
SYSTEMS NEUROSCIENCE

We are motivated by the following two perceived needs: firstly, 
to relate the various measures of connectivity found in the field of 
epilepsy research to the more general language of functional and 
effective connectivity as used in neuroscience (neuroimaging) and 
secondly, to gage the potential benefits of applying state-of-the-art 
connectivity methods to answer scientific questions raised within 
the field of human epilepsy research.

We begin by reviewing basic principles of connectivity, followed 
by a description of connectivity measurement and quantification 
methodologies. We then review some of the main findings of basic 
studies of connectivity in epilepsy, focusing on human data but 
making essential links to animal studies. The last part of this review 
describes the latest developments in models of coupled (distrib-
uted) generators of EEG/MEG and fMRI signals, with the view 
of scrutinizing their possible role as a bridge between scales of 
understanding in epilepsy.

Definitions, PrinciPles, anD the characterization of 
connectivity in ePilePsy
Because of the history of brain connectivity analysis, the functional/
effective dichotomy is a convenient starting point for our discus-
sion. As we shall see, a priori, both forms of connectivity are aimed 
at identifying the presence and strength of connections between 
network nodes and, when possible, their directionality. However, a 
further ambition of effective connectivity is to allow the inference 
of (biophysical) mechanisms by which causal links are expressed in 
measured neuroimaging signals. The study of effective connectivity 
is, therefore, usually a more model-based (or hypothesis-driven) 
approach than that of functional connectivity. It is worth noting 
that the term functional connectivity is not commonly encoun-
tered in the field of epilepsy, particularly in relation to EEG data 
although its use has increased recently in view of growing interest 
in resting-state fMRI data.

introDuction
The brain is essentially an electro-chemical network. Connectivity is 
at the center of the problem of Epilepsy since its defining element is 
the occurrence of seizures, which essentially are periods of abnormal 
inter-neuronal synchrony. Unanswered questions that are central to 
an improved understanding of the mechanisms of epilepsy include 
some which implicate connectivity directly, such as: Why does ictal 
activity spread? Why do seizures persist in some patients, following 
surgical resection? Why do focal insults often give rise to recurrent 
seizures, i.e., epilepsy? And some which do so less directly: Why do 
spike and wave discharges and seizures occur when they do? Why 
does the spatial relationship between the generators of interictal dis-
charges and seizures vary between patients? Answers to these ques-
tions would fundamentally improve our ability to eliminate seizures.

The difficulty of pinning down the concept of brain connectivity 
has already been noted (Horwitz, 2003). Nonetheless at the macro-
scopic scale (brain) connectivity can be partitioned into three main 
concepts: (i) anatomical (or structural) connectivity measured in 
terms of physical (and chemical) connections between neuronal 
populations or individual neurons, (ii) “functional” connectivity 
by which we mean the statistical similarity between activities in 
distributed neuronal populations, and (iii) “effective” connectivity, 
which speaks to the directed influence the activity of one region 
exerts onto another region’s activity in a given context (Sporns, 
2010). This distinction is useful for our discussion in that the meas-
urement instruments and data analytical tools at our disposal have 
mainly focused on each aspect separately (but see Guye et al., 2008).

Here we focus on connectivity of neuronal activity, reflected in 
electrophysiological (LFP, EEG, MEG) and hemodynamic (func-
tional MRI, fMRI) signals measured in humans and animals, but 
with reference to structural connectivity when possible. In the fol-
lowing, we will focus on connectivity assessed in relation to events 
or to (transient) brain states.
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eeG: ProPaGation, sPreaD, source maPPinG, anD connectivity
A key concept in epilepsy is propagation, which is usually under-
stood to mean the observation of similar patterns or of signals 
with different patterns but all suspected of reflecting a common 
underlying phenomenon, on an increasing number of EEG record-
ing channels. This is particularly relevant for seizure activity, where 
it can be commonly observed on intracranial EEG recordings 
(Brazier, 1972; Tao et al., 2007b). There does not seem to be a for-
mal distinction between “spread” and “propagation” in the field of 
epilepsy, although the term spread can be seen as implying spatial 
contiguity and possibly a more passive process than propagation, 
which therefore may be more general. Propagation, and synchroni-
zation to take one of the commonly used measures of propagation, 
implies connectivity and therefore the various ways of character-
izing propagation discussed below are connectivity measures. In 
the following, measures of functional connectivity dominate as 
there have been very few studies attempting to characterize effective 
connectivity in epilepsy.

Signal space connectivity
Continuing with the example of EEG recorded within the brain 
the problem of characterizing propagation is confounded by the 
fact that the most prominent feature may not necessarily reflect 
the driving source (“pacemaker”; Brazier, 1972; Pijn et al., 1990). 
Therefore, early efforts to address the specific problem of identify-
ing the driving component focused on correlation and phase lag 
analysis in the temporal domain or coherence in the frequency 
domain (Walter, 1963). In general, the propagation velocity is 
expected to be large and therefore quantitative methods to detect 
and measure small inter-channel time differences were developed. 
In principle, methods based on spectral estimates such as coherence 
analysis may be best suited to study phenomena of sufficient dura-
tion, such as seizures, while correlation linear or non-linear may 
be applied to shorter epochs (Allen et al., 1992). Event coincidence 
analysis of icEEG data recorded in TLE has been used to identify sets 
of networks involved in interictal epileptiform discharge (IED) gen-
eration with good reproducibility (Bourien et al., 2005; Wendling 
et al., 2009b). For extended discharges (e.g., focal or generalized 
seizures) inter-channel phase difference analyses, evaluated for a 
specific frequency (Brazier, 1972) or over a range of frequencies 
showing a sufficiently high degree of coherence and linear relation-
ship between phase difference and frequency (Gotman, 1983) have 
been used to characterize propagation. Relaxation of the assump-
tion of linearity, which can be violated in epilepsy, has lead to the use 
of more general measures of association (e.g., mutual information 
and non-linear correlation ratio: h2) to study seizure propagation 
(Pijn et al., 1990, 1992; Bartolomei et al., 2001; Wendling et al., 2001, 
2009a; Guye et al., 2006). The ability to identify reliable pre- or early 
ictal connectivity patterns has obvious implications for our ability 
to predict seizures (Litt and Lehnertz, 2002; Mormann et al., 2007; 
see Hughes, 2008 for an interesting historical account).

Another application of the concept of connectivity in epilepsy 
has been the more recent attempts to identify syndrome-specific 
patterns in resting-state EEG data. For example, the concept of 
generalized synchronization has been used to identify functional 
connectivity differences in resting-state scalp EEG at the global 
level or regionally based on icEEG between patient groups with 

potential diagnostic value (Monto et al., 2007; Bettus et al., 2008; 
Douw et al., 2010). Below, we will discuss how the same approach 
has been used on fMRI data.

