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Abstract

TNF receptor superfamily members, such as CD40 and the Toll-like receptors (TLRs), regulate many aspects of B cell
differentiation and activation. TRAF6 is an intracellular signaling adaptor molecule for these receptors, but its role in B cells
has not been clarified by previous genetic approaches, as the systemic deletion of the TRAF6 gene results in perinatal
lethality. Here we show that B cell-specific TRAF6 deficiency results in a reduced number of mature B cells in the bone
marrow and spleen. Optimal T cell-dependent (TD) antigen responses, as characterized by isotype switching and long-lived
plasma cell generation, are also impaired in B cell-specific TRAF6-deficient mice. B cell-specific TRAF6-deficient mice also
exhibit lower levels of serum IgM and IgG2b and defective antigen-specific IgM production in response to T cell-
independent (TI) antigens. Unexpectedly, TRAF6-deficient B cell progenitors are unable to generate CD5+ B-1 cells. These
results reveal critical roles for TRAF6 in TD and TI humoral immune responses and in inductive fate decisions necessary to
generate the B-1 B cell compartment.
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Introduction

Ligands for the Toll-like receptors (TLRs), such as lipopolysac-

charide (LPS) and CpG-DNA, are powerful B cell mitogens, and

they also induce proinflammatory cytokines such as interleukin

(IL)-6 and the surface molecules CD40, B-7 and MHC class II

[1,2,3,4]. The tumor necrosis factor receptor (TNFR) superfamily

member CD40 similarly induces not only clonal B cell expansion

but also T cell-dependent (TD) responses, such as germinal center

(GC) formation, antibody isotype switching, affinity maturation

and differentiation into long-lived plasma cells [5,6]. TNF

receptor-associated factor 6 (TRAF6), a member of the TRAF

family of cytoplasmic adaptors, transduces signals from the

TNFRs [7] as well as from the TLRs [8,9], thereby playing a

critical role in innate immunity [10]. TRAF6 is recruited to the

motif PXEXXAr/Ac, which is found in the IL-1 receptor-

associated kinase (IRAK) adaptor molecules and in the cytoplas-

mic portion of TNFR family members like CD40 and receptor

activator of NF-kB (RANK) [11,12,13]. TRAF6 mediates the

activation of mitogen-activated protein (MAP) kinases such as p38,

Erk and JNK, and NF-kB transcription factors.

TRAFs 1, 2, 3, 5 and 6 are recruited to specific domains in the

cytoplasmic tail of CD40. The binding site for TRAF6 is distinct

from that of other TRAFs (PXQXT motif), and there are

structural differences between receptor recognition by TRAF6 and

other TRAFs [13]. It has been shown that the various TRAFs

have some unique and some overlapping functions in vitro;

however, the roles of each TRAF downstream of CD40 in B cells

are not fully understood. Recently, two separate groups examined

transgenic mice with CD40 mutations that lack one or both TRAF

binding sites [14,15]. One study found that TRAF6 plays a critical

role in antibody affinity maturation and the generation of plasma

cells [14], whereas the other study concluded that TRAF6 has no

discernible role in CD40-mediated activation and antibody class

switching [15]. It is difficult to establish the importance of TRAF6

in B cell function from these two studies. The functional readouts

examined were different; in addition, in one study the mutant

CD40 molecule was widely expressed [14], while in the other it

was expressed exclusively in B cells [15]. Finally, neither of these

studies was designed to determine CD40-independent functions of

TRAF6 in B cells.

There are difficulties associated with examining the role of

different TRAFs in mature B cells using TRAF gene deletions.

TRAF2-, 3-, 6-deficient mice die in utero or shortly after birth,

suffering from multiple abnormalities in various organs. TRAF6-

deficient mice develop osteopetrosis and occlusion of the bone
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marrow (BM) cavities from a lack of osteoclast function [16,17].

The BM is an anatomically important site for early B cell

development and for antibody production by plasma cells.

Moreover, TRAF6-deficient mice lack lymph nodes [17] and

therefore cannot support normal T cell-B cell interactions during

the course of an immune response. Not unexpectedly, there are

very few splenic B cells in these mice (approximately 5%, data not

shown). Hence, analysis of the physiologic function of TRAF6 in B

cells has not been amenable to genetic approaches.

In order to clarify the physiologic role of TRAF6 in the

regulation of B cell development and function, we created B cell-

specific TRAF6-deficient mice by crossing floxed TRAF6 mice (in

which a TRAF6 exon is flanked by loxP sites) with CD19-Cre mice.

