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A B S T R A C T   

Background: Relative to full-term infants, very preterm infants exhibit disrupted white matter (WM) maturation 
and problems related to development, including motor, cognitive, social-emotional, and receptive and expressive 
language processing. 
Objective: The present study aimed to determine whether regional abnormalities in the WM microstructure of 
very preterm infants, as defined relative to those of full-term infants at a near-term age, are associated with 
neurodevelopmental outcomes at the age of 18–22 months. 
Methods: We prospectively enrolled 89 very preterm infants (birth weight < 1500 g) and 43 normal full-term 
control infants born between 2016 and 2018. All infants underwent a structural brain magnetic resonance im-
aging scan at near-term age. The diffusion tensor imaging (DTI) metrics of the whole-brain WM tracts were 
extracted based on the neonatal probabilistic WM pathway. The elastic net logistic regression model was used to 
identify altered WM tracts in the preterm brain. We evaluated the associations between the altered WM 
microstructure at near-term age and motor, cognitive, social-emotional, and receptive and expressive language 
developments at 18–22 months of age, as measured using the Bayley Scales of Infant Development, Third Edition. 
Results: We found that the elastic net logistic regression model could classify preterm and full-term neonates with 
an accuracy of 87.9% (corrected p < 0.008) using the DTI metrics in the pathway of interest with a 10% 
threshold level. The fractional anisotropy (FA) values of the body and splenium of the corpus callosum, middle 
cerebellar peduncle, left and right uncinate fasciculi, and right portion of the pathway between the premotor and 
primary motor cortices (premotor-PMC), as well as the mean axial diffusivity (AD) values of the left cingulum, 
were identified as contributive features for classification. Increased adjusted AD values in the left cingulum 
pathway were significantly correlated with language scores after false discovery rate (FDR) correction (r = 0.217, 
p = 0.043). The expressive language and social-emotional composite scores showed a significant positive cor-
relation with the AD values in the left cingulum pathway (r = 0.226 [p = 0.036] and r = 0.31 [p = 0.003], 
respectively) after FDR correction. 
Conclusion: Our approach suggests that the cingulum pathways of very preterm infants differ from those of full- 
term infants and significantly contribute to the prediction of the subsequent development of the language and 
social-emotional domains. This finding could improve our understanding of how specific neural substrates 
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influence neurodevelopment at later ages, and individual risk prediction, thus helping to inform early inter-
vention strategies that address developmental delay.   

1. Introduction 

Remarkable advances in postnatal care and technology have 
improved the survival rates for preterm infants. Previous studies have 
reported variable results while observing the neurodevelopmental tra-
jectories of children born very or extremely preterm from preschool to 
early adulthood (Cheong et al., 2017; Linsell et al., 2018; Twilhaar et al., 
2018). Half of all children born very preterm develop cognitive delay 
and language impairment that detrimentally impact their academic 
performance and social skills (Erdei et al., 2020; Linsell et al., 2015; 
Serenius et al., 2016). A recent study observed that 34–49% of children 
born very preterm showed mild cognitive delay by school age, while 
10–16% developed severe intellectual impairment (Erdei et al., 2020). 
Although the early identification of children with mild cognitive delay is 
challenging at younger ages, early intervention may help to mitigate 
adverse consequences to their mental health and long-term educational 
achievement. 

Notably, one of every three very preterm infants has an elevated risk 
of developing language impairment before the age of 3, indicating that 
very preterm infants are affected by subtle language barriers even before 
their cognitive function fully develops during adolescence (Sansavini 
et al., 2010). The aberrant cognitive development observed in preterm 
infants may be related to the widespread regional differences in diffu-
sion tensor imaging (DTI) parameters between preterm infants and their 
full-term counterparts at near-term age during normal brain maturation 
(Li et al., 2015; Rogers et al., 2018). Further, a recent systematic review 
found that abnormal developmental trajectories of specific white matter 
(WM) pathways correlate with the language scores of school-aged pre-
term children (Stipdonk et al., 2018). Preterm birth induces both im-
mediate and long-lasting changes in language-related pathways and 
networks observable at the neonatal period, adolescence, and adulthood 
(Kwon et al., 2016). The early identification of language deficits medi-
ating cognitive impairment is necessary for the timely execution of 
targeted interventions during periods of neuroplasticity before the age 
of 3 years. 

DTI is a noninvasive tool with a high sensitivity to changes in mye-
lination, and axonal density and diameter, that can be used to investi-
gate the pathophysiology underlying unfavorable neurodevelopmental 
alterations in the preterm brain (Rogers et al., 2016). While previous 
reports of altered WM in preterm children have been obtained using 
univariate analytical methods with high exploratory power – e.g., region 
of interest (ROI)-based analysis (Caldinelli et al., 2017; Dodson et al., 
2017; Murray et al., 2016), tract-based spatial statistics (TBSS) (Coker- 
Bolt et al., 2016; Collins et al., 2019; Hollund et al., 2018; Jurcoane 
et al., 2016; Murner-Lavanchy et al., 2018), and tensor-based 
morphometry (TBM) (Rajagopalan et al., 2017) – these methods may 
be too conservative to detect subtle, spatially distributed differences 
because they require corrections for multiple comparisons to control the 
expected false discovery rate (FDR) (Ecker et al., 2010b). By contrast, a 
multivariate pattern analysis (MVPA) (e.g., support vector machine 
(SVM) and logistic regression models) accounts for interregional corre-
lations and features increased sensitivity to abnormalities in neural 
systems (Ecker et al., 2010b; Li et al., 2014; Little and Beaulieu, 2019; 
Schadl et al., 2018). MVPA uses multivariate features from neuro-
imaging data to classify individual observations into different groups 
and thus reveals the contributing spatial and/or temporal patterns 
associated with the categories (Lao et al., 2004). Further, compared with 
univariate statistical analysis, MVPA has enhanced clinical applicability 
and provides insights regarding individual-level rather than group-level 
inferences (Pereira et al., 2009). 