Scalp EEG and MEG source space connectivity
Changes in scalp EEG/MEG field topography reflect a combination 
of changes in source morphology and strength, and noise (Ebersole 
and Hawes-Ebersole, 2007). Although subjective, the interpreta-
tion of changes in scalp EEG patterns in terms of lobar localization, 
lateralization, and generalization forms an integral part of clinical 
practice. However, characterization of neural connectivity based 
on quantitative analyses of scalp EEG in signal space is particularly 
problematic because the signals result from propagation through the 
head and subject to fundamental ambiguities of source identification 
(Schoffelen and Gross, 2009). Furthermore, even for such simple 
events as focal spikes, propagation, or spread can result in severe vio-
lations of the modeling assumptions, such as synchronized activity 
over a relatively limited cortical area for the case of the single mov-
ing dipole. The demonstration that 10 cm2 of synchronously active 
cortex is necessary to produce a visually recognizable spike on scalp 
EEG (Tao et al., 2005, 2007a) suggests that point dipole mapping 
may often break down. Nonetheless, source tracking has been used 
to characterize spike propagation within the brain, possibly down to 
the sub-lobar level although careful interpretation of any localizing 
information is required in view of the above caveats (Ebersole and 
Hawes-Ebersole, 2007). Ictal activity represents a much greater chal-
lenge due to the length and complexity of the events, with rare studies 
attempting to link the intracranial and scalp EEG representations 
of ictal spread (Tao et al., 2007b). The observed complex dynamic 
patterns of synchrony mean that we are even further from useful 
source-based analyses than for interictal discharges.

It is beyond the scope of this review to discuss the entire range 
of generator models available to the investigator and clinician, from 
the single moving equivalent current dipole (ECD) to distributed 
source models of cortical patches. However, these can be charac-
terized as essentially static, and address the problem of estimating 
spatial activity profile under various spatial constraints at each 
time point. This can be taken to reflect a lag between our under-
standing of the biophysics of generator geometry (point dipole 
as a representation of EPSP and IPSP in the pyramidal neuron) 
versus that of generator dynamics. Although there have been recent 
efforts to incorporate the temporal dimension to source estimation, 
the use of such techniques to assess spread remains to be assessed 
(Daunizeau et al., 2006).

The spread of epileptiform activity, measured as the ratio of the 
regional MEG dipole source strength in a distributed model over 
the local noise level, has been mapped (statistically) at 2.5 ms inter-
vals showing realistic patterns in a few children with focal epilepsy, 
comparing advantageously to the results of serial ECD fitting for 
interictal activity (Shiraishi et al., 2005a,b) and for discharges in 
the early ictal period (Tanaka et al., 2009).

In generalized epilepsy, EEG/MEG source phase synchrony 
analysis based on its surrogate measure, instantaneous narrow-
band frequency locking, has been used to study long-range cortical 
synchronization during 3-Hz generalized spike-wave discharges, 
allowing the identification of a consistent fronto-central network, 
in agreement with other localization studies (Amor et al., 2009).
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Ictal events can also be studied, either fortuitously or intention-
ally, although the occurrence of seizures in the scanner poses a 
specific health hazard which requires special attention. Although 
a priori simultaneous EEG is not always necessary to study ictal 
events using fMRI in a given patient depending on clinical fea-
tures it can be an important source of information. Without EEG 
and in absence of clinical manifestations or ictal trigger, fMRI can 
be used to study the resting-state brain hemodynamics without 
reference to any specific event, allowing comparing features of the 
fMRI signal such as inter-regional temporal correlation patterns 
(i.e., functional connectivity) across patient groups, for example 
(Guye et al., 2008, 2010).

There have now been more than 100 publications describing 
fMRI studies of epileptic activity in humans, mostly with simulta-
neous EEG recording and using a general linear modeling approach, 
which have revealed sometimes complex patterns of IED or seizure-
related BOLD changes in a large proportion of the cases studied. 
Using this approach maps containing multiple significant BOLD 
clusters can be said to represent networks to the extent that the 
signals in those regions show a sufficient high degree of correlation 
with the modeled waveform. However, in the context of functional 
connectivity, it is worth remembering that the fact that two signals 
significantly correlated with a third (e.g., a modeled signal) does not 
imply that the former are significantly correlated with each other. 
Therefore, fMRI functional connectivity analyses are typically based 
on calculating inter-regional correlations directly from the data. 
For example, Waites et al. (2006) showed differences in resting-
state functional connectivity patterns in the language network in 
patients with TLE compared to a group of healthy controls. Also 
in TLE, studies of resting-state fMRI connectivity have focused on 
identifying asymmetries with possible clinical implications (Bettus 
et al., 2009, 2010).

In the above studies, the characterization of networks is per-
formed based on correlation analyses of time series data acquired 
over extended periods of rest, without reference to specific events, 
and do not address causality. There have been a few applications 
of DCM to fMRI data in epilepsy to study effective connectivity in 
networks associated with generalized spike-wave discharges (David 
et al., 2008a; Vaudano et al., 2009). The final section of this article 
focuses on DCM, in particular its possible role in elucidating the 
pathological mechanisms responsible for epileptic activity based 
on electrophysiological and hemodynamic data.

electroPhysioloGical markers of ePilePsy: ictal anD 
interictal ePilePtiform eeG Patterns
The epileptiform patterns commonly observed on scalp EEG record-
ings from patients with epilepsy can be categorized as arising focally 
or appearing simultaneously over a large region or propagating 
to many remote locations. The identification and characteriza-
tion of these patterns form an important element of the patient’s 
assessment and subsequent management. As for all types of brain 
activity neural interactions form a central element in the onset, 
continuation and cessation of epileptic activity. In this section we 
review the phenomenology of epileptic activity and the underly-
ing neural interactions but with special emphasis on the aspects 
of connectivity that can be measured using human brain imaging 
and electrophysiology.

Causality and effective connectivity
A number of generalized measures of signal synchrony possess 
asymmetry which has been used to infer “driver-response” relation-
ships (Le Van Quyen et al., 1998; Quiroga et al., 2002). However, the 
causality inferred from these has been shown to be dubious in the 
presence of noise (Quiroga et al., 2000) although there are examples 
of agreement with clinical data (Le Van Quyen et al., 1998). Of note 
is the use of generalized synchrony on icEEG (inter-channel spike 
peak time delay measurements) to validate a model of effective 
connectivity during seizures based on fMRI data in a rat model of 
epilepsy [David et al., 2008a; see Section “Signal Generation and 
Effective Connectivity Modeling in Epilepsy” on dynamic causal 
modeling (DCM)].

Granger causality (GC, sometimes referred to as Granger–
Geweke causality; see Kaminski et al., 2001) is based on the notion 
that one signal can be called causal with respect to another if the 
latter can be better predicted by using information from the former. 
The directed transfer function (DTF; Kaminski and Blinowska, 
1991), which was subsequently shown to be a generalization of GC, 
has been used to study information flow on icEEG data recorded 
during epileptic seizures (Franaszczuk and Bergey, 1998). More 
recently, a dynamic form of GC has been proposed for the study of 
epileptic spike propagation measured with MEG (Lin et al., 2009). 
The method can be used to track changes in effective connectiv-
ity based in the temporal and frequency domains over sub-spike 
time scales.

