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Abstract

Proteochemometrics (PCM) is an approach for bioactivity predictive modeling which models the relationship
between protein and chemical information. Gaussian Processes (GP), based on Bayesian inference, provide the most
objective estimation of the uncertainty of the predictions, thus permitting the evaluation of the applicability domain
(AD) of the model. Furthermore, the experimental error on bioactivity measurements can be used as input for this
probabilistic model.
In this study, we apply GP implemented with a panel of kernels on three various (and multispecies) PCM datasets. The
first dataset consisted of information from 8 human and rat adenosine receptors with 10,999 small molecule ligands
and their binding affinity. The second consisted of the catalytic activity of four dengue virus NS3 proteases on 56 small
peptides. Finally, we have gathered bioactivity information of small molecule ligands on 91 aminergic GPCRs from 9
different species, leading to a dataset of 24,593 datapoints with a matrix completeness of only 2.43%.
GP models trained on these datasets are statistically sound, at the same level of statistical significance as Support
Vector Machines (SVM), with R2

0 values on the external dataset ranging from 0.68 to 0.92, and RMSEP values close to
the experimental error. Furthermore, the best GP models obtained with the normalized polynomial and radial kernels
provide intervals of confidence for the predictions in agreement with the cumulative Gaussian distribution. GP models
were also interpreted on the basis of individual targets and of ligand descriptors. In the dengue dataset, the model
interpretation in terms of the amino-acid positions in the tetra-peptide ligands gave biologically meaningful results.

Keywords: Proteochemometrics, Bayesian inference, Gaussian process, Chemogenomics, GPCRs,
Adenosine receptors, Applicability domain

Background
The advent of high-throughput (HT) technologies has
contributed in the last decades to a vast data increase in
proprietary and public bioactivity databases. In a parallel
manner, a large amount of biological data has been col-
lected on protein structure and sequence information for
numerous species. Chemogenomic techniques [1-3] can
capitalize on this large amount of information by model-
ing the relationships between the chemical and the bio-
logical space. This data integration permits the bioactivity
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prediction of compound-target combinations lying in
regions of the drug-target interaction space which are
sparsely sampled by experimental measurements. These
techniques are based on the similarity principle [4,5],
which follows the premise that similar compounds (and
targets) [6] are more likely to exhibit akin bioactivity
profiles in comparison to structurally distant structures.
Among others, chemogenomic approaches have enabled:
(i) the prediction of protein targets for new compounds
based on the bioactivity profiles of similar compounds,
[7-9] (ii) the study of protein similarity on the basis of
the similarity of their ligands, [10,11] and (iii) receptor
deorphanization [12].

In the field of chemogenomics, Proteochemometrics
(PCM) [6] uses machine learning models to relate com-
pounds to their biomolecular targets (usually proteins).
PCM extends traditional Quantitative Structure-Activity
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Relationship (QSAR) [13] by allowing to both inter- and
extrapolate on the target and/or chemical spaces. There-
fore, compounds can be optimized not only with respect
to their affinity on a target, [14] but also by taking
into account their selectivity [15]. In that way, PCM
also permits to detect compound substructures confer-
ring inhibitory activity to a panel of related biomolecular
targets [14].

Although the relevance of PCM has been confirmed by
both in silico and experimental validation, [6,16] current
methods cannot: (i) inherently determine the applicabil-
ity domain (AD) of a model, or (ii) provide individual
confidence intervals for each prediction.

The applicability domain (AD) of a bioactivity model
is defined as the range of chemical (and target in PCM)
space to which the model can be reliably applied [17-19].
Therefore, the AD is a measure of the generalization prop-
erties of a given model: the volume of chemical (descrip-
tor) space that can be reliably predicted [20]. Given that
compounds are encoded with descriptors when training
predictive models, it is important to distinguish between
the chemical space (referring to chemical structures) and
the chemical descriptor space. This distinction is impor-
tant as in the calculation of some popular descriptors
(e.g. Morgan fingerprints) [21], chemical substructures are
hashed: different chemical substructures are mapped at
the same descriptor position. Consequently, two different
structures in the chemical space can be represented by the
same descriptor values. A detailed discussion of the differ-
ent methods proposed to assess models AD can be found
in Ref., [20] to which the interested reader is referred. In
PCM, the AD is an essential feature, as extrapolation has
to be used to predict the bioactivity for new chemicals on
new targets [6].