MVPA has thus garnered increasing interest as an alternative method 

for the analysis of neuroimaging data. In recent years, MVPA has been 
used to predict cognition at the age of 2 years from DTI findings (Girault 
et al., 2019), identify WM impairments in patients with HIV (Tang et al., 
2017), evaluate the predictive value of structural magnetic resonance 
imaging (MRI) in autism spectrum disorders (ASD) (Ecker et al., 2010b), 
and delineate sex-related neuroanatomical differences (Baldinger- 
Melich et al., 2019). Ecker et al. successfully differentiated individuals 
with ASD from healthy controls using linear SVM, despite the method’s 
limitations regarding the resolution of noisy neuroimaging data (Ecker 
et al., 2010b; Liu et al., 2012). Schadl et al. accurately predicted 
cognitive and motor impairments at age 2 from regional WM micro-
structures, from near-term DTI data using logistic regression learning 
approaches and exhaustive feature selection in preterm infants (Schadl 
et al., 2018). Relative to penalized logistic regression models, logistic 
regression models can increase the variance of the prediction more 
easily when changing the training data set, and are more prone to 
overfitting. Hence, l 1 (Tibshirani, 1996) and l 2 (Hoerl and Kennard, 
1970) penalties on regression parameters were introduced in the 
regression model to enforce sparse solutions by shrinking the parameters 
(Tibshirani, 1996; Zou and Hastie, 2005). For example, the ridge 
regression was designed by using the l 2-norm of the model parameters 
to mitigate the multicollinearity of the explanatory variables, which is 
usually considered independent in the regression analysis (Hoerl and 
Kennard, 1970; Kibria, 2003). Similarly, instead of using the quadratic 
part of the coefficients, the least absolute shrinkage and selection 
operator (LASSO) regression model proposes a modified objective 
function for the minimization of the ordinary sum of squares, subject to 
regularized l 1-norm of the regression coefficients (Tibshirani, 1996). 
The use of l 1-regularization forces the model to find coefficients with a 
value of exactly 0 and thus allows for variable selection (Ryali et al., 
2010; Vounou et al., 2010). However, while these regression penalty 
techniques are powerful, they are limited by featuring unstable solution 
paths for LASSO and high sensitivity to atypical samples for the ridge 
model (Yang and Zou, 2013). On the other hand, Zou and Hastie et al. 
established an elastic net regression model by introducing a combina-
tion of l 1- and l 2-norm penalization, and showed that it can overcome 
the restriction of the LASSO and ridge (Zou and Hastie, 2005); the elastic 
net logistic regression model significantly outperforms ordinary least- 
square logistic regression in the classification of cancer with high- 
dimensional genetic data (Algamal and Lee, 2015), identification of 
biomarkers for mild cognitive impairment and Alzheimer’s disease 
(Shen et al., 2011), and classification of multilabel image (Li et al., 
2016). 

Little is known about DTI biomarkers in the preterm brain that are 
predictive of future neurodevelopmental outcomes and emergent lan-
guage abilities. Furthermore, despite the significance of the critical 
period of brain development around near-term age, our understanding 
of the role of atypical brain development at this age in determining 
subsequent neurodevelopmental outcomes remains incomplete. Stip-
donk et al. implicated several microstructural brain areas – not just a 
single region – in the non-normative development of language skills in 
school-aged preterm children (Stipdonk et al., 2018). Recent evidence 
suggests that the aberrant development of WM substrates in very pre-
term infants preceded the manifestation of cognitive delay and language 
deficits; however, little is known about DTI biomarker using the MVPA 
from a global WM component to optimize predictive ability as early as 
near-term age. 

We hypothesized that the global WM pattern at birth in preterm 
individuals would inform the prediction of emergent neuro-
developmental outcomes at the age of 2 years. We further evaluated the 
usefulness of neuroimaging biomarkers in early brain organization to 
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predict subsequent neurodevelopmental outcomes beyond 2 years of 
age. We applied the elastic net logistic regression model to the DTI 
metrics of fractional anisotropy (FA), mean diffusivity (MD), axial 
diffusivity (AD), and radial diffusivity (RD) to classify the WM tracts in 
preterm and full-term infants. We then selected the most contributive 
features based on the parameters of the classification model and defined 
them as altered WM microstructures. Finally, we performed a partial 
correlation analysis to investigate the relationship between the identi-
fied regional abnormalities in the WM microstructures and subsequent 
neurodevelopmental outcomes at 18–22 months in very preterm 
children. 

2. Materials and methods 

2.1. Subjects and clinical assessment 

The present prospective, longitudinal study analyzed data obtained 
from a cohort of very preterm infants with birth weights of <1.5 kg. All 
infants were recruited from the Level 3 Neonatal Intensive Care Unit of 
Hanyang University Hospital between February 2016 and October 2018 
and attended follow-up at the same institution. The following inclusion 
criteria were used for enrollment: (1) born before 32 weeks of gestation 
with a birth weight of <1.5 kg; (2) available MRI-DTI data obtained at a 
near-term age without focal abnormalities (postmenstrual age [PMA], 
37–41 weeks); and (3) no evidence of intra-ventricular hemorrhage 
(IVH) or brain injury, as diagnosed with cranial ultrasonography or MRI. 
Infants with chromosomal abnormalities, proven congenital infections, 
congenital anomalies, or intrauterine growth retardation were excluded. 

Twenty-nine infants were excluded from the total cohort of 118 
eligible infants: one was diagnosed with 9q34 duplication syndrome 
after enrollment, one failed to obtain parental consent, one transferred 
to another hospital before reaching near-term age, five died during 
neonatal intensive care, six showed motion artifacts on MRI data, and 15 
exhibited brain abnormalities indicative of IVH, post-hemorrhagic hy-
drocephalus, or cystic periventricular leukomalacia. Hence, 89 very 
preterm infants were included in the study. The following prenatal and 
neonatal data were prospectively recorded: gestational age (GA), birth 
weight, PMA at imaging, sex, and maternal age and education. We also 
prospectively enrolled 43 full-term singleton control infants (38–42 
weeks of gestation) with normal MRI findings from the Hanyang In-
clusive Clinic for Developmental Disorders, Hanyang University College 
of Medicine. Exclusion criteria for full-term infants were chromosomal 
abnormalities, congenital infections, acidosis on arterial blood gas 
assessed during the first hour of life, and evidence of seizure events in 
the course of neonatal care. The parents of all the infants provided 
informed consent for their children’s participation in the study prior to 
its commencement. The institutional review board (IRB No. 2017-04- 
004) of Hanyang University Hospital approved our study protocol and 
scanning procedures. This study was conducted in accordance with the 
principles of the Declaration of Helsinki. 

