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Abstract: Studies in epitranscriptomics indicate that RNA is modified by a variety of enzymes.
Among these RNA modifications, adenosine to inosine (A-to-I) RNA editing occurs frequently in the
mammalian transcriptome. These RNA editing sites can be detected directly from RNA sequencing
(RNA-seq) data by examining nucleotide changes from adenosine (A) to guanine (G), which substitutes
for inosine (I). However, a careful investigation of such nucleotide changes must be conducted to
distinguish sequencing errors and genomic mutations from the genuine editing sites. Building upon
our recent introduction of an easy-to-use bioinformatics tool, RNA Editor, to detect RNA editing
events from RNA-seq data, we examined the extent by which RNA editing events affect the binding
of RNA-binding proteins (RBP). Through employing bioinformatic techniques, we uncovered that
RNA editing sites occur frequently in RBP-bound regions. Moreover, the presence of RNA editing
sites are more frequent when RNA editing islands were examined, which are regions in which RNA
editing sites are present in clusters. When the binding of one RBP, human antigen R [HuR; encoded
by ELAV-like protein 1 (ELAV1)], was quantified experimentally, its binding was reduced upon
silencing of the RNA editing enzyme adenosine deaminases acting on RNA (ADAR) compared to the
control—suggesting that the presence of RNA editing islands influence HuR binding to its target
regions. These data indicate RNA editing as an important mediator of RBP–RNA interactions—a
mechanism which likely constitutes an additional mode of post-transcription gene regulation in
biological systems.

Keywords: RNA; RNA editing; RNA-seq; RNA-binding proteins; transcriptome

1. Introduction

The life of RNA is more complex than previously thought. Upon transcription from DNA,
RNA is modified by a variety of enzymes, resulting in over 140 types of RNA modifications [1].
These modifications are increasingly implicated in various pathophysiological conditions, findings that
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have emboldened the field of epitranscritomics [2–4] to rapidly expand and focus efforts on delineating
the role of RNA modifications in disease etiology [5]. Among various RNA modifications, RNA editing
is particularly interesting, as it can be detected directly from RNA sequencing (RNA-seq) data [6].
RNA editing is a post-transcriptional modification that alters the sequence of RNA molecules [7,8].
Differing from 5’-capping, 3’-polyadenylation, and splicing, RNA editing modifies RNA molecules
by the insertion, deletion, or base substitution of nucleotides via RNA editing enzymes to diversify
the resulting transcripts. When RNA editing takes place in exons of protein-coding genes, an amino
acid sequence that is different from the original DNA sequence could arise, whereas editing of
3´-untranslated regions (UTRs) may affect binding of RNA binding proteins or microRNAs (miRNAs)
to modulate RNA stability and/or translation [7].

There are two types of RNA editing: adenosine to inosine (A-to-I) and cytidine to uridine
(C-to-U), where A-to-I is the most common form. A-to-I editing occurs through RNA editing enzymes,
adenosine deaminases acting on RNA (ADARs), which convert adenosine (A) in double-stranded
RNA into inosine (I). Although A-to-I editing occurs at the RNA level, when reverse transcribed to
complementary DNA (cDNA), an inosine is converted to guanine (G). This A-to-G conversion, which is
evidence for RNA editing sites, may be simply identified by comparing resultant cDNA sequences
to the reference genome [9]. In mammals, there are three ADARs (ADAR1, ADAR2, and ADAR3).
Although ADAR3 (also known as Adarb2—adenosine deaminase, RNA-specific, B2) is considered to be
catalytically inactive and a less important player in RNA editing events [10], the knockout mice of
Adar1 and Adar2 (also known as Adarb1—adenosine deaminase, RNA-specific, B1) are embryonically
and postnatally lethal, respectively [11,12], which highlights the importance of RNA editing events
in normal development. Given the importance of ADARs, a number of studies have conducted
experiments to detect RNA editing events from RNA-seq data [13–18], including the one that we
recently reported in endothelial cells [19]. The most challenging part of such identification is the
separation of true RNA editing sites from genomic variations (e.g., single nucleotide polymorphisms
(SNPs)), which are distinguished by a series of filters [20–27]. However, there is a lack of easy-to-use
bioinformatics tools to analyze RNA editing events. To this end, we recently developed a new
bioinformatics tool, RNAEditor [28], to assist the discovery of RNA editing events without extensive
knowledge about programming.