In parallel to the concern about the evaluation of indi-
vidual bioactivity predictions, recent publications have
aimed at establishing the level of uncertainty in public
bioactivity databases [22-25]. In this vein, Brown et al. [26]
highlighted the importance of including the uncertainty
of bioactivity data into the evaluation of models quality.
Hence, predictive models should be assessed through: the
analysis of the experimental error of the data, the evalua-
tion of the models AD as well as the definition of intervals
of confidence for the predictions. However, acceptable
levels of prediction errors are also determined by the con-
text in which the model will be applied. Indeed, models
exhibiting high prediction errors can be nevertheless use-
ful in a high-throughput (HTS) campaign while not being
suitable in lead optimization [26].

Bayesian inference provides a reliable theoretical frame-
work to handle all previously mentioned aspects within
a unique bioactivity model. Gaussian Processes (GP) are
a non-parametric machine learning method based upon
Bayesian inference: they thus permit an evaluation of

the AD of a given model as well as providing the most
objective estimation of the predictions uncertainty. Fur-
thermore, the experimental bioactivity errors can be used
as model input. A GP prediction of a given compound-
target combination is a Gaussian distribution whose vari-
ance defines intervals of confidence: in principle, this
variance measures the distance of the compound-target
pair to the training set. GP models can be globally val-
idated by traditional statistical metrics (e.g. R2 or Q2)
[27-29] while also providing individual assessment for
predictions. GP were firstly introduced in the field of
QSAR modeling by Burden et al. [30]. Later on, GP were
also used for: (i) the modeling of ADMET properties,
[31,32] (ii) the prediction of electrolyte solubility, [33] (iii)
the bioactivity prediction of small peptide datasets, [34-
36] (iv) protein engineering, [37] and (v) the bioactivity
prediction of bioactivity-focused (GPCRs) combinatorial
chemolibraries [38]. The purpose of the present study
is to propose Gaussian Process (GP) to simultaneously
model chemical and multispecies protein information in
the frame of PCM. GP models are validated by compar-
ing their performance to that of SVM using a panel of
kernels on two PCM datasets extracted from ChEMBL
database, [39] involving adenosine receptors (10,999 data
points, 8 sequences) and aminergic GPCRs (24,593 data
points, 91 sequences), and on a third dataset extracted
from the literature concerning the catalytic activity of
four dengue virus NS3 proteases (199 data points, 4
sequences). GP perform as well as SVM, with statistically
non-significant differences in performance. Nonetheless,
GP provide additional information with respect to SVM,
namely the uncertainties on individual bioactivity pre-
dictions. GP also permit the interpretation of the mod-
els with respect to the targets of adenosine receptors
and GPCR datasets, and also with respect to the ligand
descriptors.

Methods
Datasets
Aminergic GPCRs
The aminergic GPCRs dataset was assembled by gath-
ering bioactivity information of 91 different receptors (9
species) from ChEMBL 15, [39] producing a total num-
ber of datapoints of 24,593. A high quality bioactivity
dataset was assembled by keeping only assay-independent
bioactivity information, namely: the constant of inhibi-
tion, Ki, and the constant of dissociation, Kd. In those
cases where a given compound-target pair had multiple
bioactivity values annotated, the mean value was used.
Moreover, annotations with anything other than ‘=’ were
discarded. Agonist, antagonist and partial agonist ligands
were included. Bioactivity values in the dataset range from
2.030 to 11.570 pKi units. The component amino acids of
the transmembrane binding site were taken from Gloriam
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et al. [40] Further information about the dataset can be
found in Table 1 and Additional file 1: Table S2.