TRAF6 appears to influence several processes in B cell

development and function. The mutant mice have fewer mature

B cells in the BM and spleen and mount sub-optimal TD-antigen

responses. Additionally, baseline IgM production as well as T cell-

independent (TI) antigen-specific IgM production is severely

impaired, most likely as a result of the complete absence of CD5+

B-1 cells (B-1a cells) in the peritoneal cavity. Our findings suggest

novel functions for TRAF6, which appears to be required for both

B-1 and B-2 cell homeostasis and to play a role in both in TI and

TD humoral immune responses.

Results

Generation of B cell-specific TRAF6-deficient mice
In order to study the physiologic functions of TRAF6 in B

lymphocytes, we generated B cell-specific TRAF6-deficient mice

(TRAF6-DB mice). To generate offspring in which TRAF6 was

deleted only in B cells, TRAF6flox/flox mice [18] were crossed with

CD19-Cre mice, in which the expression of Cre recombinase is

driven by the CD19 promoter. B cell-specific deletion of the

TRAF6 gene was confirmed by polymerase chain reaction (data

not shown) and western blot analysis (Fig. 1). Purified B cells from

spleen of CD19Cre/+TRAF6flox/flox mice contained almost unde-

tectable levels of TRAF6 protein, although a substantial amount of

TRAF6 was present in non-B splenocytes as well as in B cells from

control mice. Similar results were obtained from CD19Cre/+

TRAF6flox/2 mice (Fig. 1). Thus, CD19Cre/+TRAF6flox/flox and

CD19Cre/+TRAF6flox/2 mice were used interchangeably.

TRAF6-DB mice were born at the expected Mendelian ratio

and exhibited normal growth rates, without inflammatory lesions

or osteopetrosis.

TRAF6 deficiency in B cells results in defective
proliferation, IL-6 production and signaling in response
to TLR ligands and anti-CD40

TLRs and CD40, which stimulate B cells upon interaction with

their respective ligands, induce the recruitment of TRAF6

[1,4,5,6]. Therefore, we first examined proliferation of splenic B

cells from TRAF6-DB mice ex vivo in response to LPS, CpG-DNA,

anti-CD40 Ab and anti-BCR Ab (Fig. 2a). Proliferation of

TRAF6-DB B cells in response to LPS, CpG-DNA and anti-

CD40 Ab was severely impaired, while proliferation induced by

BCR crosslinking was comparable to the control B cells. In

addition, LPS- and CpG-DNA-induced production of IL-6 was

nearly abolished in the TRAF6-DB B cells (Fig. 2b).

Stimulation by TLR ligands or CD40 ligation causes the

phosphorylation and activation of MAP kinases as well as

phosphorylation and degradation of IkBa [1,6]. Control B cells

stimulated with CpG-DNA induced phosphorylation of p38, Erk,

JNK, Akt and IkBa, as well as IkBa degradation within 15 min.

However, these events were significantly impaired in B cells from

TRAF6-DB mice (Fig. 2c, left panels). Notably, phosphorylation of

p38 was undetectable in TRAF6-deficient B cells. Similar results

were observed in B cells stimulated with anti-CD40 Ab (Fig. 2c,

right panels) or LPS (data not shown). These results suggest that

TRAF6 mediates signals from TLRs and CD40 that regulate B

cell proliferation and cytokine production.

TRAF6 is critical for mature B cell fate determination
We next examined B cell development and homeostasis in

TRAF6-DB mice. The early developmental subsets of B cells in the

BM of TRAF6-DB mice were comparable to control mice (Fig. 3a,

top panels), with no obvious difference in pre- and pro-B cell

subsets (data not shown). The ratios of B220lowIgM+IgD2

immature B cells were also comparable between TRAF6-DB

and control mice (Fig 3a, top panel).

In marked contrast to early B cell development in the BM,

B220highIgM+IgD+ mature recirculating B cells were significantly

diminished in TRAF6-DB mice (12.861.3% in TRAF6-DB

compared to 20.262.3% in controls, Fig. 3a, top and middle

panels). This deficiency is reflected in the absolute cell numbers

(Fig. 3a, bottom). In the spleen, the percentage of B cells

(CD19+B220+) was also significantly reduced in TRAF6-DB mice

(39.267.1% compared to 50.364.8% in the control mice, Fig. 3b,

upper panels; absolute numbers shown in the lowest panel). The

reduction was more prominent in the IgMlowIgDhighAA4.12

Figure 1. Generation of B cell specific TRAF6 KO mice. (a) Southern blot analysis to confirm the Cre-mediated deletion of the floxed fragment.
(b) Western blot analysis to demonstrate specific deletion of TRAF6 in B cells. Lysates blotted with anti-TRAF6 or anti-actin from B cells and non-B cells
are shown.
doi:10.1371/journal.pone.0004736.g001