Dynamic causal modeling is a model of effective connectivity 
based on a biophysically realistic generative model of the signals 
and there are versions of DCM for EEG, MEG, and fMRI (see 
Section “Signal Generation and Effective Connectivity Modeling in 
Epilepsy” for a more detailed discussion of DCM). DCM is a rela-
tively novel approach that was introduced as a generic formalism for 
studying effective connectivity in a seminal paper by Friston et al. 
(2003). In brief, at the heart of DCM is a set of bilinear differential 
equations (of the same form as Newtonian motion equations) that 
relate the rate of change in regional neuronal activity in terms of 
linearly separable components that reflect the influence of other 
regional state variables (Friston et al., 2003). One of DCM’s main 
claims is that it attempts to model neuronal states through genera-
tive models in contrast to other approaches to effective connectivity 
such as Granger causal modeling, which model the signals (Friston, 
2009). DCM has been used to study plasticity in the human epilep-
tic focus using evoked responses measured intracranially (David 
et al., 2008b).

functional mri: functional anD effective connectivity
Compared to EEG or even MEG, fMRI is a newcomer in the toolkit 
available to investigators interested in studying epileptic activity. 
Among the attractive aspects of the technique in comparison with 
EEG and MEG are: its capacity to image the entire brain more 
or less uniformly without the need to solve the inverse problem, 
its spatial resolution and the potentially complimentary nature 
of the information it provides (hemodynamic). The addition of 
simultaneous EEG recording means that one is able to correlate the 
fMRI time series data with subclinical (unpredictable and brief) 
events, such as IED, with the aim of mapping the associated hemo-
dynamic changes.
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Fast oscillations
Ripple oscillations (100–200 Hz) are physiological phenomena 
that occur in relationship with hippocampal sharp waves. An 
observation in epileptic tissue is the presence of even higher fre-
quency (250–500 Hz) oscillations, also termed fast ripples, which 
seem to be a marker of epileptogenicity (Bragin et al., 1999; Jacobs 
et al., 2009). These can occur in association with IEDs but also may 
precede seizures. It is likely that most high frequency oscillations 
are generated in and remain restricted to small areas of neocortex, 
but more rarely can occur over larger areas which may be more 
indicative of epileptogenic cortex (Schevon et al., 2009). There 
remains controversy about the mechanisms generating such high 
frequency oscillations. These have been proposed to be due either 
to a barrage of high frequency inhibitory postsynaptic potentials 
from fast spiking interneurons impinging on relatively depolar-
ized principal cells (Trevelyan, 2009) or to the synchronous firing 
of principal neurons coupled through non-synaptic mechanisms 
such as gap junction (providing direct electrical coupling of neu-
rons; Roopun et al., 2010).

Partial seizures
Spike discharges can precede a seizure with progressively less effec-
tive after-hyperpolarizations in mesial temporal lobe epilepsy (King 
and Spencer, 1995); however, the hallmark of seizure activity is the 
build up of fast activity that is usually initially spatially confined, 
and is distinct from IEDs. The mechanisms underlying this activ-
ity are unclear but it has been proposed to represent the excessive 
firing of a group of principal neurons, perhaps coupled through 
gap junctions (Traub et al., 2001). This pattern evolves to high 
amplitude spikes that occur at a lower frequency. Two questions 
concerning seizures arise: first, what is it that triggers a seizure? 
And second, what is it about an area of cortex that makes it epi-
leptogenic? The first question is far from clear; there are conflicting 
data from analysis of preictal data (see Mormann et al., 2007) that 
suggest that there may be changes occurring minutes before the 
seizure (i.e., the seizure results as a critical point of network activity 
is reached). The transition from normal to epileptiform behavior 
is probably caused by greater spread and neuronal recruitment 
secondary to a combination of enhanced connectivity, enhanced 
excitatory transmission, a failure of inhibitory mechanisms, and 
changes in intrinsic neuronal properties. The second question is 
therefore easier to address as many of these changes have been 
described, but it is unclear which are most important (Walker 
et al., 2007). Indeed, it is likely that there is no unique process and 
that cortex can become epileptogenic via a variety of mechanisms, 
examples of which are given below.

During the development of epilepsy (epileptogenesis) changes 
have been documented in neuronal properties (Su et al., 2002), ion 
channel expression (Bernard et al., 2004; Shah et al., 2004), and 
GABAergic inhibition (Obenaus et al., 1993; Cossart et al., 2001). 
Moreover GABA(A) receptor potentials can and shift from hyper-
polarizing to depolarizing (potentially excitatory; Cohen et al., 
2002; and the effect of this on, for example, the BOLD response 
to GABAergic inhibition is not clear). Excitatory transmission is 
potentiated not only through changes in receptors (Lieberman 
and Mody, 1999; Porter et al., 2006), but also through sprouting 
of excitatory fibers (Tauck and Nadler, 1985). Sprouting has been 

the Generators of ePilePtiform activity
While our understanding of the basic neurophysiology of the 
generators of epileptic activity has been derived from studies at 
the microscopic level, we envisage increasingly direct links with 
phenomenology at higher scales and that these will be made 
through biophysically realistic models of whole-brain signals, 
such as DCM (to be discussed in Section “Signal Generation and 
Effective Connectivity Modeling in Epilepsy”). The possibility of 
identifying and characterizing the pathological substrate of whole-
brain data within such a framework would rest on models capable 
of representing the neurophysiological excesses and deficiencies 
described below, be they node-specific or network-wide, at the 
appropriate scale.

Interictal discharges
Interictal epileptiform discharges include spikes, which are fast 
electrographic transients lasting less than 70 ms and sharp waves, 
which last 70–120 ms (de Curtis and Avanzini, 2001); these occur 
rarely (<1%) in healthy individuals (Gregory et al., 1993), and 
are strongly associated with epilepsy (Marsan and Zivin, 1970). 
IEDs are generated by the synchronous “activation” of a large 
numbers of neurons – in order to be detectable by scalp EEG, the 
synchronous activation of 10–20 cm2 of gyral cortex is necessary 
(Tao et al., 2007a). Excitatory postsynaptic potentials following 
activation of glutamate receptors cause an influx of sodium into 
dendrites (current sink), and the consequent flow of sodium 
from the soma (current source). The intracellular correlate of the 
interictal spike is the paroxysmal depolarizing shift (Matsumoto 
and Marsan, 1964), a slow depolarizing potential with a high 
frequency (>200 Hz) burst of action potentials. A number of 
pathological mechanisms have been proposed to underlie the 
interictal spike, including changes in the intrinsic burst proper-
ties of neurons (increased neuronal excitability) and increased 
network excitability (secondary to changes in neurotransmission 
and/or neuronal connectivity).