Adenosine receptors
This dataset previously published by van Westen et al. [16]
is composed of 10,999 bioactivity data points measured
on the rat and human adenosine receptors, A1, A2A, A2B
and A3. The dataset was extracted from ChEMBL 2. Only
compounds tested on rat or human receptors by radio-
ligand binding assays and for which pKi bioactivity values
were annotated with a ‘=’ relationship were included in the
final dataset. Bioactivity values range from 4.50 to 10.52
pKi units. Compounds were normalized and ionized at pH
7.4. Subsequently, they were assigned 2D coordinates and
converted to fingerprints. See Table 1 for further details
about the dataset.

Dengue virus NS3 proteases
This dataset was collected from the proteochemometric
study published by Prusis et al., [41] which modeled the
catalytic activity of the Dengue virus NS3 proteases from
four viral serotypes using datapoints measured on 56 dif-
ferent tetra-peptide substrates (Table 1). These substrates
were designed to evaluate the role amino acid residues
located at P1’-P4’ in the sequence. The catalytic effi-
ciency was measured as the turnover number (kcat) for the
cleavage of the substrate. In contrast to the two datasets
presented above, the number of data points in this case
was only 199.

Descriptors
Chemical compounds were described by Scitegic cir-
cular fingerprints (ECFP_6 type), [21,42] calculated in
PipelinePilot 8.5.0.200 [43]. For the calculation of keyed
ECFP_6 fingerprints, each compound substructure, with
a maximal diameter of three bonds, is treated as a com-
pound feature. The substructures are then mapped into
an unhashed array of counts, thus enabling the estimation

of their contribution to bioactivity (see Results and
Discussion). The efficiency of these fingerprints to iden-
tify chemical features relevant for bioactivity has been
previously demonstrated [16,44]. Pairwise compound
similarity plots were calculated in R using the vegan pack-
age [45]. Protein amino acids of the GPCRs and adenosine
receptors binding sites, as well as the Dengue virus NS3
proteases substrates, were described with five amino acid
extended principal property scales (5 z-scales). The prop-
erty calculation was conducted in R [46] via in-house
scripts following the work of Sandberg et al. [47]. In the
GPCRs dataset a descriptor accounting for the amino
acids side chain charge at pH 7.4 was also added (with
values of: +1 if the charge is positive, -1 if negative and
0 for neutral amino acids). The four Dengue virus NS3
protease variants were described with binary descriptors.

Modeling with Bayesian inference
Gaussian processes
Given a dataset D = {

X, y
}

where X = {
xi}n

i=1 is the set
of compound and target descriptors, and y = {

yi}n
i=1 is

the vector of observed bioactivities, the aim is to find a
Gaussian Process [48], GP(D), capable to infer the rela-
tionships within D, in order to predict the bioactivity y�

for new compound-target combinations x�. In the frame
of Bayesian inference, GP are defined as:

P(GP(D)|D) ∝ P(y|GP(D), X) P(GP(D)) (1)

where: (i) P(GP(D)|D) is the posterior probability distri-
bution giving the bioactivity predictions, (ii) the likelihood
P(y|GP(D), X) is the probability of the observations, y,
given the training set, X and the model GP(D), and (iii)
P(GP(D)) is the prior probability distribution of the func-
tions GP(D) candidates to model the dataset D.

The prior probability distribution is updated with the
information contained in D via the likelihood, leading to
the definition of the posterior probability distribution as

Table 1 Overview of the proteochemometric datasets modeled in this work

Adenosine receptors Dengue virus NS3 Proteases Aminergic GPCRs

Datapoints 10,999 199 24,593

Sequences 8 4 91

Ligands 4,419 56 11,121

Source Organisms H. sapiens and Rattus norvegicus Dengue virus H. sapiens, Rattus norvegicus, Mus musculus, Bos
taurus, Sus scrofa, Canis familiaris, Cavia porcellus,
Chlorocebus aethiops, and Mesocricetus auratus