2.2. Neurodevelopmental assessment 

The neurodevelopment of preterm infants and full-term controls was 
prospectively assessed with the Bayley Scales of Infant and Toddler 
Development, Third Edition (BSID-III) at 18–22 months of corrected age 
adjusted for prematurity (i.e., the age at which the preterm infant would 
have been born on his or her due date) at the Hanyang Inclusive Clinic 
for Developmental Disorders, Hanyang University College of Medicine 
(Bayley, 2009). Routine clinical examinations and structured neuro-
developmental assessments were completed by an experienced devel-
opmental pediatrician, a physiotherapist, and a neonatologist at 18–22 
months of corrected age, according to the follow-up program. Outcome 
measures included cognition, language, motor, and social-emotional 
composite scores. Language scores included receptive and expressive 
sub-scaled scores. Assessments of the infants’ cognitive, language, and 

motor domains were performed with the children, while those of the 
social-emotional domains were informed by the primary caregiver’s 
responses to a questionnaire in the BSID-III. The normative mean 
(standard deviation [SD]) for each outcome score was 100, and scores of 
<85 (1 SD below average) were considered to indicate neuro-
developmental delay. Composite or scaled scores of the BSID-III were 
based on the child’s adjusted age at the time of evaluation. Children 
were classified as having developmental delay if their BSID-III com-
posite scores fell <1 SD below the mean BSID-III cognitive, language, 
motor, and social-emotional scale scores at 18–22 months of adjusted 
age. 

2.3. Magnetic resonance imaging 

MRI brain scans were obtained during natural sleep at near-term age 
between the PMA of 35 and 42 weeks in preterm infants and within one 
month of birth (PMA, 37–42 weeks) in full-term control infants using a 
3.0-T MRI scanner (Philips real-time compact magnet 3.0-T MRI system; 
Achieva 3.0 T X-Series) with a 16-channel SENSE head coil. To ensure 
that the neonates were sleeping during the scan, they were fed before-
hand and wrapped in a blanket. Subjects were placed on cushions placed 
on top of the radiofrequency coil. Oxygen saturation (through pulse 
oximetry), respiratory rate, and heart rate were monitored. A trained 
pediatrician attended the MRI examinations. T1-weighted images were 
acquired with Turbo Field Echo sequences and the following parame-
ters: TR = 8.1 ms, TE = 3.7 ms, field of view (FoV) = 180 × 180 mm, 
spatial resolution = 0.6 × 0.6 × 1 mm, and slice thickness = 1.0 mm. 
Structural T2-weighted images were obtained to exclude WM abnor-
malities. The Turbo Spin Echo T2 scan imaging parameters were as 
follows: TR = 4800 ms, TE = 90 ms, FoV = 180 × 180 mm, spatial 
resolution = 0.5 × 0.5 × 4 mm, and slice thickness = 4.0 mm. Radio-
logical evaluation was performed by an experienced pediatric neurora-
diologist who was blinded to all other data. DTI was acquired using a 
single-shot spin-echo planar sequence with a SENSE factor of 2 and an 
echo planar imaging factor of 51 (TR = 5500 ms, TE = 89 ms, FoV = 150 
× 150 mm, resolution = 2 × 2 × 2 mm, slice thickness = 2.0 mm). The 
slice orientation was axial, and parallel to the anterior-posterior 
commissure line. A total of 40–50 slices covered the entire hemisphere 
and brainstem. Diffusivities were measured along 15 directions using an 
electrostatic gradient model (b = 800). 

2.4. DTI preprocessing 

Diffusion-weighted images were processed using FMRIB’s Software 
Library (http://www.fmrib.ox.ac.uk/fsl). The skull and non-brain tissue 
were removed from the non-diffusion-weighted volume (b0 volume) 
using the Brain Extraction Tool. The MR susceptibility-induced field, 
eddy current distortions, and motion artifacts were corrected with 
outlier replacement using the eddy tool. The bias field estimation was 
performed for b0 volume to avoid low-frequency intensity in-
homogeneity and its influence on diffusion data. The estimated bias field 
was applied to all diffusion-weighted volumes using Advanced 
Normalization Tools (ANTs) (Tustison et al., 2010). Subsequently, the 
diffusion tensor model was used for calculations in each voxel, using a 
simple least-square fit of the model. FA, MD, AD, and RD were also 
calculated from the tensor eigenvalues, which describe the three major 
diffusion directions. Finally, the John Hopkins University (JHU) 
neonatal probabilistic WM pathway atlas was aligned to the FA image of 
the native diffusion space using a nonlinear symmetric normalization 
algorithm in ANTs to calculate the average FA, MD, AD, and RD values 
for each pathway (Avants et al., 2008; Oishi et al., 2011). The atlas 
provided a total of 27 major fibers on the population-averaged neonatal 
template. With no prior knowledge, all regions were used for the 
calculation of DTI indices, except for corpus callosum (CC), which 
overlapped with segmented regions of itself (the genu of the CC, the 
body of the CC, and the splenium of the CC). The DTI measures of each 
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pathway were adjusted for PMA at scan and maternal education using 
multiple linear regression models. The atlas threshold was set at a range 
of levels (10%, 30%, 50%, and 70%) prior to aligning the FA image. 
Additionally, visual inspection of the registration quality was performed 
for each individual FA image to validate the analysis (Supplementary 
Fig. 1 shows that the aligned pathways were correctly overlaid onto the 
representative FA map for each group). 

2.5. Framework for multivariate pattern analysis in preterm and full-term 
infants 

The framework of the analysis in this study consisted of group clas-
sification, identification of the most contributive features, and correla-
tion analysis (Fig. 1). We used the elastic net logistic regression model 
with 10-fold cross-validation to classify preterm and full-term in-
dividuals. We calculated the classification accuracy, sensitivity, speci-
ficity, f1 score, and positive predicted value, and subsequently identified 
the highly contributive pathways and DTI metrics. We also showed the 
potential power of the elastic net regression classification model in 
comparison with other models such as LASSO penalized logistic 
regression, linear SVM, and random forest (RF). Finally, we examined 
partial correlations between the DTI metrics of the specified pathways 
and neurodevelopmental outcomes in the subjects of each group. 