Interictal epileptiform discharges are usually followed by 
a slow wave lasting hundreds of milliseconds. This depends 
upon the activation of hyperpolarizing GABA(A) and GABA(B) 
 receptor-mediated currents and calcium-dependent potassium 
currents (de Curtis and Avanzini, 2001; McCormick and Contreras, 
2001). Therefore, IEDs activate hyperpolarizing currents, resulting 
in a post-spike refractory period during which neuronal activity 
is inhibited (de Curtis and Avanzini, 2001). Increased interictal 
spiking occurs after seizures, raising the possibility that this is 
a compensatory antiepileptic response (de Curtis and Avanzini, 
2001). Indeed, experiments in entorhinal cortex–hippocampal 
slice preparations have confirmed the antiepileptic potential of 
spikes. Spike discharges generated in the CA3 region inhibited 
epileptic activity in the entorhinal cortex, so that sectioning of part 
of the hippocampal circuitry, preventing invasion of the entorhinal 
cortex by these spikes, led to potentiation of entorhinal cortex 
seizure activity (Barbarosie and Avoli, 1997). This leads to two 
important conclusions: first, interictal spikes can have a lasting 
inhibitory effect; second, they can have this effect remote from 
where the spikes arise. This is critical for understanding cortico-
cortical signal propagation as single spikes may disrupt propaga-
tion by, in effect, silencing cortical areas.
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sites through longer range connections. However, recruitment 
depends on not only connections between different brain regions 
but also the ease with which a brain region can be recruited (see 
below). In some situations the observed propagation pattern can 
be rationalized based on general anatomical knowledge and can 
be correlated with the evolution of clinical signs (in the case 
of seizures), however these can significantly vary from event to 
event and our general understanding of these patterns remains 
poor; studies comparing patient-specific structural connectivity 
(MRI tractography) with interictal and ictal propagation pat-
terns are just beginning to emerge (Hamandi et al., 2007; Diehl 
et al., 2010).

Nonetheless, the mechanisms underlying propagation and 
recruitment at these different scales are probably quite similar, 
though may differ for interictal and ictal activity. An IED can be 
considered in three distinct mechanistic stages: initiation, prop-
agation, and termination (Pinto et al., 2005). The threshold for 
initiation depends upon the balance of excitation and inhibition. 
However, propagation velocity depends solely upon excitation, 
probably because the delay between excitatory activity and the 
recruitment of inhibitory activity provides a window during which 
an IED can propagate unimpeded by inhibition. The termination 
of an IED is a complex process including depolarizing block and 
synaptic inhibition.

The propagation of seizures is more complex because, by neces-
sity, these are longer lasting and so cannot depend on the short-
lived delay between excitatory and inhibitory activity. Focal seizure 
activity recruits local inhibitory neurons which importantly pro-
vide a strong “surround” inhibition limiting the spread and time 
course of the abnormal activity (Prince and Wilder, 1967). This 
inhibitory constraint provides a mechanism that limits seizure 
activity in both temporal and spatial domains. Repeated seizure 
activity can however result in the breakdown of this constraint 
and seizure propagation. Moreover, the speed of propagation is 
dependent upon the strength of inhibition with faster propagation 
occurring with less powerful inhibitory constraint (Trevelyan et al., 
2006, 2007a). Furthermore, the arrangement of synaptic inhibi-
tion (divergent) in which feed-forward inhibition will constrain 
a number of pyramidal cells results in a stepwise recruitment of 
groups of principal neurons as inhibition fails. The mechanisms 
underlying the breakdown of the inhibitory constraint are unclear 
and may not be unique.

Although propagation of seizure activity may be well-defined, 
the propagation of discharges that occur during seizure activity is 
less certain. Ictal activity is prolonged and so having propagated 
to a region, later repetitive discharges during the ictus will spread 
according to the pattern of the connections of that area and the 
strength of surrounding inhibition. It is therefore possible that 
later discharges during the ictus may back propagate to areas from 
which the seizure has spread (Trevelyan et al., 2007b). This is also 
observed with human recordings.

siGnal Generation anD effective connectivity 
moDelinG in ePilePsy
In this section we consider the scope for uni- and multi-modal 
data to be brought together in a biophysically realistic modeling 
and data statistical analysis framework, namely DCM.

most clearly demonstrated in the dentate gyrus in which recur-
rent collaterals form between dentate granule cells, and this hyper-
connectivity promotes the formation of local excitatory circuits 
and hyper-excitability. Importantly, however, the probability of a 
connection between any two granule cells is low and the observed 
hyper-excitability may be explained by non-random connectivity 
and the formation of a few, highly connected “hub” cells (Morgan 
and Soltesz, 2008), a feature of small-world networks. Epileptogenic 
insults are also associated with gliosis, altering the regulation of 
external potassium (Lux et al., 1986) and contributing to the 
release of neurotransmitters into the extracellular space (Tian 
et al., 2005). There are also changes in non-synaptic mechanisms 
involving increases in ephaptic transmission and the expression 
of gap junctions which may promote neuronal synchronization 
(Jefferys, 1995). Suggesting that the local spread of seizure activity 
can occur independent of axonal connections.

Some of these changes (e.g., excitatory fiber sprouting, gliosis, 
neuronal death) have an obvious anatomical correlate and can be 
easily quantified by microscopic and, on occasion, macroscopic 
tools. Moreover, pathologies leading to these changes such as 
stroke, tumors, cortical dysgenesis, traumatic brain injury are often 
clearly evident, and although the hallmark of these pathologies 
(e.g., brain damage) may not be the substrate for the epileptogenic 
process, they are an indicator of an epileptogenic process. However, 
these clear anatomical changes are not necessary for a network to 
become epileptogenic and certain changes (e.g., in ion channels 
and receptors) may only be apparent with functional investiga-
tion. Therefore, epileptogenic cortex may not always be discernible 
using anatomic techniques.

Absence seizures and 3 Hz spike-wave discharges
Absence seizures are generalized seizures which are generated within 
the thalamocortical loop. This depends upon the recruitment of 
reticular thalamic neurons by the neocortex. These in turn hyper-
polarize (inhibit) thalamocortical neurons. This activates various 
ionic currents, resulting in the rebound burst firing of thalamocor-
tical neurons which project onto and excite neocortical neurons and 
so the cycle repeats (McCormick and Contreras, 2001). Absences 
were originally believed to be generated subcortically, by thalamic 
neurons initially driving the recruitment of neocortical neurons. 
However, paroxysmal oscillations within thalamocortical loops in 
absence seizures in rats seem to originate in the somatosensory 
cortex rather than the thalamus, with synchronization mediated 
by rapid intracortical propagation of seizure activity (Meeren et al., 
2002). This is supported by anatomical evidence in humans of sub-
tle cortical structural abnormalities in some patients with absence 
seizures (Woermann et al., 1999). Indeed, this and the potential 
of focal pathological change in the medial frontal lobe to generate 
absence-like seizures have blurred the distinction between focal 
and generalized epilepsies.