Besides ADARs, there are many proteins that bind to RNAs. In terms of RNA binding, there
is a protein domain called RNA recognition motif (RRM), which binds to single-stranded RNAs
(https://www.ebi.ac.uk/interpro/entry/IPR000504). When a protein owns an RRM domain, it is
generally categorized as an RNA-binding protein (RBP). Because many RBPs are pathophysiologically
important [29–35], there is a growing interest in studying RBPs. These interests have stimulated the
development of various experimental techniques, including several forms of RNA immunoprecipitation
(RIP) followed by next generation sequencing (NGS) (called RIP-seq [36,37]). Such techniques
include crosslinking-immunoprecipitation (CLIP) followed by NGS (CLIP-seq [38]; also known
as high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP)),
photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) [39],
and individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) [40,41].
Essentially, all of these techniques are performed on a genome-wide scale to identify RNA target
sequences that RBPs may bind to. To avoid confusion, in this study, all of these variations of RIP-seq
are collectively called CLIP-seq. Furthermore, there are established databases to utilize the information
obtained from individual laboratories to facilitate continued research efforts that seek to understand
the consequence of binding of (or lack of) RBP. Such databases include CLIPdb [42], MitBase [43],
POSTAR [44], and starBase [45,46]. These systematically collected and cataloged CLIP-seq data provide
a stage for further bioinformatics analysis of RBPs and their interacting RNA consensus sequences.

Given that most RBPs recognize and bind in a sequence-specific manner (specific RNA-binding
motifs), it is not unsurprising that mutations in such binding motifs (both in RBP and their bound
RNA sequences) would alter RBP binding capacity. As A-to-I RNA editing occurs rather frequently in
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the transcriptome [28], it is not surprising that RNA editing alters the binding of RBP. These alterations
include the changes in miRNA binding sites, which are loaded onto RNA-induced silencing complex
(RISC) that include Argonaute (AGO) protein family as RBP [19,47–50]. Although bits and pieces of
information are available, there is not a systematic investigation of RBP and their bound sequences
that could be altered by RNA editing. Here, utilizing the available information and bioinformatics
tools, we dissected how RNA editing sites alter the binding of RBP, which may have consequences on
cellular physiology.

2. Materials and Methods

2.1. Data Sources

For CLIP-seq data, the analyzed data were downloaded from starBase [45,46]. For RNA editing
sites, the analyzed data were downloaded from RADAR [27]. All of the above datasets were originally
mapped to hg19. In order to avoid any biases resulting from further secondary data analysis, the data
were downloaded from the above databases without any modifications. To identify the RNA editing
sites within RBP-binding regions, the intersect command of BEDTools [51] with the “-wo” option
was used.

To identify RNA editing sites and islands, the following RNA-seq data of HEK-293 cells were
analyzed with RNAEditor [28]: SRR3994124, SRR3994125, SRR3994126, SRR629569, and SRR629570
(all are from the Sequence Read Archive (SRA)).

2.2. Culturing of Cells, qRT-PCR, and siRNAs

HEK-293 cells were cultured in growth medium consisting of Dulbecco’s Modified Eagle
Medium (DMEM) with low glucose and pyruvate (Thermo Fischer Scientific, Darmstadt, Germany)
supplemented with 10% fetal bovine serum (FBS) (Thermo Fischer Scientific, Darmstadt, Germany),
and antibiotics (100 units of penicillin and 100µg of streptomycin per milliliter, Sigma-Aldrich, Hamburg,
Germany). Cells were propagated under standard incubation conditions with 5% atmospheric CO2 at
37 ◦C, as previously described [52,53].

Transient transfection of small interfering RNA (siRNA) duplexes against ADAR (Sigma-Aldrich,
Hamburg, Germany#SASI_Hs01_00244017) (10 nM) was carried out using RNAiMax (Thermo Fischer
Scientific, Darmstadt, Germany) according to the manufacturer’s protocol. The corresponding amount
of control siRNA (MISSION Negative control SIC002, confidential sequence (Sigma-Aldrich, Hamburg,
Germany) was used. Forty-eight hours after the transfection of siRNAs, cells were harvested using
TRIzol (Thermo Fischer Scientific, Darmstadt, Germany) to extract RNA or lysed for protein analysis.