2.6. Group-classification models 

We used the elastic net logistic regression model to classify subjects 
using the DTI metrics of all WM pathways. The elastic net logistic 
regression model is capable of selecting regressors with sparsity pa-
rameters, because highly correlated and redundant features can result in 
overfitting and can increase the variance of the classification model. The 
model equation is as follows: 

min
w,w0

(1 − ρ)(wT w/2) + ρ‖w‖1 +C
∑n

i=1
log(exp

(
− yi(Xi

T w + w0)
)
+ 1)

(1)  

where y is a vector of the size n × 1 containing the group label (n = 132; 
sample was labeled “1′′ for preterm and “-1” for full-term) of the sub-
jects, X is a matrix of the size n × 104 containing the DTI metrics 
calculated from the 26 WM pathway regions, C is the inverse of the 
regularization strength, and ρ controls the balance of the l 1 and l 2 
regularizations. The 10-fold cross-validation and grid search strategy 
was performed to choose the optimal regularization parameters C and ρ 
(Casanova et al., 2011; Stolicyn et al., 2020). The mean misclassification 
rate for each pair of C and ρ was calculated in the training set over a 
range of different values between 0 and 1 with increments of 0.01 (C, 
total of 100 values) and 0.05 (ρ, total of 20 values). The “optimal” 
hyperparameter pair with the lowest mean misclassification rate was 
then chosen for each fold. Similarly, the 10-fold cross-validation was 
performed and grid-search framework was employed to choose the 
optimal regularization parameter C (ρ was set to 1 in Eq. (1)) when using 
the LASSO logistic regression model. 

An SVM with a linear kernel was also used to perform group classi-
fication. The optimal discriminative hyperplane was established in the 
feature space using the nearest samples (support vectors) in the model. 
In the soft-margin SVM model, the condition for the solution of the 
hyperplane could be relaxed by introducing a misclassification error. 
Parameter C controls the tradeoff between margin optimization and the 
allowance for misclassifications. Similarly, the 10-fold cross-validation 
and grid search was performed over a range of different C values to 
determine an optimal parameter for each training set. RF is a bootstrap 
aggregation (bagging) classifier consisting of multiple independent de-
cision trees. Typically, each tree is trained using random feature selec-
tion, and the final output for a sample is obtained by conducting 
majority voting. The optimal number of trees that minimize the out-of- 

Fig. 1. Analysis flowchart. (STEP1) MR susceptibility-induced field, eddy current distortions, and motion artifacts of the individual diffusion weighted images were 
corrected, and diffusion tensor imaging metrics (FA, MD, AD, and RD map) were calculated by using the voxel-wise diffusion tensor modeling. (STEP2) After 
thresholding the John Hopkins University probabilistic white-matter pathway atlas, features were extracted by calculating the mean DTI metrics of the WM pathway 
regions. Using the elastic net logistic regression model, individuals were classified into either the preterm or full-term group. The most contributive features were 
then identified using parameters of the trained elastic net logistic regression model. (STEP3) Finally, partial correlation analysis was performed between the selected 
features and neurodevelopmental domains after removing the covariate effects with the multiple linear regression model. MR, magnetic resonance; FA, fractional 
anisotropy; MD, mean diffusivity; AD, axial diffusivity; RD, radial diffusivity; DTI, diffusion tensor imagin; WM, white matter; 
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bag error of the training dataset was chosen for each fold. Finally, the 
rate for random feature selection was empirically set to one-third of the 
number of features. All classifications were performed using the scikit- 
learn package version 0.22.1 (Pedregosa et al., 2011). 

2.7. Model evaluation and identification of the most contributing features 

Permutation tests were conducted to verify the statistical signifi-
cance of the classifications (Nichols and Holmes, 2002; Ojala and Gar-
riga, 2010). We randomly permuted the group labels 500 times, and 
performed the 10-fold cross-validation based on the permutated samples 
to calculate the accuracy of each permutation. Defined at a confidence 
level of 0.05, model significance was calculated by dividing the number 
of times the model achieved a higher accuracy than that of the true la-
bels plus one by 501 (i.e., the number of all tests including the original 
one). All p-values were FDR corrected for multiple comparisons (four 
comparisons, effective p < 0.0125). 

Consistent with the methods of previous studies (Ecker et al., 2010a, 
2010b; Mourao-Miranda et al., 2005), we calculated the distance from 
the baseline for the odds ratios of the 104 features and selected the 
features with absolute values of ≥30% of the maximum and minimum 
cases. Similarly, 30% of the features with the highest weight/impor-
tance were selected for SVM and RF. 

2.8. Correlation between DTI measures and clinical neurodevelopmental 
outcomes 

Within-group partial correlation analysis was performed to examine 
the association between the selected features and neurodevelopmental 
outcomes. For each DTI metric and neurodevelopmental outcome, re-
sidual components were calculated for the PMA at scan and maternal 
education effects, using the multiple linear regression model prior to 
correlation analysis. Pearson’s correlation coefficient was calculated 
using the statsmodels package version 0.17.1 (Seabold and Perktold, 
2010). All p-values were FDR-corrected for multiple comparisons. 

3. Results 

3.1. Clinical characteristics 

The present study recruited 89 preterm and 43 full-term infants 
(Table 1 and Table 2). Of the 89 preterm infants, 88 attended follow-ups 
at 18–22 months: one was excluded due to lack of follow-up. Of the 43 
full-term infants, 38 attended follow-ups at 18–22 months: three with-
drew from the study, and we were unable to contact the parents of two. 
Of the 126 infants who completed the BSID-III, there were fewer males 
than females (54:72, 57.1%). There were no significant differences be-
tween males and females in neurodevelopmental outcomes, including 
cognitive (97.41 ± 12.39 vs 98.83 ± 12.25, p = 0.521), language (91.26 
± 12.91 vs 92.11 ± 13.54, p = 0.722), motor (99.83 ± 17.41 vs 99.60 ±
15.41, p = 0.936), and social-emotional (102.78 ± 17.42 vs 100.28 ±
16.11, p = 0.407) outcomes. Among the preterm infants, males had 
lower cognitive (95.55 ± 13.36 vs. 98.75 ± 12.24, p = 0.146), language 
(86.33 ± 12.39 vs 91.25 ± 13.78, p = 0.096), motor (94.15 ± 17.64 vs 

97.69 ± 15.51, p = 0.328), and social-emotional scores (96.52 ± 16.12 
vs 99.18 ± 16.85, p = 0.467); however, these differences were nonsig-
nificant. While the preterm group scored lower on language assessments 
than the control group, there were no meaningful differences between 
the two groups (97.17 ± 12.76 vs. 100.66 ± 10.85, p = 0.144). Further, 
while the receptive scaled score (8.74 ± 2.44 vs. 9.42 ± 1.61, p = 0.117) 
in the language domain was comparable between the groups, the 
expressive scaled score (8.20 ± 2.53 vs. 9.89 ± 1.54, p < 0.001) in the 
same domain was remarkably lower in very preterm infants. Preterm 
infants had significantly lower mean composite scores in the motor 
(96.36 ± 16.33 vs. 107.42 ± 13.25, p = 0.001) and social-emotional 
(98.18 ± 16.54 vs. 108.68 ± 14.69, p = 0.001) domains than the full- 
term infants. The incidence of infants with language (40.9% vs. 
13.2%, p = 0.002), motor (17% vs. 0%, p = 0.005), and social-emotional 
(15.9% vs. 0%, p = 0.010) delays was significantly higher among the 
very preterm infants than among the full-term infants. 