TRAF6 and B Cell Fate
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Figure 2. Defective proliferation, IL-6 production and signal activation of TRAF6-deficient B cells in response to TLR ligands and
anti-CD40 antibody. (a) Proliferative response of splenic B cells from control or TRAF6-DB stimulated in vitro with varying doses of LPS, CpG-DNA,
anti-CD40 antibody or anti-BCR antibody. Results are representative of at least 4 different experiments. Data are presented as mean6SD. (b) IL-6

TRAF6 and B Cell Fate
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mature B cells (Fig. 3b, middle panels) than in the IgMhighIgDlow

AA4.1+ transitional B cells, which are their developmental

precursors [19]. This finding suggests that TRAF6 regulates the

late step of mature B cell development or homeostasis. Within the

mature subset, the ratios of the CD21+CD23+ follicular B cell

subset and CD21highCD232 marginal zone (MZ) B cell subset

were almost identical between TRAF6-DB and control mice.

Furthermore, immunohistochemical (IHC) analysis of spleen

sections from TRAF6-DB mice revealed normal splenic architec-

ture, with typical T cell areas surrounded by follicular and MZ B

cell areas, separated by MOMA1+ metallophilic macrophages

(Fig. 3c).

Cell survival and alternative NF-kB signaling are intact in
TRAF6-deficient B cells

Since mature B cell numbers in TRAF6-DB mice were reduced,

we examined ex vivo survival of splenic B cells from TRAF6-DB and

control mice cultured with or without serum or in the presence of

anti-BCR Ab. Both control and TRAF6-deficient B cells showed

similar percentages (approximately 30%) of apoptotic B cells (sub-

G0 peak) after 14 hr in the presence of serum (Fig. 4a). This

percentage was increased to approximately 50% by serum depletion

or BCR crosslinking. Similar results were obtained when transi-

tional B cells isolated from sub-lethally irradiated TRAF6-DB and

control mice were used (data not shown). These results suggest that

TRAF6 deficiency does not affect B cell survival or susceptibility to

apoptosis, arguing that the defects observed were a consequence of

impaired fate determination rather than homeostasis.

The TNF family member B cell activating factor (BAFF, also

known as BLyS) and its cognate receptor BAFF-R are required for

generation and maintenance of the mature B cell pool [20,21,22]. It

has been reported that signals from BAFF-R activate the alternative

NF-kB pathway via processing of the NF-kB2 protein p100 to p52

[23,24]. Correspondingly, western blot analysis of control B cell

lysates demonstrated that BAFF induced processing of p100 to p52

but did not upregulate p100 or RelB in control B cells, suggesting

specific activation of the alternative NF-kB pathway (Fig. 4b).

Consistent with previous reports [23,24], CD40 ligation induced

processing of NF-kB2 as well as upregulation of p100 and RelB,

indicating the activation of both canonical and alternative

pathways, whereas LPS treatment induced only the canonical

pathway. As shown in Fig. 5b, B cells from TRAF6-DB mice

exhibited normal processing of p100 to p52 in response to BAFF

and anti-CD40 Ab. However, upregulation of p100 and RelB was

obviously impaired in response to both LPS and anti-CD40 Ab,

suggesting defective canonical NF-kB activation. This finding is

consistent with the observed defect in IkBa phosphorylation and

degradation (Fig. 2). Therefore, TRAF6 is selectively required for

canonical NF-kB activation upon TLR or CD40 stimulation but

not for activation of the alternative pathway downstream of CD40

or BAFF-R. Again, these results point towards a role for TRAF6 in

B cell subset specification rather than in generating survival signals

for homeostasis.

Impaired TD antigen-specific IgG production and long-
lived plasma cell generation in TRAF6-DB mice

TD humoral immune responses, including TD antigen-specific

IgG production, GC formation, isotype switching, affinity

maturation and generation of memory B and antibody-producing

plasma cells, do not develop in mice lacking CD40 or CD154

[25,26]. Given that CD40 signaling is impaired in the TRAF6-DB

mice (Fig. 2), we examined TD immune responses. TRAF6-DB

and control mice were immunized intraperitoneally with sheep

erythrocytes and examined by flow cytometry and IHC analysis

for the formation of GCs. Flow cytometric analysis of spleen cells

from TRAF6-DB and control mice stained for the GC markers

peanut agglutinin (PNA) and GL7 [27] revealed that GL7+PNA+

GC B cells were induced at comparable ratios (3.8060.86% in

TRAF6-DB vs. 3.2860.27% in control mice, Fig. 5a and b).