After the purification and treatment of total RNA with TURBO DNase (Thermo Fischer Scientific,
Darmstadt, Germany) to digest genomic DNA, 1 µg of RNA was reverse transcribed with SuperScript
VILO Master Mix (Thermo Fischer Scientific, Darmstadt, Germany). For quantitative reverse
transcription polymerase chain reaction (qRT-PCR), 1 µL of the cDNA template was used with
Fast SYBR Green Master Mix (Thermo Fischer Scientific) via StepOne Plus Real-Time PCR System
(Applied Biosystem, Darmstadt, Germany) with the following thermal cycling condition: 95 ◦C for
20 sec followed by 40 cycles of 95 ◦C for 3 s and 60 ◦C for 30 s. Relative fold expression was calculated
by 2−∆∆Ct using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as an internal control. The list
of primer sequences can be found in Table S1.

2.3. Western Blotting

Western blotting experiments were carried out via Expedeon Blot System (Expedeon, Cambridge,
United Kingdom) using pre-cast 4%–12% gradient SDS-PAGE gel (Expedeon, Cambridge,
United Kingdom). For each well, 50 µg of total extract were diluted in 20 µL of RunBlue LDS
Sample Buffer (Expedeon, Cambridge, United Kingdom) with 0.1 M dithiothreitol (DTT) and loaded
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after boiling at 70 ◦C for 10 min. The samples were fractionated by migration under 180 volts for
70–90 min.

After the electrophoretic separation, gels were blotted in TGS Buffer 1X (0.025 M Tris,
0.192 M glycine, 10% methanol, and 0.1% SDS) using polyvinylidene fluoride (PVDF) membrane
(Amersham, Munich, Germany) with a constant voltage of 200 volts at 4 ◦C for 90 min. After the
transfer, the membrane was blocked with 5% skimmed milk diluted in tris-buffered saline (TBS) for
60 min. Then, the membrane was incubated with the following antibodies (diluted in 5% skimmed
milk TBS) at 4 ◦C for overnight: anti-ADAR1 (Abcam, Cambridge, United Kingdom, #ab88574; diluted
at 1:500) and anti-histone H3 (Abcam, #1791; diluted at 1:1000) as a loading control. After primary
antibody incubation, the membrane was extensively washed with 5% skimmed milk diluted in TBS
with 0.5% of Tween20 (TBS-T) and incubated with anti-rabbit-HRP (horseradish peroxidase; Roth;
diluted at 1:1000) in 5% skimmed milk + TBS-T. After three 15 min washes with 5% milk and TBS-T,
the membrane was revealed using Luminata Forte Western HRP substrate (Merck Millipore, Darmstadt,
Germany) via C-DiGit Blot Scanner (LI-COR).

2.4. RNA Immunoprecipitation (RIP)

Magna RIP Kit (Millipore, Darmstadt, Germany) was used according to the manufacturer’s
protocol. For each RIP reaction, 100 µL of cellular pellet from HEK-293 cells was fixed with 1%
formaldehyde in PBS at room temperature for 10 min. Cross-linking reaction was stopped by adding
590 µL of 2.5 M glycine. Fixed cells were subsequently harvested and resuspended in RIP lysis buffer
supplemented with protease/RNAse inhibitors. Lysate was obtained using a dounce homogenizer
on ice (dounced 10 times for releasing nuclei) followed by incubation on ice for 15 min. An equal
volume of RIP lysis buffer was added to the cellular pellet. From the solution, 10 µL (10%) of lysate was
removed and stored as an “input”. For each RIP reaction, 100 µL of lysate was mixed with 5 µg of rabbit
anti-IgG (immunoglobulin G; negative control provided with the kit), anti-HuR (Millipore, #03-102),
and anti-AGO2 (Argonaute 2; Millipore, #03-110) antibodies previously conjugated with protein A/G
magnetic beads (provided with the kit). After incubation at +4 ◦C overnight, RNA-protein immune
complex was extensively washed with RIP Wash Buffer (provided with the kit). The cross-linking
was reversed by incubation with proteinase K. The immune-precipitated RNA was purified through
phenol/chloroform/isoamyl alcohol (5:1:1). The purified immuno-precipitated RNA was treated with
DNase I and reverse transcribed using SuperScript VILO Master Mix.