3.2. Classification performance 

Table 3 shows the classification performance metrics of the elastic 
net logistic regression model. Using the pathway atlas with a 10% 
threshold level, we found that the elastic net logistic regression 
demonstrated the highest and most significant accuracy (87.9%, p <
0.002). The sensitivity, specificity, f1 score, and positive predicted value 
of this method were 92.2%, 79.5%, 90.58%, and 90.7%, respectively. 
The performance of the classification model using adjusted DTI metrics 
in the pathway ROI with three different threshold levels (30%, 50%, and 
70%), while significant, was suboptimal. Setting the threshold of the 
pathway atlas to 30%, 50%, and 70% yielded the following metrics of 
performance for the elastic net logistic regression model: A threshold of 
30% yielded an accuracy of 84.9%, sensitivity of 91%, specificity of 
72.5%, f1 score of 88.76%, and positive predicted value of 87.1%; 50% 
yielded an accuracy of 80.4%, sensitivity of 90%, specificity of 60.5%, f1 
score of 86.2%, and positive predicted value of 82.6%; 70% yielded an 
accuracy of 84.2%, sensitivity of 93.3%, specificity of 66%, f1 score of 
88.8%, and positive predicted value of 85.5%. The moderate and sub-
optimal classification performance metrics of the other models are 
presented in Supplementary Table 1. The pathway atlas threshold level 
was finally set to 10%, as it achieved the best classification performance. 

3.3. Most contributive features 

Fig. 2 shows the odds ratio of the features used in the elastic net 
logistic regression model. The optimum values of the odds ratio of the 
104 features were 5.52 and 0.28. The feature was selected when the 

Table 1 
Characteristics of preterm and term infants.  

Variables Preterm (n = 89) Term (n = 43) P-value 

Infant characteristics 
Gestational age, wk 28.65 ± 2.63 38.21 ± 1.20  <0.001 
Birth weight, g 1157.20 ± 262.39 3103.42 ± 503.77  <0.001 
Age at MRI scan, wk 37.67 ± 1.94 39.91 ± 1.52  <0.001 
Male 33 (37.1) 22 (51.2)  0.136 
Maternal age, years 34.42 ± 4.10 33.36 ± 3.58  0.153 
Maternal education, years 15.69 ± 1.59 15.77 ± 1.52  0.779 

Data are presented as the mean ± SD or number (%). 

Table 2 
Neurodevelopmental follow-up of preterm and term infants at 18–22 month of 
age.  

Variables Preterm (n =
89) 

Term (n = 43) P-value 

Neurodevelopmental follow-up at 18–22 month of age 
BSID III cognitive ability 97.17 ± 12.76 100.66 ± 10.85  0.144 
Cognitive delay, n (%) 9/88 (10.2) 1/38 (2.6)  0.280 
BSID III language ability 89.41 ± 13.42 97.16 ± 11.15  <0.001 
Language delay, n (%) 36/88 (40.9) 5/38 (13.2)  0.002 
Receptive scaled score 8.74 ± 2.44 9.42 ± 1.61  0.117 
Expressive scaled score 8.20 ± 2.53 9.89 ± 1.54  <0.001 
BSID III motor ability 96.36 ± 16.33 107.42 ± 13.25  0.001 
Motor delay, n (%) 15/88 (17) 0 (0)  0.005 
BSID III social-emotional 

ability 
98.18 ± 16.54 108.68 ± 14.69 (21/ 

33)  
0.001 

Social-emotional delay, n 
(%) 

14/88 (15.9) 0 (0)  0.010 

Data are presented as the mean ± SD or number (%). Delay defined as composite 
scores of < 85. Abbreviations: BSID, Bayley Scales of infant and Toddler 
Development. 
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odds ratio exceeded the given threshold of >2.36 or <0.78 (features 
from the baseline rather than 30% of the differences between the opti-
mum values of odds ratio and the value of 1). Selected features consisted 
of the mean FA values of the body of the CC (odds ratio = 0.71), sple-
nium of the CC (odds ratio = 0.28), middle cerebellar peduncle (MCP; 
odds ratio = 5.52), left and right uncinate fasciculi (odds ratio = 0.43, 
and 0.66, respectively), and right premotor-PMC (odds ratio = 0.61), as 
well as the mean AD value of the left cingulum (odds ratio = 0.45). The 
identified WM pathways were overlaid onto the representative FA map 
for each group (Fig. 3). Similar patterns were observed when other 
classification methods were used (Supplementary Fig. 2 and Table 4). 

3.4. Correlations analysis 

Pearson’s correlation coefficients between the adjusted DTI metrics 

and neurodevelopmental outcomes were calculated for each selected 
feature (Table 5). Increased adjusted AD values in the left cingulum 
pathway were significantly correlated with the language scores after 
FDR correction (r = 0.217, p = 0.043). The expressive language scores 
showed a significant positive correlation with AD values (r = 0.226, p =
0.036). Increased adjusted AD values in the left cingulum correlated 
significantly with the social-emotional composite scores after FDR 
correction (r = 0.31, p = 0.003). Scatterplots with correlation co-
efficients and corresponding significances are presented in Fig. 4. Note 
that findings were consistent across a range of threshold levels for the 
pathway atlas, although there was no significant correlation between 
the adjusted AD values in the left cingulum and social-emotional com-
posite scores at the 70% threshold level. 

4. Discussion 

The elastic net logistic regression model based on the neonatal 
probabilistic WM pathway revealed that preterm neonates feature an 
altered WM microstructure that correlates with language and social- 
emotional BSID-III scores. Our results thus show that a disrupted WM 
microstructure during preterm birth contributes to future language 
impairment and social-emotional problems in preterm children and 
confirms the potential value of using early neuroimaging markers to 
predict neurodevelopmental outcomes at 18–22 months of corrected 
age. 