Moreover, IHC analysis showed that PNA+ GCs were present in

the B cell areas in both TRAF6-DB and control mice (Fig. 5c),

indicating that TRAF6 is not required for GC formation induced

by TD antigens.

TRAF6-DB, CD40-deficient and control mice were also

immunized with a separate TD antigen, NP-KLH, and the

primary responses were measured 7 days later. NP-specific IgM

production was comparable to control and CD40-deficient mice

(Fig. 6a). Levels of NP-specific IgG1 and IgG2b were diminished

as compared to those in control mice, though still higher than in

the CD40-deficient mice (Fig. 6b and c). During the secondary

response measured 14 days after boosting, the levels of NP-specific

IgG1 and IgG2b were augmented in the TRAF6-DB mice, though

still lower than in the control (Fig. 6b and c). These results suggest

that antigen-specific isotype switching still occurs in the absence of

TRAF6, albeit inefficiently.

We also examined affinity maturation by comparing the level of

antibodies captured by NP30-BSA against those captured by NP3-

BSA in an enzyme-linked immunosorbent assay (ELISA), as

described previously [14]. About half or less of the total antigen-

specific IgG1 and IgG2b was high-affinity Ig during the primary

response in the control mice; in the secondary response, almost all

the IgG1 and IgG2b antibody was high affinity (Fig. 6b and c).

Although total antigen-specific IgG1 and IgG2b levels were lower

in TRAF6-DB mice, the proportion of high-affinity antibody was

identical to that in the control during secondary responses,

suggesting that TRAF6 is not required for affinity maturation,

possibly because other TRAFs downstream of CD40 can

compensate for the lack of TRAF6.

We also measured the terminal differentiation of B cells into

plasma cells. The numbers of long-lived antibody-secreting cells in

the BM of TRAF6-DB, CD40-deficient and control mice were

compared by enzyme-linked immunospot (ELISpot) assay (Fig. 6d).

The number of plasma cells secreting NP-specific IgG1 was

reduced in TRAF6-DB mice, indicating that TRAF6 plays a role

in this terminal differentiation step. Our results indicate that

TRAF6 is selectively required for specific CD40 functions during

the response to TD antigen.

Reduced serum IgM and IgG2b levels and defective TI
antigen-specific IgM production in TRAF6-DB mice

We next examined whether TRAF6 also regulates TI immune

responses. TRAF6-DB, CD40-deficient and control mice were

challenged with either the TI type I antigen NP-LPS or the type II

antigen NP-Ficoll. One week after immunization, NP-specific IgM

production in TRAF6-DB mice was significantly lower than in

control or CD40-deficient mice in response to both antigens

production in media supernatants from splenic B cells cultured for 2 days with LPS (10 mg/ml), CpG-DNA (1 mM) or anti-BCR antibody (20 mg/ml). (c)
Western blot analysis of phosphorylation of the indicated proteins in lysates of splenic B cells stimulated in vitro with CpG-DNA (4 mM), anti-CD40
antibody (8 mg/ml) or pervanadate (PV) for the indicated times. Sequential immunoblots with antibodies to the phosphorylated (indicated by ‘‘p-’’)
and total protein are compared. Results are representative of at least 4 different experiments.
doi:10.1371/journal.pone.0004736.g002
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Figure 3. TRAF6 is required for mature B cell homeostasis. (a) Flow cytometric analysis of BM from control and TRAF6-DB mice stained with
the indicated antibodies (top-most and middle panels). The percentages of encircled areas are indicated. Pro+Pre, pro-B and pre-B cells; Imm,
immature B cells; Rec, recirculating B cells. Results are representative of 5 mice. Lowest panel, absolute cell numbers; *, p,0.005. (b) Similar analysis of
total spleen cells. Total B cells are shown in the topmost panels; mature (Mat) and immature (Imm) B cells are compared in the middle panels. The
lowest panels compare the follicular (FO) and MZ sub-populations within the mature B cell gate shown in the middle panels. Cell numbers of each B
cell subset in the spleen are shown in the lowest panels. Results are representative of at least 4 mice; *, p,0.05. (c) Splenic microarchitecture
visualized by immunohistochemical staining with anti-B220 (red), anti-CD3 (blue) and anti-MOMA1 (green) antibodies. Results are representative of at
least 5 mice.
doi:10.1371/journal.pone.0004736.g003
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(Fig. 7a and b), indicating that TI immune responses in TRAF6-

DB mice are poor.