2.5. RNA-seq

One microgram of DNase-I-treated total RNA was used for the strand-specific cDNA library
construction at Novogene (Sacramento, CA, USA) using NEBNext Ultra Directional RNA Library
Prep Kit for Illumina (New England BioLabs, #E7420L) according to the manufacturer’s protocol.
Briefly, ribosomal RNA was removed using Ribo-Zero rRNA Removal kit (Illumina, San Diego, CA,
USA, #MRZH11124), and fragmented randomly by adding fragmentation buffer. The first strand
cDNA was synthesized using random hexamer primers. The second strand cDNA was generated
incorporating deoxyuridine triphosphate (dUTP) in place of deoxythymidine triphosphate (dTTP)
to create blunt-ended cDNA. After a series of terminal repair, poly-adenylation, and sequencing
adaptor ligation, the double-stranded cDNA library was completed following size selection and PCR
enrichment. The resulting 250–350 bp insert libraries were quantified using a Qubit 2.0 fluorometer
(Thermo Fisher Scientific) and quantitative PCR. The size distribution was analyzed using an Agilent
2100 Bioanalyzer. Qualified libraries were sequenced on an Illumina HiSeq 4000 Platform using
a paired-end 150 run (2 × 150 bases). A minimum of 40 million raw reads were generated from
each library.

The RNA-seq data generated in this study were deposited in the Gene Expression Omnibus
(GSE141095).
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2.6. Statistics

Data are presented as mean ± standard error of the mean (S.E.M.). F-test was applied for normality.
Two-sample, two-tailed Student’s t-test was performed to calculate a p-value via Microsoft Excel.

3. Results

3.1. Presence of RNA Editing Sites in RBP-Bound Regions

Given that CLIP-seq utilizes NGS as readout, in principle, it is possible to identify the presence of
RNA editing sites within the sequences that RBPs bind. To test this possibility, the analyzed CLIP-seq
data were downloaded from the starBase database [45,46]. Among all CLIP-seq data available in the
starBase database, human embryonic kidney cells 293 (HEK-293) were chosen for further analysis
because they constitute the largest number of analyzed data (48 out of 86 available datasets). In CLIP-seq
data of HEK-293 cells, 27 RBP were targeted. Using the RBP-bound regions identified from CLIP-seq
data (Table S2), the presence of RNA editing sites was searched via the RADAR database [27]. When
these sites were examined for their genic locations, numerous RNA editing sites were identified in the
RBP-bound regions (Figure 1; Table S3), although there were significant variations among the RBPs
examined. These RNA editing sites can be found in both Alu (Table S4) and non-Alu elements (Table
S5), as RBP recognize specific sequences. Given that 75.17% of the RNA editing sites in both Alu and
non-Alu elements were found in the intronic regions followed by intergenic and 3’-UTR (20.06% and
3.31%, respectively) (Table 1), it was not surprising that many RBP-bound regions with RNA editing
sites were found in these three regions.
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Figure 1. Overlap between RNA editing sites and RNA-binding protein (RBP)-bound regions. The upper
graph shows the genic distribution of the overlapped sites. The lower graph indicates the number
of overlapping RNA editing sites. The top 10 overlapping RBPs are shown. 5′-untranslated region
(5′-UTR); 5′-untranslated region (3′-UTR); non-coding RNA (ncRNA).
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Table 1. Distribution of genic locations of RNA editing sites listed in the RADAR database.