Bioactivity pKi Kcat pKi

Matrix Completeness (%) 31.11 88.84 2.43

Whereas the compound-target interaction matrix of the dengue virus NS3 proteases dataset is almost complete (88.84%), the adenosine receptors and GPCRs dataset
are more challenging to model given: (i) their sparsity (31.11 and 2.43% of matrix completness respectively), and (ii) the consideration of information from human
orthologues, being the respective number of different sequences 8 and 91.
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the set of functions efficiently modeling D. The average of
the posterior distribution is considered as the bioactivity
prediction (Additional file 1: Figure S1). GP(D) is a ran-
dom function which functional values follow a centered
Gaussian distribution for any set of datapoints. Thus,
the P(GP(D)) values for a finite subset of compound-
target vectors xi, .., xn follow a multidimensional normal
distribution with mean μ and covariance matrix CX :

GP(D) ∼ N
(
0, CX + σ 2

d δ
(
xj, xk

)) (
j,k ∈ 1, . . . , n

)
(2)

where δ
(
xj, xk

)
is the Kronecker delta function and σ 2

d is
the noise of the datapoints (experimental error), which is
assumed to be normally distributed with mean zero. The
value of σ 2

d accounts for the noise in the observed bioac-
tivities, y = GP(D) + N

(
0, σ 2

d
)

which in turn reflects
the trade-off between the quality and smoothness of the
fitting.

CX is obtained by applying a positive definite ker-
nel function (also known as statistic covariance) [49] to
X, CX = Cov(X). Owing to the fact that the covariance
function is based upon dot products, the kernel trick can
be applied in a similar way as in SVM [50]. Kernel param-
eters are called hyperparameters since their values define
the probability of each function of the prior probability
distribution. The different kernels implemented in this
study are listed in Additional file 1: Table S2.

Bioactivity prediction for new datapoints
The bioactivity, y�, of a new compound-target combina-
tion, x�, can be predicted from the joint prior probability
distribution P = ( y

y�

)
of y and y�, due to the multivariate

Gaussian distribution assumed for D:[
y
y�

]
∼N

(
0,C� =

[
CX = Cov(X), k = Cov (X, x�)

kT , m = Cov (x�, x�)

])
(3)

where kT is the transpose of the matrix k, which describes
the similarity between X and x�. The predicted bioactivity
is obtained as the mean value of the probability:

P
(
y�|x�, D, y

)
(4)

and the uncertainty of the prediction corresponds to the
standard deviation of this probability distribution.

To calculate P (y�|x�, D, y), the joint probability distri-
bution, P

( y
y�

)
, is divided by the probability of the observed

bioactivities, P(y). Subsequently, the predicted probabil-
ity for y� is obtained by calculating the Schur complement
[51]:

P(y�) ∼ N
(
μy� = kT C−1

X y, σ 2
y� = m − kT C−1

X k
)

(5)

where the best estimate for the bioactivity of x� is the
average value of y�, μy� = 〈P(y�)〉, and σy� , the standard
deviation, its uncertainty.

As can be seen in Eq. 5, those compound-target com-
binations in X similar to x�, contribute more to the pre-
diction of y�, as y is weighted by kT . This means that
GP, as a kernel method, mainly infers the value of y�

from the most similar compound-target combinations in
descriptor space present in the training set, X.

On the other hand, the predicted variance, σ 2
y� , is equal

to the difference between the a priori knowledge about
x�: m = Cov(x�, x�), and what can be inferred about x�

from similar compound-target combinations present in
X: kT C−1

X k. Thus, in the case of x� being similar to the
compound-target combinations in X, the value of σ 2

y� is
small. By contrast, a high value of σ 2

y� indicates that x� is
not similar (is distant) to the compound-target combina-
tions in X. In that case, the GP cannot learn much about
x� from the training set, so the prediction should be con-
sider as less reliable. Consequently, σ 2

y� gives an idea of the
applicability domain (AD) of the model and thus serves to
evaluate the uncertainty of the prediction.