Consistent with defects in TI immune responses, TRAF6-DB

mice also showed a reduced level of circulating antibody at steady

states. When the basal levels of the various classes of Ig in the sera

of unimmunized mice were measured by isotype-specific ELISA,

TRAF6-DB mice exhibited significantly lower levels of IgM and

IgG2b compared to control mice (Fig. 7c).

TRAF6 is required for B-1a cell development in the
peritoneal cavity

B-1a cells are thought to potentiate responses to certain TI

antigens and/or to be the major source of circulating antibody

(which is primarily IgM) in the absence of overt antigen exposure

[28,29]. Therefore, we first examined whether B-1a cell

development is affected in TRAF6-DB mice. The overall number

of cells in the peritoneal exudates of the TRAF6-DB mice was

about 40% less than the control (Fig. 8a). The ratio of total CD19+

B cells was significantly reduced in the peritoneal exudate cells of

TRAF6-DB mice (44.966.6% of total cells compared 67.265.9%

in the control, Fig. 8b, upper panels). Within B cell populations,

the proportion of the CD11b+CD232 B-1 cell subset in TRAF6-

DB mice was particularly affected, with the proportion of

CD11b2CD23+ B-2 cells being correspondingly higher (Fig. 8b,

middle panels). Since the total B cell number was reduced in

TRAF6-DB mice, the percentage of B-2 cells in the total peritoneal

exudate was identical to that of control mice (Fig. 8c). Most

notably, the CD5+ B-1a [29] cells within the B-1 compartment

were almost completely absent (Fig. 8b, lower panels). Because

both CD19Cre/+TRAF6+/+ and CD19+/+TRAF6flox/flox control

mice showed identical ratios of CD5+ B-1a cells in the peritoneal

exudate (data not shown), the deficiency in TRAF6-DB mice could

be attributed to TRAF6 deficiency rather than to haploinsuffi-

ciency of the CD19 gene. We hypothesized that if either CD40 or

the TLRs regulate B-1a cell development through TRAF6, we

would see a similar phenotype in the corresponding knockout

mouse. However, neither CD40-deficient nor MyD88/TRIF-

doubly deficient mice had any deficiency in B-1a cells (Fig. 8d).

This intriguing finding suggests that unique TRAF6-dependent

receptors are crucial for B-1a cell regulation.

Discussion

Here we have investigated the importance of the signaling

adaptor TRAF6 to B cell development and function. Our previous

study emphasized the role of TRAF6 in innate immunity [10];

however, the role of TRAF6 in lymphocytes and adaptive

immunity has not been established. Because of the breadth and

severity of the TRAF6-deficient phenotype [16,17], we generated B

cell-specific TRAF6-deficient (TRAF6-DB) mice.

Our results demonstrate a broad role for TRAF6 in B

lymphocyte development and function. Mature B cell populations

in the BM and spleen are reduced, though the pro-, pre- and

immature B cells in the BM and transitional B cells in the spleen

are of normal numbers (Fig. 3). Although the proliferative response

of TRAF6-deficient B cells induced by TLR ligands and CD40

ligation was severely impaired, BCR crosslinking induced normal

proliferation (Fig. 2a). Moreover, this impairment does not appear

to be the result of increased susceptibility to apoptosis (Fig. 4). It

has been shown recently that BAFF-induced survival plays an

important role in the maintenance and homeostasis of the

peripheral B cell pool [20,21,22]. However, we show that signaling

from BAFF-R was normal in TRAF6-DB cells (Fig. 4), suggesting

that yet-to-be-elucidated molecules activate TRAF6-mediated

signals required for generation or maintenance of the mature B

cell pool. These results thus suggest a previously unexpected

complexity in the nature of signals necessary for these processes.

CD40 signaling is known to be important in certain antigen-

driven phenomena in TD immune responses [25,26]. In

conjunction with the defect in CD40 signaling in vitro (Fig. 2), we

found isotype switching to IgG1 and IgG2b in response to TD

antigen was severely impaired, as was the generation of long-lived

plasma cells (Fig. 6). Intriguingly, other CD40-dependent

processes, such as affinity maturation and GC formation, were

unaffected. This finding indicates that a specific subset of CD40

functions operate through TRAF6.