Genic Location All Sites Alu Non-Alu

5′-UTR 6775 6131 644
Exon 4405 2082 2323
Intron 1,936,801 1,870,644 66,157
3′-UTR 85,169 79,434 5735

Intergenic 516,714 479,480 37,234
ncRNA 26,595 24,184 2411

The merged data above show large numbers of RNA editing sites in RBP-bound regions,
which raises the question as to whether such RNA editing sites are real. Given that the RADAR
database contains RNA editing sites from various cell types and tissues, it could be that the above
approach overestimated the number of RNA editing sites present in RBP-bound regions. Furthermore,
these RNA editing sites are not strictly from HEK-293 cells, in which RBP-bound regions were identified.
To investigate this point, the published RNA-seq data of HEK-293 cells were analyzed using our
RNAEditor [28], which resulted in the identification of 109,283 RNA editing sites. Indeed, fewer
numbers of RNA editing sites were identified in RBP-bound regions in HEK-293 cells (Table S6)
compared to various cell types and tissues from the RADAR database (Table S3). On the basis of these
results, we concluded that the same cell type must be used for the analysis of RNA editing sites and
their presence in RBP-bound regions.

3.2. Consequence of Loss of ADAR for the Binding of RBP

ADARs catalyze RNA deamination on the basis of their structures rather than having the defined
sequence motif [54–57]. This fact makes it difficult to simply compare the sequence motifs of RBP to
those of ADARs to derive RBP-binding sites to be edited. As we previously reported [28], it is rather
common that RNA editing sites are present in clusters, which we named RNA editing islands [28].
As these RNA editing islands reflect the bound regions of ADAR, which were verified by RIP-seq data
generated using anti-ADAR antibody [58], RNA editing islands could be viewed as more probable and
important RNA editing sites. Given the situations discussed above, we examined the degree of overlaps
between RNA editing islands and RBP-bound regions in HEK-293 cells. From the RNA-seq data of
HEK-293 cells, 21,120 RNA editing islands were identified using our RNAEditor (Table 2; Table S7).
When these RNA editing islands were compared to the RBP-bound regions (Table S8), HuR-bound
regions possessed the greatest number of RNA editing islands, which is consistent with previous
reports regarding ADAR-regulating gene expression and stability of messenger RNAs (mRNAs) via
interaction with HuR, as in the case of cathepsin S (CTSS) [19].

Although the evidence above is informative, one cannot reliably conclude that RNA editing
sites and islands have effects on RBP-bound regions. To investigate this point, we hypothesized
that upon silencing of ADAR via siRNA, the number of RNA editing islands and the magnitude of
RBP binding will be altered compared to the control condition (i.e., HEK-293 cells transfected with
siRNA against random sequence) (Figure 2A). To test this hypothesis, we chose to knockdown ADAR
(ADAR1), whose binding overlaps to RNA editing islands [28]. The siRNA against ADAR targets
both isoforms of ADAR1, which are p110 and p150 (Figure 2B). For the RBP, HuR was chosen, as this
RBP showed the greatest number of RNA editing sites and islands in its bound regions (Figure 1).
RNA immunoprecipitation, followed by RT-PCR (RIP-PCR) experiment, was performed for six genes
[CYP20A1 (cytochrome P450, family 20, subfamily A, polypeptide 1), GNL3L (G protein nucleolar 3
like), LYRM7 (LYR motif containing 7), MAVS (mitochondrial antiviral signaling protein), PDDC1
(Parkinson disease 7 domain containing 1), and TAF8 (TATA-box binding protein associated factor 8)]
by using primer pairs targeting their 3’-UTR regions, which overlapped between the RNA editing
islands and HuR-binding regions (Figure 2C). The result showed that significantly less binding of HuR
to these genes was recorded for half of the genes (CYP20A1, GNL3L, and LYRM7), suggesting that,
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to a certain extent, the existence of RNA editing islands is necessary for the efficient binding of HuR.
To investigate this finding further, RNA-seq experiment was performed upon silencing of ADAR in
HEK-293 cells. When the RNA editing sites were compared for the six genes above, the decreased
numbers of RNA editing sites were detected for CYP20A1, GNL3L, LYRM7, and MAVS, especially in
3’-UTR regions (Table S9). However, no RNA editing sites were detected in 3’-UTR regions of PDDC1
and TAF8, which suggest for no difference in binding of HuR, as shown in Figure 2C.