Computational details
Determining the kernel hyperparameters
As previously stated (Equation 2), the prior distribu-
tion of a GP is mainly defined by its covariance, CX ,
which is in turn characterized by its hyperparameter val-
ues. For the simplest kernel, Radial Basis function ker-
nel (RBF), also known as Squared Exponential or simply
Radial (Additional file 1: Table S1), the hyperparameters
are

(
� = {

l, σ 2
d
})

where l are the length scales, (one per
descriptor) and σ 2

d the noise variance. In this case, the
covariance between two input vectors can be defined as:

Cov
(
xi, xj

) = e
− 1

2
∑P

p=1

(
xip−xj

p
)2

l2p (6)

where p is the descriptor index and P the total number of
descriptors. Each length scale, l, is treated as a hyperpa-
rameter wich value needs to be optimized during model
training. High length scale values will be assigned to irrel-
evant features for the model. Therefore, the inverse of the
optimized l value obtained for a given descriptor gives an
idea of its importance for the model. This inherent abil-
ity of Bayesian inference to infer the relevance of each
descriptor is the so-called Automatic Relevance Determi-
nation (ARD) [48]. In the context of PCM, ARD can be
exploited to provide a biologically meaningful interpreta-
tion of the models.

In the frame of Bayesian inference, we search for the
hyperparameter values maximizing the probability of hav-
ing obtained the observed data. Thus, the hyperparam-
eter values should define a prior distribution P(GP(D))

maximizing the probability of the functions along the
data. The problem can be rewritten as: the search of
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hyperparameter values maximizing the posterior proba-
bility distribution over the hyperparameters: P(�|D). In a
Bayesian line of reasoning, this posterior probability can
be expressed as:

P(�|D) ∼ P(y|�, X) P(�) (7)

where P(y|�, X), is the marginal likelihood: P(y|�, X) =∫
P(y|GP(D)P(GP(D))dGP(D). The hyperparameter val-

ues � can thus be determined by maximizing the loga-
rithm of the marginal likelihood [48,52]:

ln P(y|�, X) = −1
2

yT C−1y − 1
2

ln |C| − n
2

ln 2π (8)

Several methods can be implemented to accomplish
this multivariate optimization problem, such as a simplex
method, Monte Carlo (MC) Sampling, [53] a genetic algo-
rithm, nested sampling, [54] forward variable selection
[31] or the conjugate gradient method [48].

In the present study, kernel hyperparameters were opti-
mized by grid search and k-fold cross-validation (CV) in
the case of the adenosine receptors and aminergic GPCRs
datasets (section S1 of the Additional file 1), because
of their large size and high number of descriptors. The
experimental error, σ 2

d , (Equation 2) was considered as
fixed with a value of 0.29 pKi units, this value being taken
from the work of Kramer et al. [22] The same length
scale value, l, was used for all descriptors to simplify the
hyperparameter optimization.

In the case of the dengue virus dataset, due to its small
size, and to the lack of information concerning the experi-
mental uncertainty, the noise variance, σ 2

d , was optimized
by conjugate gradient as implemented in the GPML tool-
box [55]. As the number of descriptors is only 24, we
optimized the length scales using the radial kernel. In the
frame of Automatic Relevance Determination (ARD), the
importance of each descriptor for the model was esti-
mated using the inverse of the optimized l values, in the
way described above.

GP Tolerance to noise
To better understand the influence of the experimental
error in GP modeling, we trained 15 models for each
dataset with increasing levels of noise with both the radial
and the normalized polynomial (NP) kernel, thus leading
to a total number of 90 models. Their predictive ability
was monitored on the external set. The levels of added
noise (noise variance) ranged from 0 to a maximum value
of 10, which corresponds to a noise deviation of 3.2 pKi
units for the adenosine receptors and GPCR datasets, and
3.2 log units for the dengue virus NS3 proteases dataset.

Machine learning analyses and implementation
Machine learning models were built in R using the caret
package [56]. Non-default kernels for GP were introduced

in the caret framework by in-house R scripts and by the
definition of custom models (custom option in the caret
package) implementing kernel functions from either the
kernlab [57] package or in-house kernel functions. Source
code is available from the authors upon request. Likewise,
The Gaussian Process for Machine Learning (GPML)
Toolbox version 3.2 [55] was used to build GP models in
Matlab version 7.15 [58] to assess the importance of ligand
descriptors (Automatic Relevance Determination). The
python package infpy [59] helped to generate Additional
file 1: Figure S1. The data pre-processing and the in silico
modeling pipeline are described in Additional file 1, along
with model training and validation.