ProPaGation of ePilePtic activity: observations anD 
mechanisms
Both IEDs and seizures propagate, by which we mean that the 
pathological EEG pattern spreads to distant brain areas, reflect-
ing recruitment of neuronal activity in those areas. This occurs 
locally due to local connections and networks and at more distant 
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Why shoulD We attemPt moDel-baseD effective connectivity 
analyses to stuDy ePilePsy?
As can be abstracted from the previous sections, initiation, propa-
gation, and termination of epileptiform activity are thought to 
result from the complex interplay between the natural balance of 
excitation and inhibition within the system and some pathological 
perturbations of various physiological processes, e.g., neuromodu-
latory activity (impacting upon neuronal excitability). This is most 
probably the reason why epilepsy expresses itself at so many differ-
ent spatial and temporal scales of observation, from e.g., genetic 
disruptions of biomolecular neuronal properties (e.g., conforma-
tional change of ion channels, see Steinlein, 2004) to macroscopic 
structural abnormalities (e.g., cortical thickness in temporal lobe 
epilepsy, see Bernhardt et al., 2010), through impaired resting-state 
activity (e.g., phasic suspension of the attentional network; see 
Gotman et al., 2005; Hamandi et al., 2006; Laufs et al., 2007).

At first glance, it does not seem possible to embrace the diver-
sity of these traits within a common comprehensive theoretical 
framework. However, it must be the case that adequately realis-
tic models of brain dynamics, in conjunction with appropriate 
brain activity measurements, can reveal the link between these 
phenomena (Wendling, 2008). This is because whether or not 
a given trait is related to epilepsy has to do with the observed 
correlation between its occurrence and the presence of epilepti-
form brain activity, such as focal seizures or generalized spike-
wave discharges. For example, if a model is able to account for 
basic cellular mechanisms such as the impact of neurotransmit-
ter levels onto average ion channel dynamics, it might be able 
to link genetic observations to neuroimaging. If such a model 
was also able to account for the relative proportion of cell types 
in different cortical layers (e.g., pyramidal cells in layer IV and 
excitatory/inhibitory interneurons in layer VI), it might be able 
to predict dynamical changes resulting from sufficiently speci-
fied loss of gray matter. Finally, if it was based on the notion of 
a distributed brain network to capture observed transient and 
steady-state macroscopic dynamics, it might well be an appropri-
ate tool to understand the large-scale structure of epileptogenic 
brain networks.

Having said this, the model alone, even if exquisitely realis-
tic, cannot disambiguate between different candidate scenarios 
about, e.g., what is it that triggers, propagates and/or termi-
nates an observed seizure. This is because the seizure etiology is 
expected to vary greatly across patients, or even within patients. 
In other words, the mechanisms that lead to the seizures are con-
text-dependent. Hence, one cannot predict those a priori, on a 
patient-by-patient basis.

Taken together, this means that one wants to embed sophis-
ticated biophysical models into the statistical data analysis, with 
the aim of exploiting the specificities of the observed (neuroim-
aging) data to identify the subject-specific relevant mechanisms 
underlying epileptiform activity. This is the basic idea behind 
DCM (Friston et al., 2003). The DCM framework has two main 
components: biophysical modeling and probabilistic statistical 
data analysis. Realistic neurobiological modeling is required to 
simulate observed brain network dynamics. However, context-
dependent variables of these models cannot be known a pri-
ori, e.g., whether or not activity-dependent plasticity did occur. 

Therefore, statistical  techniques (embedding the above bio-
physical models) are necessary for statistical inference on these 
context-dependent effects, which are the experimental questions 
of interest.

Dcm: state-of-the-art
Nevertheless, existing implementations of DCM restrict the appli-
cation of this generic perspective to more specific questions that are 
limited either by the unavoidable simplifying assumptions of the 
underlying biophysical models and/or by the bounded efficiency of 
the associated statistical inference techniques. In brief, the validity 
of DCM relies upon a careful balance between the realism of the 
underlying biophysical models and the feasibility of the statistical 
treatment. This has motivated the development of many variants 
of DCM, focusing on either of the two DCM components. To date, 
about 30 DCM methodological articles have been published in the 
peer-reviewed literature (see Daunizeau et al., 2010 for a recent 
review).

The (Bayesian) statistical treatment of DCM eventually provides 
model parameter estimates (synaptic time constants, action poten-
tial thresholds, adaptation effects, etc…) and the model marginal 
likelihood. The latter quantity measures how likely is a model given 
the measured (neuroimaging) dataset, and is used to perform sta-
tistical model comparison. This statistical component of DCM is 
further described below (see DCM: Statistical Data Analysis). This 
can be useful to identify epileptogenic mechanisms that are a priori 
likely to underlie ictal or interictal epileptiform activity.

In brief, DCM for fMRI data includes a simple dynamical model 
of coupled brain regions as well as a model of neurovascular cou-
pling, relating neural activity to BOLD time series. In addition, it 
comes in three flavors:

- whether or not distinct excitatory and inhibitory populations 
are considered within each region of the brain network

- whether or not one includes spontaneous (stochastic) fluctua-
tions in the brain network dynamics

- whether or not (non-linear) gating effects, whereby activity in 
one area enables or disables a connection between two other 
areas, are assumed to underlie observed brain dynamics.

In its simplest form, Bayesian model comparison was used in 
Vaudano et al. (2009) to assess the structure of the epileptogenic 
network in terms of the role of three brain structures, namely tha-
lamus, prefrontal cortex, and precuneus in seizure generation or 
facilitation using EEG–fMRI data in seven patients with idiopathic 
generalized epilepsy (IGE). The findings lead the authors to hypoth-
esize a role for the precuneus as a form of modulator of generalized 
spike-wave activity, and by extension, of the occurrence of absence 
seizures, linking spontaneous fluctuations in brain state as reflected 
by the so-called Default-Mode Network of brain activity (Raichle 
et al., 2001) to the occurrence of epileptic discharges (Vaudano 
et al., 2009; Carney et al., 2010).

David et al. (2008a) performed concurrent fMRI and icEEG 
measurements to measure the spread of excitation in a geneti-
cally defined type of epilepsy in rodents. It is important to 
note that in these studies, the onset of EEG epileptic activity 
(back-shifted in time in the case of David et al., 2008a) was 
treated as the input (knowledge of which is required, except 
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- which data features one wants to model, i.e., evoked responses 
in the time domain, steady-state responses in the frequency 
domain, induced responses in the time-frequency domain, 
oscillations in the (within-frequency band) phase domain, etc;

- whether or not voltage-dependent effects on membrane ion 
conductances are included in the model;

- whether local spatial propagation effects are considered, in 
relation to the size of the brain regions participating in the 
network.

