–2.05)
Hair colour Red Wild typeb 4 (13/31) 1.00 (reference) 0.23

Any variant 4 (90/211) 0.78 (0.33–1.83)
Other Wild typeb 6 (753/4020) 1.00 (reference)

Any variant 6 (1292/4118) 1.31 (1.08–1.57)
Freckles Yes Wild type^ 3 (116/217) 1.00 (reference) 0.66

Any variant 3 (431/428) 1.52 (1.04–2.23)
No Wild type^ 3 (103/190) 1.00 (reference)

Any variant 3 (222/214) 1.71 (1.09–2.67)

SCC
Skin type I/II Wild typeb 4 (54/129) 1.00 (reference) 0.41

Any variant 4 (251/297) 2.02 (1.34–3.06)
III/IV Wild typeb 4 (96/271) 1.00 (reference)

Any variant 4 (245/385) 1.62 (1.18–2.24)
Hair colour Red Wild typeb 2 (6/27) 1.00 (reference) 0.01

Any variant 2 (21/170) 0.34 (0.11–1.07)
Other Wild typeb 5 (263/3749) 1.00 (reference)

Any variant 5 (593/3662) 1.59 (1.33–1.90)
Freckles Yes Wild typeb 2 (58/137) 1.00 (reference) 0.11

Any variant 2 (127/216) 1.31 (0.86–2.02)
No Wild typeb 1 (25/125) 1.00 (reference)

Any variant 1 (82/167) 2.32 (1.33–4.03)
Abbreviations: BCC¼basal cell carcinoma; CI¼ confidence interval; MC1R¼melanocortin-1-receptor; SCC¼ squamous cell carcinoma; SOR¼ summary odds ratio. Note: significant ORs and
P-values are in bold.
aOverall P-value for any significant difference among strata-specific ORs.
bReference category for SORs is subjects without any of the assessed MC1R variants.
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sequencing. However, previous studies (Harland et al, 2008; Davies
et al, 2012) reported excellent concordance in sequencing data
from different centres. Finally, differences in the assessment of sun
exposure did not allow us to use this variable in stratified analysis,
although it was possible to take it into account the adjustment for
confounders.

In conclusion, our pooled-analysis provided evidence for a role
of all the most common variants in NMSC development, with
consistent significant association with NMSC overall found for the
MC1R variants V60L, D84E, V92M, R151C, R160W, R163Q and
D294H. Since the contribution of MC1R variants in addition to
phenotype in NMSC risk was mainly observed in subjects with no
red-hair or no freckles, prevention strategies involving avoidance
of indoor and outdoor ultraviolet radiation should not only be
recommended for fair skin phenotypes, and MC1R assessment may
be tailored to darker-pigmented subjects.
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