Our most surprising observation is the complete lack of CD5+ B-

1a cells in the peritoneal cavity of TRAF6-DB mice (Fig. 8), which is

accompanied by lowered basal levels of serum IgM or ‘‘natural’’

antibody and sub-optimal TI immune responses (Fig. 7). Both

phenomena are postulated to be largely dependent on peritoneal B-

1 cells and MZ B cells [29]. Mutations of positive regulators of BCR

signaling, such as PKCb, PKCc, PI-3K, BLNK, Vav-1 and CD19,

are known to result in a reduction in B-1 cells [29]. Since there were

no defects in BCR responses in vitro (Fig. 2), we were concerned that

the B-1a defect may be the result of CD19 haploinsufficiency of the

TRAF6-DB mice, which are CD19Cre/+TRAF6flox/flox or CD19Cre/+

TRAF6flox/2. However this was not the case, since CD19Cre/+

TRAF6+/+ mice exhibit normal ratios of peritoneal B-1a cells. It has

been shown that the combined loss of the NF-kB subunits p50 and

c-Rel diminishes the peritoneal CD5+ B-1a cell population [30].

Given that the canonical NF-kB pathway is impaired in TRAF6-DB

mice (Figs 2 and 4), it appears that a TRAF6/NF-kB pathway is

essential for the development of peritoneal CD5+ B-1a cells.

Curiously, neither CD40-deficient nor MyD88/TRIF-doubly

deficient (thus defective in TLR signaling) mice have impaired

B1-a cell development (Fig. 8c). These results suggest that signals

from a receptor(s) other than CD40 or TLRs regulate B-1a cell

development or that CD40 and TLRs compensate for each other’s

loss. The importance of BCR function in B-1 cell development has

long been appreciated [29]. However, the involvement of TLRs and

other receptors for bacterial products is controversial. It was

demonstrated that the administration of LPS or the presence of

enteric bacteria is necessary for the development of B-1 cells in anti-

RBC autoantibody-transgenic mice [31]. Future experiments will

be necessary to identify which cell surface receptors are necessary

for TRAF6-mediated B-1 cell development.

We have demonstrated that TRAF6 is involved in a wide

variety of B cell processes. It is crucial for certain CD40 effector

functions in B cells during TD humoral immune responses and

also for the generation of optimal TI immune responses. In

addition, TRAF6 is necessary for B-1a cell development and for

the maintenance of the mature B cell pool. Understanding the

regulation of this adaptor protein therefore will contribute to our

knowledge of B cell function in the development of the immune

system and during its response to antigen.

Figure 4. Alternative NF-kB signal is intact in TRAF6-deficient B cells. (a) Survival of splenic B cells from control or TRAF6-DB mice cultured ex
vivo in various conditions indicated. Percentages of apoptotic B cells (sub-G0 peaks) are indicated. (b) Cytoplasmic fractions and nuclear fractions
from splenic B cells stimulated in vitro with anti-CD40 antibody (4 mg/ml), recombinant BAFF (2 mg/ml) or LPS (10 mg/ml) for 24 hr immunoblotted
with anti-p100/52, anti-RelB and anti-actin antibodies. Results are representative of 2 independent experiments.
doi:10.1371/journal.pone.0004736.g004
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Materials and Methods

Mice
Generation of floxed TRAF6 knock-in ES cells has been

described [10]. The neo cassette flanked by loxP sites in the knock-

in ES cells was deleted by pMC-Cre transfection in vitro; this

deletion was confirmed as described [10] and by Southern blot

analysis. Mutant ES clones were injected into C57BL/6

blastocysts. CD19-Cre mice have been described [32] and were

obtained from Dr. Alexander Tarakhovsky at the Rockefeller

University; CD40 KO mice were purchased from The Jackson

Laboratory. MyD88/TRIF double KO mice have been described

previously [33]. All animals are maintained in accordance with the

applicable portions of the Animal Welfare Act and the DHHS,

Guide for the Care and Use of Laboratory Animals.

In vitro proliferation and cytokine production
Splenic B cells purified by using anti-B220 MACS MicroBeads

(Miltenyi Biotec) resulted in a preparation of .95% CD19+ cells.