4.1. Importance of DTI analysis in neonates 

The WM of preterm neonates during critical periods of development 
is more likely to undergo altered maturation and have impaired growth, 
than that of full-term neonates. Because the brain experiences rapid 
growth and elaboration of microstructural development during the 
neonatal period, variable myelination rates across the brain complicate 
feature extraction and classification in the early prediction of neuro-
developmental disorders before the onset of core symptoms (Partridge 
et al., 2004; Plaisier et al., 2014; Yoshida et al., 2013). WM maturation 

Table 3 
Classification performance of the elastic net logistic regression. Classification results under a range of thresholds that binarize the John Hopkins University proba-
bilistic white-matter pathway atlas prior to feature extraction, as well as the statistically significant findings from the permutation test.  

Atlas threshold level Accuracy Sensitivity Specificity F1 score PPV Corrected P 

10%  87.9  92.2  79.5  90.58  90.7 < 0.002 
30%  84.9  91.0  72.5  88.76  87.1 < 0.002 
50%  80.4  90.0  60.5  86.2  82.6 < 0.002 
70%  84.2  93.3  66.0  88.8  85.5 < 0.002 

Data are presented as % values. Abbreviations: PPV, Positive Predicted Value. 

Fig. 2. Odds ratios of the elastic net logistic regression model. Dashed lines 
indicate the criterion that determined the most contributive features of the 
model. Abbreviations: FA, fractional anisotropy; MD, mean diffusivity; AD, 
axial diffusivity; RD, radial diffusivity. 

Fig. 3. Most contributive pathways identified using the elastic net logistic regression model. Most contributive features were identified and defined as alterations in 
the diffusion tensor imaging metrics of the specified white-matter pathways. Representative cases are illustrated for each group. Abbreviations: CG, cingulum; UNC, 
uncinate fasciculus; BCC, body of the corpus callosum; SCC, splenium of the corpus callosum; Pre-pmc, tract connecting the premotor and primary motor cortices; 
MCP, middle cerebellar peduncle. 
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typically follows a posterior-to-anterior and central-to-peripheral in-
crease in FA and decrease in MD with age (Geng et al., 2012; Rose et al., 
2014). A normal trajectory of the early maturation of WM bundles in-
cludes a rapid increase in FA and decrease in MD according to various 
temporal and spatial patterns in the first 3 months (Dubois et al., 2008; 
Gao et al., 2009; Yoshida et al., 2013). In preterm infants, low FA and 
high MD and RD values indicate microstructural aberrations, such as 
low axonal fiber density and delayed myelination (Young et al., 2018). 
While WM AD generally increases with brain maturation and develop-
ment throughout the neonatal period, abnormal WM myelination is 

characterized by variations in this pattern (Alexander et al., 2011). 
The extraction of neuroimaging biomarkers from presymptomatic 

neonatal DTI data is fundamental to the early prediction of neuro-
developmental delay in the preterm population. Deficits in language 
processing are a major problem for preterm children, and functional and 
microstructural DTI studies have shown that prematurely born children 
and adolescents feature developmental alterations and the loss of con-
nectivity networks, including those underlying language abilities (Myers 
et al., 2010; Rowlands et al., 2016). DTI provides valuable insights into 
the in vivo quantification of the spatiotemporal pattern of WM matu-
ration and subtle anatomical abnormalities in pediatric populations 
(Pecheva et al., 2017). The region-based WM atlas was used to predict 
gait impairment in preterm-born toddlers with very low birth weight 
(Cahill-Rowley et al., 2019), investigate WM maturation in very preterm 
infants with and without retinopathy of prematurity (Ahn et al., 2019), 
and identify trajectories of early WM development in children born very 
preterm (Young et al., 2017). However, the pathway atlas is more 
suitable for the quantification of the neurodevelopmental status of the 
WM related to neuronal functions rather than the volumetric region- 
based atlas (Akazawa et al., 2016). This study used the JHU probabi-
listic WM pathway maps to investigate WM alterations in preterm in-
dividuals. Indeed, the presently reported statistically significant 
correlations between functional outcomes elucidate the consequences of 
preterm birth, and the utility of a probabilistic map of neonatal func-
tional pathways in the early identification of delayed brain 
development. 

4.2. Prematurity-related changes in WM pathway and their clinical 
implications 

The present study reveals that very preterm infants at term- 
equivalent ages differ significantly from full-term infants in the WM 
pathways of the CC, MCP, uncinate fasciculi, premotor-PMC, and 
cingulum, suggesting widespread microstructural alterations even in the 
absence of detectable brain abnormalities on MRI (Lee et al., 2019). The 
regional microstructural vulnerability of the commissural tracts, 
including the CC; the projection tracts, including the MCP and premotor- 
PMC; and the limbic tracts, including the uncinate fasciculi and 
cingulum; may reflect differences in the rates and outcomes of matu-
ration that contribute to selective vulnerability to WM injury during 
major subsequent changes in fetal WM (Lee et al., 2019; Rose et al., 
2014). The CC and MCP appeared be most significantly and consistently 
affected in terms of impaired neurodevelopment, because their rapid 
and complex maturation during the neonatal period renders them highly 
sensitive to early developmental insults. Hence, despite the lack of 
apparent brain injury in preterm infants, their CC and cerebella feature 
abnormal growth trajectories relative to those in full-term infants in 
both adolescence and adulthood (Kontis et al., 2009; Parker et al., 
2008). Northam et al. suggested that interhemispheric WM connections 
in the uncinate fasciculus, CC, and anterior commissure explain up to 
57% of the variation in language ability among preterm-born 

Table 4 
Features identified with other classification methods. The most contributive 
features were identified with LASSO logistic regression, linear kernel SVM, and 
random forest classification.  