The previously mentioned work by David (2007) is a first step 
toward understanding the gradual recruitment of the epileptogenic 
network that gives rise to epileptic discharges within the framework 
of DCM. Some of the critical pathological mechanisms discussed in 
the previous section can already be assessed through DCM analyses. 
This is because one can include these in terms of a priori beliefs onto 
model parameters (e.g., altered voltage-dependent sodium channel 
kinetic time constants) or even on model structure (e.g., anatomi-
cally localized cell type-specific neuronal death), and quantify how 
likely they are, given observed brain dynamics.

Dcm: statistical Data analysis
The need for neurobiological plausibility can make DCMs fairly 
complex, compared to conventional regression-based models of 
effective connectivity, such as structural equation modeling (SEM; 
McIntosh and Gonzalez-Lima, 1994; Büchel and Friston, 1997) 
or autoregressive models (Harrison et al., 2003; Roebroeck et al., 
2005). This complexity induces potential non-identifiability prob-
lems, requiring novel sophisticated model inversion techniques 
that are typically cast within a Bayesian framework. For example, 
the non-linearities of the models, as well as the dimension of the 
dynamical systems involved, have necessitated the development 
of dedicated approximate inference schemes, namely variational 
Bayes (VB; see e.g., Beal, 2003). In brief, VB is an iterative algo-
rithm that indirectly optimizes an approximation to both the 
model evidence (used for model comparison) and the posterior 
density (for parameter estimation), under simplifying assump-
tions about the form of the latter distribution (see, e.g., Friston 
et al., 2007). Furthermore, developments have been required to 
address Bayesian model comparison for group studies. Stephan 
et al. (2009) address random effects on models at the between-
subjects level, i.e., accounting for group heterogeneity or outliers. 
This second-level analysis provides the so-called “exceedance prob-
ability,” of one model being more likely than any other model, 
given the group data. It also introduced model space partitioning, 
which allows one to compare subsets of all models considered, 
integrating out uncertainty about any aspect of model structure 
other than the one of interest. This work was recently extended 
to allow for comparisons between model families of arbitrary size 
and for Bayesian model averaging within model families Penny 
et al. (2010). Allowing statistical inference at the level of families 
of model is important whenever the question of interest may cor-
respond to more than one model within the comparison set (e.g., 
serial versus parallel connectivity structure).

Note that using the model evidence to compare models against 
each other means that the most likely model may not be the model 
“fitting best” the data. One should remember that measuring the fit 

–  exceptionally – for stochastic DCMs) in families of models, 
where each model was distinguished by the choice of input 
node, for comparison to identify the best model. One may 
question the meaning of intrinsic activity being treated as an 
input in this context, given that DCM was conceived based on 
extrinsic inputs under experimental control. In fact, this can 
be interpreted as embodying the empirical assumption that the 
initial cause of the modeled effects corresponds to the time of 
GSW onset. It is worth remembering that the families of models 
considered and the DCM results are as good as the assump-
tions, which they are based on (Penny et al., 2004). Daunizeau 
et al. (2010) has used model comparison on stochastic DCMs 
for fMRI to provide evidence in favor of the existence of (non-
linear) thalamic gating effects onto the cortico-thalamic loop 
during interictal activity1.

“Neural mass” models in DCMs for EEG/MEG/LFP data are 
typically considerably more complex than in DCMs for fMRI. This 
is because the temporal information on neural activity, which can 
be extracted from electrophysiological measurements, can only 
be captured by models that represent neurobiologically detailed 
mechanisms. Here, each region is assumed to be composed of 
three interacting subpopulations (pyramidal cells, spiny-stellate 
excitatory and inhibitory interneurons) whose (fixed) intrinsic 
connectivity was derived from an invariant meso-scale cortical 
structure (Jansen and Rit, 1995). The temporal dynamics of each 
subpopulation relies on two operators: a temporal convolution of 
the average presynaptic firing rate yielding the average postsynap-
tic membrane potential and an instantaneous sigmoidal mapping 
from membrane depolarization to firing rate (see Figure 1). This 
forms the basic building block of DCMs for EEG/MEG/LFP data, 
in the sense that it summarizes the activity within one brain region 
that composes the large-scale network. Such basic building block 
has already been extensively used in the context of epilepsy (see, 
e.g., Wendling, 2008).

Critically though, the qualitative nature of the network dynam-
ics relates to the between-areas connectivity structure. In DCM for 
EEG/MEG/LFP data, three qualitatively different extrinsic (exci-
tatory) connections types are considered (cf. Felleman and Van 
Essen, 1991): (i) bottom-up or forward connections that originate 
in agranular layers and terminate in layer IV, (ii) top-down or back-
ward connections that connect agranular layers, and (iii) lateral 
connections that originate in agranular layers and target all layers. 
Lastly, the model can include the propagation of electromagnetic 
fields through head tissues to address the problem of spatial mixing 
of the respective contributions of cortically segregated sources in 
the measured scalp EEG/MEG data (see e.g., Mosher et al., 1999). 
Existing variants of DCM for EEG/MEG and LFP (local field poten-
tial data) are related to:

1Stochastic DCM refers to an extension of the DCM framework, whereby one as-
sumes that activity within network nodes may by driven by unknown (random or 
stochastic) inputs, in addition to experimentally controlled inputs and influences 
from other areas. In other words, in addition to the usual DCM parameters, one has 
to estimate the trajectory of neural noise that may have distorted the response of 
the system to known inputs. The key idea here is that neural noise can extend the 
dynamical repertoire of the system in a non-trivial way. Besides, stochastic DCM re-
duces to deterministic DCM by a priori constraining the neural noise variance to 0.
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designed to capture these effects. The motivation for including 
the temporal dimension in DCM is actually to allow for feedback 
influences (loopy causal systems), rather than to detect tempo-
ral precedence. This is why DCM is more (though not entirely) 
immune to heterogeneous hemodynamic delays than, e.g., GC 
analyses (David et al., 2008a).

Finally, we would like to stress that DCM is ultimately not an 
exploratory analysis: it is meant to test/compare precise hypoth-
eses about brain function. Furthermore, its mathematical form is 
explicitly based on generic assumptions about brain organization, 
e.g., that the brain enjoys a hierarchical structure. This means that 
DCM is optimally used to answer a specific class of questions, typi-
cally: whether or not feedback/feed-forward influences within the 
network vary as a function of experimental manipulations or per-
turbations (such as diseases). In the context of epilepsy, examples 
of DCM-relevant questions are: (i) whether ictal activity propa-
gates from a region that triggers epileptiform activity, or rather 

(e.g., percentage of variance explained) is not a very good measure 
for the quality of a model. This has to do with the fact that minimiz-
ing residuals can lead to severe lack of generalizability. Correcting 
the fit with complexity penalty terms is the hallmark of Bayesian 
inference schemes, which, as a consequence, do not try to minimize 
the residuals. Within a Bayesian framework, it is thus perfectly 
acceptable to reasonably compromise data fit, if this guaranties 
improved generalizability. Guessing whether or not this trade-off 
is optimal by looking at the fit itself is impossible without factor-
ing in the complexity of the model. In other words, any optimal 
Bayesian inversion only explains in the data what is estimated to 
be generalizable, i.e., reproducible across repetitions of the same 
experiment, given the explanatory factors at hand.