For B cell proliferation assays, 16105 purified B cells/well were

cultured with or without LPS (Sigma), CpG-DNA [34], anti-CD40

antibody (HM40-3, BD Pharmingen) or F(ab9)2 anti- mouse Ig Ab

(Jackson Immuno Research Laboratories) for 2 days. 0.5 mCi of
3H-thymidine was pulsed for the last 10 hr, and incorporation was

measured by liquid scintillation counting. For cytokine production

Figure 5. Germinal center formation in response to TD antigen is intact in TRAF6-DB mice. (a) GC formation in the spleen in response to
PBS or sheep erythrocyte (SRBC) immunization examined by flow cytometric analysis using fluorescent PNA and antibodies to B220, CD19 and GL7.
Profiles of PNA vs. GL7 in B220+CD19+ B cell populations are shown. Ratios of GL7hi and PNA+ B cells in the encircled areas are indicated. (b)
Frequencies of GL7hi and PNA+ B cells are quantified. Data are presented as mean6SD of five samples of one representative experiment out of 2
independent experiments. (c) Spleen sections were examined for GC formation by immunohistochemical staining with fluorescent PNA (green) and
antibodies to B220 (red) and CD3 (blue).
doi:10.1371/journal.pone.0004736.g005

Figure 6. TD antigen-specific immunoglobulin and long-lived plasma cell production are impaired in TRAF6-DB mice. (a–c) Defective
antigen-specific IgG1 and IgG2b production in response to TD antigens for primary response to the TD Ag NP-KLH (‘‘1st’’, 7days after immunization)
and also for the secondary response (‘‘2nd’’, 14 days after immunization as detailed in Methods). The level of high-affinity (clear bars) and total (black
bars) Abs are compared: (a), antigen-specific IgM levels; (b), IgG1; (c), IgG2b. Inset in (b) shows the primary response plotted on a smaller scale. Data
are presented as mean6SD. *; p,0.05, compare total and high affinity Igs, **; p,0.05, compare control and TRAF6-DB mice. (c) Reduced number of
long-lived plasma cells producing NP-specific IgG1 in the BM of TRAF6-DB mice collected 60 days after immunization (as described in a–c), detected
by ELISpot assay.
doi:10.1371/journal.pone.0004736.g006
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assays, IL-6 in the supernatant of similar cultures stimulated with

LPS (10 mg/ml), CpG-DNA (1 mM) or F(ab9)2 anti-Ig antibody

(20 mg/ml) was determined using an OptEIA mouse IL-6 ELISA

set (BD Pharmingen).

Immunoblots
Purified splenic B cells pre-incubated in Hank’s balanced salt

solution (HBSS) at 37uC for 30 min were stimulated with CpG-

DNA (4 mM), anti-CD40 Ab (8 mg/ml) or pervanadate for various

times and then lysed with lysis buffer containing 1% Triton X-100

and protease and phosphatase inhibitors. For alternative NF-kB

signaling, cells were stimulated with anti-CD40 Ab (4 mg/ml),

recombinant BAFF (2 mg/ml, Pepro Tech) or LPS (10 mg/ml) for

24 hr. Cytoplasmic and nuclear fractions were extracted using a

Nuclear Extraction kit (Active Motif). Protein samples were

separated by 10% sodium dodecyl sulfate polyacrylamide gel

electrophoresis (SDS-PAGE) and transferred onto Immobilon-P

PVDF membrane, blocked with 5% or 2.5% milk in PBS with

0.1% Tween-20, incubated with primary Abs overnight at 4uC
followed by horseradish peroxidase (HRP)-conjugated secondary

Abs for 1 hr. Sources of antibodies were as follows: p38, Erk, JNK,

Akt, IkBa, p-p38, p-Erk, p-Akt, p-IkBa (Cell Signaling Technol-

ogy); p-JNK (BD Transduction laboratories); RelB (Santa Cruz);

TRAF6 (MBL); and actin (Sigma). Rabbit anti-mouse p100/52

polyclonal antibody was generously provided by Dr. Amer A. Beg

(Columbia University, New York). Blots were developed with ECL

substrate (Amersham) and exposed to Kodak BioMax XAR film.

Flow cytometry
Antibodies against CD3 (145-2C11), CD5 (53-7.3), CD11b

(M1/70), CD16/32 (2.4G2), CD19 (1D3), CD21 (7G6), CD23

(B3B4), CD40 (HM40-3), B220 (RA3-6B2), IgM (R6-60.2) and

Figure 7. Reduced serum IgM and IgG2b levels and defective TI antigen-specific IgM production in TRAF6-DB mice. (a, b) Defective
antigen-specific IgM production in response to the TI antigens NP-Ficoll (TI type 2, a) or with NP-LPS (TI type 1, b). *: p,0.004; **: p,0.04. (c) Serum
immunoglobulin levels from unimmunized 14-week-old control (closed circle), TRAF6-DB (open circle) and CD40 KO (open triangle); control; n = 11,
TRAF6-DB; n = 12, CD40 KO; n = 5; *: p,0.001 and **: p,0.005.
doi:10.1371/journal.pone.0004736.g007
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GL7 were purchased from BD Pharmingen; mAb AA4.1 was