Pathway Elastic net 
LR 

LASSO 
LR 

Linear SVM RF 

GCC     
BCC FA  FA  
SCC FA FA FA FA, MD, RD 
Cg_left AD AD FA, MD, AD, 

RD  
Cg_right   RD FA 
CST_left   FA FA 
CST_right    AD 
IFO_left   FA  
IFO_right   FA, AD  
ILF_left     
ILF_right   FA, MD, AD, 

RD  
MCP FA FA FA FA, MD, AD, 

RD 
OR_left   AD MD, RD 
OR_right   FA,AD AD 
UNC_left FA FA FA MD, AD, RD 
UNC_right FA FA FA MD, AD, RD 
PV-V4_left     
PV-V4_right    AD 
PV-MT_left    MD, AD, RD 
PV-MT_right    MD, AD, RD 
Pre-primaryMC_left     
Pre- 

primaryMC_right 
FA FA FA  

Thal-PSC_left     
Thal-PSC_right   FA  
AR_left   FA  
AR_right   FA, MD, RD FA 

Abbreviations: FA, fractional anisotropy; MD, mean diffusivity; AD, axial 
diffusivity; RD, radial diffusivity; GCC, genu of the corpus callosum; BCC, body 
of the corpus callosum; SCC, splenium of the corpus callosum; CG, cingulum; 
CST, corticospinal tract; IFO, inferior fronto-occipital fasciculus; ILF, inferior 
longitudinal fasciculus; MCP, middle cerebellar peduncle; OR, optic radiation; 
UNC, uncinate fasciculus; PV-V4, tract connecting v1 + v2 and v4; PV-MT, tract 
connecting the v1 + v2 and MT; Pre-primaryMC, tract connecting the premotor 
and primary motor cortices; Thal-PSC, Tract connecting the sensory thalamus 
and primary sensory cortex; AR, acoustic radiation. 

Table 5 
Pearson correlation coefficients of the partial correlation analysis using the most contributive features.   

Language Expressive language Receptive language Social-emotional Motor Cognition Mean odds ratio 

FA of BCC − 0.04  0.03  0.01 − 0.02 − 0.11 − 0.1  0.71 
FA of SCC 0.08  0.08  0.02 − 0.01 0.03 0  0.28 
FA of MCP 0.15  0.22  0.14 0.03 0.04 0.15  5.52 
FA of left UNC − 0.01  0.09  − 0.02 − 0.11 − 0.11 − 0.14  0.44 
FA of right UNC 0.07  0.12  0.05 0.05 − 0.12 − 0.11  0.66 
FA of right Pre-PMC − 0.09  − 0.04  − 0.04 − 0.06 − 0.18 − 0.15  0.61 
AD of left CG 0.22a  0.23a  0.13 0.31b 0.21 0.14  0.45 

Abbreviations: FA, fractional anisotropy; AD, axial diffusivity; BCC, body of the corpus callosum; SCC, splenium of the corpus callosum; MCP, middle cerebellar 
peduncle; UNC, uncinate fasciculus; Pre-PMC, tract connecting the premotor and primary motor cortices; CG, cingulum. 

a FDR corrected p < 0.05. 
b FDR corrected p < 0.01. 
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adolescents (Northam et al., 2012). Consistent with the findings of the 
current study, functional impairments with respect to social-emotional 
disorders have been reported in preterm-born children. Aberrations in 
the cingulum and uncinate microstructures presenting as early as at 
term-equivalent age may account for these findings (Rogers et al., 2018). 

Our study identified an association between altered cingulum 
microstructure in the preterm brain at near-term age and neuro-
developmental outcomes at 18–22 months of age. Impaired performance 
in language and social-emotional domains may involve the underlying 
structure of the WM pathways that connect key intra-hemispheric tracts, 
such as the cingulum. A functional MRI study found that cerebral re-
gions associated with language processing were disrupted at near-term 
age in preterm infants who showed less interhemispheric connectivity 
and lateralization in the right hemisphere relative to full-term infants 
(Kwon et al., 2015). Although an association between the superior 
longitudinal fasciculus (SLF) and arcuate fasciculus (AF) WM tracts and 

language has been established, the roles of other WM tracts, including 
the uncinate and inferior longitudinal fibers, CC, and cingulum, have 
been identified in association with connections from the frontal to 
temporal lobes (Northam et al., 2012; Stipdonk et al., 2018). From term- 
equivalent infancy to adulthood, individuals born very preterm have 
been shown to exhibit smaller cingula and interconnected fornixes 
relative to full-term-born individuals, and a significant association has 
been reported between the organization of verbal information and 
cingulum volume (Ball et al., 2012; Caldinelli et al., 2017). Cui et al. 
found that lower FA of the microstructural architecture of the cingulum 
was associated with lower cognitive and language scores measured 
using the BSID-III at 12 months of age in preterm infants (Cui et al., 
2017). They implicated the connections between the medial prefrontal 
and posterior cingulate cortices, as identified with resting-state fMRI, in 
the association. Preterm birth may predispose children to early onset 
social-emotional and behavioral problems induced by changes in 

Fig. 4. Results of partial correlation. Scatter plots showing the correlation results. Each row in the figure represents a range of threshold levels defined in the 
binarization of the John Hopkins University (JHU) neonatal probabilistic WM pathway atlas. The columns presented the clinical developmental scores that 
significantly correlated with the AD values of the left cingulum. The AD values of the left cingulum and the clinical developmental scores were adjusted for post-
menstrual age at scan, gestational age, and maternal education using multiple linear regression models to remove the effects of covariates. Red and blue dots indicate 
the very preterm individuals, and dashed lines (the linear regression results) indicate significant correlations. Abbreviations: SE Composite, social-emotional 
composite score; AD, axial diffusivity. 
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blunted cortisol reactivity and brain connectivity due to perinatal stress 
experienced in the neonatal intensive care unit (Provenzi et al., 2016; 
Scheinost et al., 2016). Notably, the cingulum was most significantly 
associated with behavioral impairments due to a heightened sensitivity 
to early developmental insults because of its rapid and complex matu-
ration in infancy and childhood (Weinstein et al., 2011). We observed 
that the language abilities and social-emotional competence at 2 years of 
age were associated with higher AD in the left cingulum. Functional MRI 
data in another study showed that FA in the cingulum was inversely 
correlated with cognitive abilities, and RD and AD were positively 
associated with neurodevelopmental outcomes at 2 years of corrected 
age (Cui et al., 2017). In contrast, Rogers et al. scanned resting state 
functional connectivity in 57 very preterm infants and identified an 
inverse relationship between AD values from the prefrontal cortex to the 
cingulum and social-emotional outcomes at the age of 2 years in preterm 
children (Rogers et al., 2017). Furthermore, expanding upon their pre-
vious work, the investigators found that FA in the cingulum was also 
inversely related to social-emotional competence (Rogers et al., 2016). A 
few studies have investigated the relationship between aberrant and 
widely variable DTI measures of the WM tracts of fronto-limbic regions, 
including the cingulum, and the development of children with social- 
emotional impairment, which is a core symptom of ASD, between the 
ages of 2 and 4 years (Solso et al., 2016; Weinstein et al., 2011); their 
findings suggest that an excess of cortical neurons and early overgrowth 
are followed by arrested neuronal growth as well as arrested axonal and 
synaptic development (Solso et al., 2016; Weinstein et al., 2011). 