Besides, we would like to further comment on the causal aspect 
of DCM. It is not because DCM relies upon a dynamical formula-
tion that it assesses causal influences from evidence of temporal 
precedence (as, e.g., GC techniques do; see Valdes-Sosa et al., 2011 
for a comprehensive discussion). Time is certainly an important 
dimension of causal influences, but definitely not the main compo-
nent of DCM for fMRI, which, compared to the underlying neural 
events, is poorly temporally resolved. Causality can be inferred from 
non-symmetrical shared variance2 (e.g., see Pearl, 2000). DCM was 

FiGurE 1 | Dynamic causal modeling for EEG/MEG data. (C) Neuronal 
features at the micro-scale that affect the level of the neural ensemble, i.e., at 
the meso-scale (B): (i) sigmoidal transformation, describing how mean 
postsynaptic membrane potential is linked to mean presynaptic firing rate, and 
(ii) temporal convolution (kernel shown) of mean presynaptic firing rate yielding 

mean postsynaptic membrane depolarization. (B) The meso-scale properties 
that affect the macro-scale (A), i.e., within-region invariant connectivity structure 
between pyramidal cells (PC), excitatory interneurons (EI), and inhibitory 
interneurons (II) subpopulations across cortical layers. (A) The macro-scale 
effective connectivity structure.

2Pearl takes the following example: one actually infers that rains causes the grass 
to be wet (and not the reverse), because it does not rain each time the grass is wet 
(due to other – independent – influences, e.g., the gardener), but the grass is wet 
each time it is raining.
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for deactivations (Shmuel et al., 2006; Sotero and Trujillo-Barreto, 
2007). Furthermore, there is no realistic account of the metabolic 
cascade that relates synaptic activity and neuronal metabolism to 
the vasodilatation kinetics (Riera et al., 2006). This is mainly due 
to the simplistic account of neuronal activity in DCMs for fMRI, 
which does not disambiguate between, e.g., postsynaptic membrane 
depolarization and presynaptic firing rate. Also, DCM for fMRI 
has ignored the important role of glial cells (Takano et al., 2006; 
Iadecola and Nedergaard, 2007). We refer the interested reader to 
Rosa et al. (2010) for further reading on the current debate regard-
ing the neurovascular coupling.

Many DCM validation studies have been conducted (see 
Daunizeau et al., 2010 for a review). Among these, the most far-
reaching experimental assessment of the validity of DCM analyses 
so far was done by David et al. (2008a), who performed concurrent 
fMRI and intracerebral EEG measurements to measure the spread 
of excitation in a genetically rat model of absence epilepsy. In brief, 
this study (i) provides supportive evidence for the validity of DCM 
for inferring network structure from fMRI data and (ii) stresses the 
importance of having a realistic model of neurovascular coupling. 
Clearly, further validation studies will be needed. Further invasive 
in vivo measurements of electrical (e.g., implantable miniaturized 
probes or clinical electrodes (combined with fMRI: Vulliemoz et al., 
2010) and optical (e.g., two-photon laser scanning microscopy) 
signals are likely to be very useful for such an experimental valida-
tion (Riera et al., 2008).

Criticisms have also been raised against the statistical com-
ponent of DCM. Most of these are related to the generic proper-
ties of the VB algorithm, which is essentially an approximation 
scheme. We refer the reader to Daunizeau et al. (2010) for a 
comprehensive critical review of the biophysical, statistical and 
practical aspects of DCM. In addition, it has often been advo-
cated that the computational complexity of DCM prevents any 
analysis of a large-scale brain network containing more than a 
handful of nodes/regions. This is supposed to be due to the fact 
that one may have to compare a number of models that is an 
exponentially increasing function of the number of nodes (curse 
of dimensionality). Also, it has been argued that the proportion 
of explained variance in the measured signals was “low,” even for 
the “best” models within the comparison set (this has sometimes 
been referred to as a form of “underfitting”). However, recent 
developments in the statistical treatment of DCM render these 
claims irrelevant:

- The use of Savage–Dickey ratios within a Bayesian framework 
allows one to derive the model evidence of any model that can 
be derived as a reduction of a full “reference” model (i.e., the 
DCM corresponding to an entirely connected network)5. This 
means that one has to perform only one numerical inversion 

that epileptiform activity emerges from self-excitatory influences 
throughout the network; or (ii) how does the system reconfigures 
itself (short-term plasticity) during the interictal to ictal transition. 
DCM is probably not the right data analysis tool to address more 
loosely defined questions about brain organization, e.g., can we 
get a global picture of the networks active during the fMRI data 
acquisition session?…

Dcm: limitations
Neuroanatomical and neurophysiological studies have been cru-
cial in motivating the basic modeling assumptions that underlie 
DCMs for fMRI and electrophysiological data. However, one may 
question whether all neurobiological facts relevant for explaining 
neuronal population dynamics are represented in existing DCMs. 
This question is of particular importance for DCMs of electro-
physiological data, from the healthy or diseased brain, which have 
much more fine-grained representations of neuronal mechanisms 
than DCM for fMRI.

For example, macro-scale propagation effects, mediated by dis-
tance-dependent lateral connections, have not yet been properly 
accounted for3. These effects can be thought of as wave propagation 
in a complex medium, leading to spatiotemporal pattern formation 
or self-organization. Since the early work by Amari (1977), much 
effort has been invested in developing a neural field theory (e.g., 
see Deco et al., 2008 and references therein); incorporating these 
ideas into the DCM framework may prove fruitful.

Also, it is well known that neurons are subject to internal (e.g., 
thermal) noise, which may still have an impact at the population 
scale (see e.g., Soula and Chow, 2007 for “finite size” effects). 
If this is the case, the neural ensemble dynamics would deviate 
from the mean-field theoretical treatment that underlies most 
current modeling efforts in macro-scale neural dynamics (includ-
ing DCMs).

Perhaps most importantly, there are several neurophysiologi-
cal processes at the micro-scale that have been neglected in exist-
ing DCMs, notably activity-dependent plasticity, i.e., continuously 
modified activity-dependent efficacy of synaptic transmission. This 
includes different forms of short-term plasticity, such as synaptic 
depression/facilitation or spike-timing dependent plasticity, and 
long-term plasticity, such as long-term potentiation (LTP) and 
depression (LTD). An important task for the future will be to 
evaluate whether the above processes are necessary for explaining, 
e.g., the transition from interictal to ictal activity, as observed with 
presently available recording techniques.