purified from the hybridoma [35] kindly provided by Dr. David

Allman at the University of Pennsylvania and conjugated to APC

by standard techniques. Single-cell suspensions were incubated

with anti-CD16/32 (Fc-block) and stained with FITC-, PE-, APC-

and biotin-conjugated antibodies, followed by incubation with

streptavidin-PerCP-Cy5.5 (Pharmingen). Flow cytometric analysis

was performed on a FACSCalibur flow cytometer (BD biosciences)

using CellQuest (BD biosciences) and FlowJo (Tree Star, Inc.)

software.

ELISA for serum Ig measurement
For Fig. 7c, sera were collected from 14-week-old control,

TRAF6-DB and CD40 KO mice. Goat anti-mouse Ig (H+L) Ab

was used for capture, and isotype-specific HRP-conjugated anti-

mouse Ig Abs were used for detection. These and Ig standards

were purchased from Southern Biotech Associates Inc.

For Figs 6 and 7a and 7b, NP-specific IgM, IgG1 and IgG2b in

the sera were measured by capture with NP30-BSA (total antigen-

specific Igs), or NP3-BSA (high-affinity Igs) followed by detection

with isotype-specific HRP-conjugated anti-mouse Ig Abs.

Immunizations
NP-BSA, NP-KLH, NP-Ficoll and NP-LPS were purchased

from Biosearch Technologies Inc. 12-16-week-old control,

TRAF6-DB and CD40 KO mice were immunized intraperitone-

ally with NP67-Ficoll (10 mg/mouse) for TI type-2 immune

responses or with NP1-LPS (5 mg/mouse) for TI type-1, and

serum Igs were measured after 1 week. For primary TD immune

responses, mice were immunized intraperitoneally with alum-

Figure 8. Peritoneal CD5+ B cell population is absent in TRAF6-DB mice. (a) Total peritoneal exudate cells (PECs) numbers from control and
TRAF6-DB mice. (control; n = 5, TRAF6-DB; n = 5) *: p,0.05 (b) Peritoneal exudate cells (PECs) from control and TRAF6-DB mice analyzed by flow
cytometry. Total CD19+ B cells (top panels) are subdivided into B-1 and B-2 subsets (middle panels), and the CD232CD11b+ B-1 subset is further
divided into B-1a and B-1b (bottom panels). Results are representative of at least 8 mice. (c) The ratios of each B cell subset in the PECs from control,
CD40 KO and TRAF6-DB mice are shown. Data are presented as mean6SD. (control; n = 12, CD40 KO; n = 4, TRAF6-DB; n = 8) *: p,0.01 compare to
control. (d) Profiles of CD5 expression in B-1 cells from CD40-deficient mice and MyD88/TRIF-doubly deficient mice are analyzed as described in (b).
doi:10.1371/journal.pone.0004736.g008
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precipitated NP30-KLH (200 mg/mouse), and sera were collected

7 days later. For the secondary response, these mice were boosted

intraperitoneally with antigen (50 mg/mouse) 14 days after

immunization, and sera were collected 14 days after this boost.

For GC formation, mice were immunized intraperitoneally with

sheep erythrocytes without adjuvant.

ELISpot assay
Long-lived antibody-producing plasma cells were detected by

ELISpot assay using a Protein Detector ELISpot Kit (Kirkegaard

& Perry Laboratories, Inc.). Mice were immunized with NP-KLH

as described above. 60 days after immunization, BM cells were

harvested and plated in triplicate at 26106 cells/well in NP-BSA

coated 96-well PVDF plates, which were incubated for 4–6 hr at

37uC in a 5% CO2 incubator and then washed with PBS

containing 0.05% Tween-20. Spots were developed with HRP-

conjugated anti-mouse IgG1 followed by the TrueBlue chromogen

substrate, and they were counted under a dissection microscope or

with an ELISpot plate reader.

GC formation
Ten days after immunization with sheep erythrocytes, spleens

were collected and subjected to flow cytometry and IHC. For flow

cytometry, single-cell suspensions were stained for B220, CD19,

GL7 and PNA (Vector Laboratories). For IHC, frozen sections

were stained with anti-CD3-PE-Cy5, anti-B220-PE-TexasRed and

PNA-FITC or anti-MOMA1-FITC (Serotec).

Statistical analysis
For statistical analysis, we used Student’s t-test. A 95%

confidence limit was considered significant and is defined as

p,0.05.
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