High-Throughput 2019, 8, 19 7 of 13 

 

decreased numbers of RNA editing sites were detected for CYP20A1, GNL3L, LYRM7, and MAVS, 
especially in 3'-UTR regions (Table S9). However, no RNA editing sites were detected in 3'-UTR 
regions of PDDC1 and TAF8, which suggest for no difference in binding of HuR, as shown in Figure 
2C. 

To further confirm the above findings, another RBP was tested. Given that the previous data 
targeted 3’-UTR regions, we chose to test for the alteration in binding of Argonaute protein, which is 
an essential component of RNA-induced silencing complex (RISC). As shown in Figure 2D, silencing 
of ADAR affected the binding of argonaute RISC catalytic component 2 (AGO2). As ADAR was 
knocked down, it could be possible that the expressions of these genes were reduced, which caused 
alterations in binding of RBPs to these genes. However, this was not the case, as all genes showed no 
statistically significant difference in their expressions between the control and silencing of ADAR 
(Figure 2E). These data confirm that reduction of RNA editing islands caused by silencing of ADAR 
affects the binding of RBPs. 

 
Figure 2. Knockdown of adenosine deaminases acting on RNA (ADAR) in HEK-293 cells. (A) qRT-
PCR results of ADAR expression upon silencing of ADAR (siADAR). HEK-293 cells transfected with 
siRNA against random sequence was used as control (Ctrl.). n = 3 technical replicates. (B) Western 
blotting results of normally grown HEK-293 cells (normal), control, and silencing of ADAR. 
Antibodies against ADAR and histone H3 (as a loading control) were used. n = 2 technical replicates. 
(C,D) RNA immunoprecipitation (RIP)-PCR. n = 3 technical replicates. The fold enrichment was 
calculated against the average Ct value of the input. * represents p < 0.05 comparing (C) HuR- and (D) 
AGO2-binding between silencing of ADAR and control. (E) Expressions of genes. n = 3 technical 
replicates. No statistically significant difference between silencing of ADAR and control was recorded 
in all genes. 

  

Figure 2. Knockdown of adenosine deaminases acting on RNA (ADAR) in HEK-293 cells. (A) qRT-PCR
results of ADAR expression upon silencing of ADAR (siADAR). HEK-293 cells transfected with siRNA
against random sequence was used as control (Ctrl.). n = 3 technical replicates. (B) Western blotting
results of normally grown HEK-293 cells (normal), control, and silencing of ADAR. Antibodies against
ADAR and histone H3 (as a loading control) were used. n = 2 technical replicates. (C,D) RNA
immunoprecipitation (RIP)-PCR. n = 3 technical replicates. The fold enrichment was calculated against
the average Ct value of the input. * represents p < 0.05 comparing (C) HuR- and (D) AGO2-binding
between silencing of ADAR and control. (E) Expressions of genes. n = 3 technical replicates.
No statistically significant difference between silencing of ADAR and control was recorded in all genes.

To further confirm the above findings, another RBP was tested. Given that the previous data
targeted 3’-UTR regions, we chose to test for the alteration in binding of Argonaute protein, which is an
essential component of RNA-induced silencing complex (RISC). As shown in Figure 2D, silencing of
ADAR affected the binding of argonaute RISC catalytic component 2 (AGO2). As ADAR was knocked
down, it could be possible that the expressions of these genes were reduced, which caused alterations
in binding of RBPs to these genes. However, this was not the case, as all genes showed no statistically
significant difference in their expressions between the control and silencing of ADAR (Figure 2E).
These data confirm that reduction of RNA editing islands caused by silencing of ADAR affects the
binding of RBPs.
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Table 2. Distribution of genic locations of RNA editing islands of HEK-293 cells.