Concerning DCM for fMRI, the above phenomena are not 
explicitly modeled4. This may (or may not) be a lesser concern than 
for electrophysiological DCMs, since it is unlikely that these fine-
grained mechanisms are accurately reflected in and can be inferred 
from BOLD data. Instead, physiological details of the neurovascular 
coupling are perhaps more important (see Stephan et al., 2004 
for review). So far, it neglects the potential influence of inhibitory 
activity on the hemodynamic response, which is a likely explanation 

3But see Daunizeau et al. (2009a) for a “standing wave” approximation to local pro-
pagation effects.
4But see David (2007), David et al. (2008b), and Stephan et al. (2008) for phenome-
nological accounts of activity-dependent plasticity effects.

5Savage–Dickey ratios rely upon simple conditional probability calculus to nume-
rically derive the relative evidence of nested models from the divergence between 
prior and posterior distributions of the full model. Loosely speaking: if any hypo-
thesis (e.g., θ = 0) is more probable under the posterior than under the prior, then 
it means that the data affords evidence in favor of the hypothesis. It turns out that 
adding such hypotheses to the full model defines nested models, i.e., models with 
fixed (zero) connections in the network. We refer the interested reader to Friston 
et al. (2011) and references therein.
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•	 Stochastic DCMs: Accounting for stochastic inputs to the net-
work may be of particular importance for studying patholo-
gical resting-state data, whereby coherent activity within the 
network is not driven by experimentally controlled inputs 
to the system (which is usually the case in fMRI studies of 
epilepsy). In addition, provided that the probabilistic inver-
sion schemes are properly extended (cf. Friston et al., 2008; 
Daunizeau et al., 2009b), this could also increase the stability 
of the statistical treatment of DCM (e.g., robustness to “mis-
sing regions”).

•	 Plastic DCMs: Aberrant long- and short-term synaptic plasti-
city may play a key role in the gradual recruitment of regions 
within the epileptogenic network. An attractive goal is to 
extend the current DCM framework and, under due consi-
deration of the limits of statistical inversion, represent diffe-
rent neurobiological mechanisms of synaptic plasticity more 
explicitly, such that their relative importance for explaining 
a patient-specific measurement of ictal and interictal acti-
vity can be disambiguated by model selection. Autonomous 
( activity-dependent) plastic effects may turn out to be parti-
cularly important to explain phase transition phenomena, e.g., 
transition from interictal to ictal activity (and back).

These modeling extensions could also benefit from the develop-
ment of explicitly controlled experimental paradigms, provided that 
they can be undertaken ethically. For example, the use of seizure-
inducing repetitive sensory or electrical stimulation might provide 
a statistically very powerful way of disclosing the properties of the 
epileptogenic network. Also, its interaction with non-pathological 
functional networks might be studied in the context of standard 
neuropsychological tasks. Lastly, trans-cranial magnetic stimula-
tion (TMS) and/or deep-brain stimulation (DBS) could be used 
to causally interfere with parts of the network, providing exqui-
site information about the specific role of brain regions within a 
reciprocally connected network. Such experimental paradigms can 
easily be modeled with DCM, as is routinely done nowadays within 
the context of non-clinical neuropsychological research studies.

Discussion anD conclusion
The problem of characterizing the causal chains that give rise to and 
take place during epileptic events is central to our understanding of 
epilepsy, with vital consequences for the development of improved 
seizure management strategies. Following a period dedicated to the 
identification of regional abnormalities, we envisage that studies of 
epileptic activity and its substrate will focus increasingly on network 
aspects. We also believe that the long-term aim of developing non-
invasive (whole-brain) neuroimaging techniques capable of solving 
the presurgical localization problem, by the very nature of the data 
they provide, goes hand in hand with this vision.

We have seen the progressively more sophisticated use of the 
various forms of data available to the investigator interested in 
studying epileptic networks, from scalp EEG to fMRI and alluded to 
increasingly sophisticated models. We have seen how the characteri-
zation of connectivity based on signal propagation relies on empiri-
cal rules mainly based on measures of association. This approach 
has been most rigorous and informative in relation to EEG sig-
nals measured intracranially. Access to hemodynamic brain signals 

(that of the full model) in order to compare all other possi-
ble reduced models (i.e., networks lacking connections). This 
makes it possible to compare thousands of models in a few 
seconds (Friston et al., 2011).

- Following recent developments in probabilistic identification 
of stochastic systems (Friston et al., 2008; Daunizeau et al., 
2009b), the first steps toward stochastic DCMs are now being 
taken (Daunizeau et al., 2011, submitted; Li et al., 2011). These 
models extend the current deterministic DCM framework by 
accounting for unspecific perturbations to the network dyna-
mics. As a result, the proportion of explained variance drasti-
cally increases. Note that being a Bayesian scheme, stochastic 
DCM does not suffer from overfitting, which is the hallmark 
of frequentist statistical techniques.

Having said this, no increase in the sophistication of the statisti-
cal treatment of DCM can legitimately be said to guarantying the 
validity of the overall data analysis. This is already evident when 
considering the bounded realism of the underlying biophysical 
models (c.f. above comments). But more generally, the validity of 
DCM may well be context-dependent. Thus, the relevance of DCM 
within the context of epileptogenic networks has to be quantita-
tively assessed, by cross-validating the analyses with established 
results in the field. In addition, it may be necessary to extend the 
current DCM approach, in order to account for effects that may a 
priori be playing a key role when investigating the genesis, spread 
and termination of epileptic events using neuroimaging techniques. 
We will come to this in the next section.

Dcm: relevant Potential extensions
Despite being so far the most far-reaching experimental assessment 
of the validity of fMRI DCM analyses so far, the study in David et al. 
(2008a) stressed the importance of having a model of neurovascu-
lar coupling. The concurrent use of two important neuroimaging 
modalities (i.e., EEG and fMRI data) raises the need for an inte-
grated framework, whereby the same model is complementarily 
informed by the characteristic spatial and temporal resolutions of 
both datasets, beyond the use of EEG purely as a temporal event 
marker for fMRI modeling or DCM for example (Vaudano et al., 
2009). This appears to be, despite a number of acknowledged theo-
retical and experimental concerns (see Daunizeau et al., 2009c for 
a review about EEG–fMRI information fusion), a promising future 
avenue for studying whole-brain, millisecond range, spontaneous 
or evoked paroxysmal activity and to characterize the underlying 
networks.

But more importantly, other potential extensions of the 
existing DCM framework can be considered to be relevant for 
studying epilepsy:

•	 Field DCMs: By incorporating elements of neural field theory 
(see Amari, 1977), field DCMs could account for local macro-
scale propagation effects. The basic idea here is to account for 
the distributed nature of brain activity (see Daunizeau et al., 
2009a for a first step toward field DCMs). Among other phe-
nomena, this could be helpful to assess within-region spread 
and boundaries of paroxysmal activity (e.g., inhibitory sur-
rounding effects).
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