4.3. Elastic net feature selection using DTI 

Previous quantitative measurements obtained from the DTI data 
recorded in term- and preterm-born infants at near-term (Pannek et al., 
2018), preschool (Young et al., 2018), and school ages have demon-
strated group differences between specific brain regions (Murner-Lav-
anchy et al., 2018). However, these group-level differences focused on 
specific areas and the separate effects of multiple WM microstructural 
measures which did not allow the use of a brain-wide feature approach 
to identify interregional relationships between the WM microstructures 
(Lee et al., 2019; Murner-Lavanchy et al., 2018). Elastic net logistic 
regression is an excellent method with a higher classification accuracy 
and it does not require a large number of training samples to avoid 
overfitting among numerous classification models. For example, the 
construction of a model using soft-margin SVM with a large misclassi-
fication weight parameter may yield an optimal solution for the training 
set and high variance of the model. Similarly, the k-nearest neighbor-
hood classifier with a large k results in moderately small bias but also 
overfitting of the training procedure. Performing classification between 
preterm and full-term groups with the exhaustive feature selection 
technique, Schadl et al. found that a number of WM alterations predicted 
cognitive impairment with highly explained variance (Schadl et al., 
2018). Nevertheless, the exhaustive selection and classical logistic 
regression method usually generates a model that is overfitted to the 
training data set, which confounds the identification of generalized re-
sults. In contrast, the elastic net logistic regression model used in the 
present study considered balanced regularization and decreased the 
variance of the model with only a minor increase in the bias, indicating 
that our model offers more robust multivariate analysis. 

A recent study by Girault et al. suggested that MVPA with the cross- 
validation of high-level features and the prediction model of linear 
regression can use neonatal WM connectivity to classify preterm in-
dividuals most likely to develop cognitive delay at the age of 2 with high 
accuracy (83.8%) (Girault et al., 2019). However, WM connections 
significant to cognition (a connectivity fingerprint) were identified using 
the deep learning model, which only classifies full-term infants ac-
cording to whether they score above or below the median cognitive 
level. Late preterm infants (>32 weeks of gestation, >1.5 kg of birth 
weight) who were less likely to develop cognitive impairment were 

included and used for the evaluation of the model. Girault et al. did not 
use the DTI parameters of preterm individuals to investigate the con-
nectivity fingerprint (Girault et al., 2019). In contrast, we hypothesized 
that the WM maturation of preterm individuals would differ signifi-
cantly from the WM microstructures of full-term control individuals, and 
that the identified neural substrates may be related to subsequently 
evaluated neurodevelopmental domains. The accurate classification and 
significant correlation between the DTI alterations and subsequently 
recorded neurodevelopmental data support our hypothesis. Similarly, 
an fMRI study identified the most discriminative functional connections 
for the prediction of cognition deficits by using the stacked sparse auto- 
encoder and linear-kernel SVM model (He et al., 2018). However, as 
fMRI data is not routinely collected from infants, the sample size for 
their prediction was limited. Furthermore, the marked reduction in the 
number of subjects might have diminished the generalizability of their 
results, even though the transfer learning technique was used with an 
independent dataset to prevent model overfitting (Raina et al., 2007; 
Schadl et al., 2018). Our study incorporated a relatively large dataset 
into the well-established regularization technique of elastic net logistic 
regression to investigate WM maturation in preterm infants while pre-
venting model overfitting. 

4.4. Limitations of the current study 

Our study is subject to several limitations that should be addressed 
through future research. First, social-emotional competence was evalu-
ated using the BSID-III social-emotional scaled scores instead of the In-
fant Toddler Social Emotional assessment because the latter test had not 
been standardized or normed for a Korean population when this study 
was conducted. Moreover, the reliance on the parents’ report for social- 
emotional assessment may have resulted in the exaggeration or under-
estimation of their child’s condition. Second, the overall size of the full- 
term cohort was relatively small compared to that of the preterm cohort. 
A follow-up study with a more balanced sample size and/or multicenter 
imaging data should be considered to consolidate and improve the 
present results before our significant findings can be generalized to 
larger populations. Third, the language or social-emotional scores ob-
tained at 2 years of age may not be indicative of subsequent language 
impairment, as language ability and its related functional connectivity 
can potentially change across early childhood. Moreover, we only 
considered maternal education as a sociodemographic factor and dis-
regarded others, such as household income. This may have compro-
mised our assessment of the differential impact of WM development 
mediated by environmental factors on later BSID-III outcomes. Finally, 
as DTI sequences are typically performed with a range of b-values of 
700–1500 s/mm2, the presently used b-value of 800 s/mm2 may not 
have been optimal (Duerden et al., 2019; Lean et al., 2019; Parvathaneni 
et al., 2018; Rose et al., 2015; Tortora et al., 2018). Earlier studies 
indicated that apparent diffusivity might have different resources 
depending on the specific b-value used, thus highlighting the need for 
the careful evaluation of the reproducibility of the results with a range of 
b-values (Hui et al., 2010). 

4.5. Conclusions and future directions 

We found that key structural WM regions involved in different WM 
substrates are characteristic of preterm infants, further suggesting the 
significance of altered WM in the cingulum in the development of the 
neonatal brain, and its capacity to reflect language organization or 
social-emotional skills in very preterm infants. Our results further stress 
that neonatal WM alterations can be used as an early biomarker for 
neurodevelopmental outcomes, and to facilitate more precise in-
terventions targeting language or cognitive impairment in infants with 
very low birth weight during infancy. The classification models and 
correlation analysis presented herein may help identify specific brain 
regions underlying language ability at 18–22 months of age in very 
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preterm infants. This knowledge might aid the development of early 
intervention strategies and improve the developmental outcomes of 
affected children during their pre-symptomatic period. Future research 
comparing at-risk preterm children with full-term controls should be 
extended to include children of school age – and preferably adults – to 
identify specific WM substrates that may be evident in the preterm 
population at later periods of development. Moreover, as language skills 
and emotional processing require the interaction between a series of 
networks in the frontoparietal region of the brain (Kwon et al., 2016), 
future studies regarding impaired internetwork connectivity should also 
employ longitudinal neuroimaging and language evaluations of preterm 
infants. Finally, the potential of machine learning-based techniques, 
such as those used in the present study, warrants further development to 
refine predictions of individual prognoses. 
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