Genic Location Count

5′-UTR 50
5′-UTR;Intron 10

Exon 20
Exon;Intron 9
Intron;Exon 17

Intron;5′-UTR 4
Intron 16,707

Intron;3′-UTR 14
Intron;ncRNA 33

3′-UTR 590
3′-UTR;Intergenic 2

3′-UTR;Intron 4
Intergenic;5′-UTR 1

Intergenic 3376
Intergenic;3′-UTR 2
Intergenic;ncRNA 3

ncRNA 258
ncRNA;Intron 18

ncRNA;Intergenic 2

4. Discussion

In this study, the extent to which RNA editing events affect RBP binding was investigated. Building
upon our recently introduced RNAEditor bioinformatics tool to detect RNA editing sites and islands
from RNA-seq data, we examined the overlap between RNA editing events and RBP-bound regions.
Here, we experimentally validated the necessity of ADAR RNA editing enzyme to the binding of the
RBP HuR in HEK-293 cells. The major findings of this study were (1) many RNA editing sites can be
found in the regions that RBPs bind to; (2) RNA editing islands can be used to investigate the influence
of RNA editing events to RBP-bound regions; and (3) experimentally, the lack of RNA editing islands
upon silencing of RNA editing enzyme ADAR reduces HuR binding compared to the control.

Utilizing CLIP-seq data in HEK-293 cells, we examined 27 RBP and their binding to RNA editing
sites. Among these RBPs, by far, HuR (encoded by ELAVL1 gene) bound the most often to RNA
editing sites. Given that HuR stabilizes RNAs to regulate gene expression [59–61], it is tempting to
speculate that RNA editing sites promote the binding of HuR to stabilize the edited transcripts, as
we have shown in our previous study for cathepsin S (CTSS) in endothelial cells [19]. Although an
earlier study indicated such a mechanism of action [58], two other studies that investigated this
interaction between RNA editing and HuR suggest the opposite [62,63]. These studies report that
HuR, as a de-stabilizing enzyme influenced by the presence of RNA editing sites in the target RNA,
nuclear-retained Cat2-transcribed nuclear RNA (Ctn RNA) [62,63]. As we did not investigate the
stability of RNA in this study, we lack the evidence to refute these previous two studies. In order to
investigate this point, RNA stability must be measured upon silencing of ADAR by treating the cells
with actinomycin D to suppress the synthesis of mRNAs.

Over three-quarters of the RNA editing sites are found in the intronic regions. Thus, it is more
likely that RNA editing affects splicing patterns. It is interesting to note that identifying RNA editing
sites in spliced exons and junctions is challenging, as the sequencing reads could be mapped beyond the
corresponding exon boundaries [6,15,17,28]. Thus, RNA editing sites near the splicing acceptor and donor
sites cannot be accurately identified unless the direct comparison of RNA-seq data to the whole-genome
sequencing (WGS) from the same cell is conducted, which is not ideal as the cost of WGS is much more
(including computational time) than simply performing bulk RNA-seq. Thus, it is possible that the
effect of RNA editing to splicing patterns is underestimated. An additional problem is that it is still a
challenge to correctly identify spliced exons from short-read RNA-seq (e.g., Illumina sequencer) as ≈95%
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of multi-exon genes undergo alternative splicing, which results in ≈100,000 alternative splicing events
in major human tissues [64]. One potential solution is to use “Iso-Seq” [65–76], which allows for the
capturing of transcripts over kilo nucleotides (nt) in length, recording isoforms with increased accuracy
compared to shorter sequences (e.g., <200 nt). However, the analysis of long reads is difficult due to the
low sequence coverage, which also leads to missing of RNA editing sites to be identified. In order to
understand the effects of RNA editing, a combined method of different types of RNA-seq and WGS along
with bioinformatics analysis is urgently needed.

Supplementary Materials: The following are available online at http://www.mdpi.com/2571-5135/8/4/19/s1:
Table S1: List of primers used in this study. Table S2: List of RBP-bound regions for 47
crosslinking-immunoprecipitation (CLIP)-seq data sets in HEK-293 cells. Table S3: Distribution of genic locations
of RNA editing sites found in the RBP-bound regions. Table S4: Distribution of genic locations of RNA editing
sites (in Alu elements) found in the RBP-bound regions. Table S5: Distribution of genic locations of RNA editing
sites (in non-Alu elements) found in the RBP-bound regions. Table S6: Distribution of genic locations of RNA
editing sites in HEK-293 cells identified with RNAEditor. Table S7: List of RNA editing islands in HEK-293
cells. Table S8: Distribution of genic locations of RNA editing islands found in the RBP-bound regions. Table S9:
Numbers of RNA editing sites detected in RNA-seq data upon silencing of ADAR. The numbers of RNA editing
sites are categorized on the basis of the genic regions, as shown.
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