Assessment of maximum model performance
The Tropsha validation criteria, [27-29] (Equations S7-S10
in Additional file 1) were used for accepting or dismiss-
ing the model (section Internal validation of Additional
file 1). Hence, the distributions of minimum RMSEPext
and maximum, Q2

ext, R2
0 ext , and R2

ext (Equations S3-S6
in Additional file 1) were calculated for each dataset in
the following way. Firstly, a random sample, A, of the
same size of the external set was drawn from the exper-
imental bioactivity values. Secondly, the sample B was
calculated by adding to A a random noise with mean
zero and standard deviation equal to the experimental
error. Then, the statistical metrics were calculated for A
with respect to B. The calculation of statistical metrics on
1,000 generations of random samples A and noisy samples
B provided a distribution of statistical metrics for each
dataset. These maximum and minimum values of the dis-
tribution were then used to validate the metrics values
obtained when evaluating the bioactivities predicted for
the external sets. If the obtained metrics were beyond the
maximum values (for Q2

ext, R2
0 ext , and R2

ext) or the mini-
mum values (for RMSEPext) of the distribution, the model
is likely to be over-optimistic. The experimental errors
required to define the random samples B were determined
in the following way. For adenosine and GPCR datasets,
the experimental error of pKi data was considered to be
approximately 0.29 pKi units, which corresponds to the
average standard deviation value for public Ki datasets
estimated by Kramer et al. [22] The experimental error
of the dengue dataset was inferred from the data by con-
sidering its uncertainty as a hyperparameter of the GP
model since we could not find information about the
experimental uncertainty in the study of Prusis et al. [41].

Interpretation of ligand substructures
To calculate the influence of a given feature (chemical
substructure) to pKi, we iteratively set the count of the
feature equal to zero in all compound descriptors pre-
senting it, in order to virtually remove the substructure.
Bioactivity values were then predicted using the modified
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compound descriptors, and the difference between the
predicted values in the presence or absence of a given
feature were calculated. The average value of these differ-
ences, weighted by the number of counts of the feature in
each compound, corresponds to the contribution of that
feature to bioactivity. The contribution was estimated for
all compound features considered in the model. The sign
of the difference ({+/-}) indicates if the feature is respec-
tively beneficial or deleterious for compound bioactivity.
This approach is closely related to the method proposed
by van Westen et al., [14] although two modifications have
been made: (i) the weighting of the average difference
between predicted and observed bioactivities, and (ii)
the calculation of descriptor importance on a per target
basis.

Results
Model validation
PCM GP models agree with the validation criteria
Overall, the models obtained for the three datasets with
Gaussian Process modeling display statistics in agreement
with our validation criteria (Table 2 and Additional file 1:
Table S3). To ensure that these results were not the con-
sequence of spurious correlations, we trained GP models
with randomized bioactivity values (y-scrambling) [60].
For all datasets, the intercept was negative, thus ensur-
ing the statistical soundness of our modeling. The best GP
model for the adenosine receptors dataset was obtained
with the normalized polynomial (NP) kernel, exhibiting
RMSEPext and R2

0 ext values of 0.58 pKi units and 0.75
respectively. Similarly, in the case of the GPCRs dataset,
the NP kernel led to the best predictive model, with
RMSEPext and R2

0 ext values of 0.66 pKi units and 0.72. As
these GP models were trained with a noise deviation of
0.54 pKi units, the subtraction of the experimental uncer-
tainty, 0.54 pKi units, from the RMSEPext gives a residual
error arising from the modeling below 0.12 pKi units.
These RMSEPext values correspond to 6.05% and 10.88%
of the range of bioactivity values in the training set for
the GPCRs and the adenosine receptors datasets. In the
case of the dengue virus dataset, GP models show bet-
ter predictive ability than those reported by Prusis et al.,
[41] as Q2

ext value of 0.92 is obtained here (Additional
file 1: Table S3) for the best GP model based on the Bessel
kernel. The optimization of the noise variance, σ 2

d , as an
hyperparameter during the training process led to a value
of 0.27 log units, similar to the values of about 0.3 log units
reported by Prusis et al. [61] in a recent study with similar
experimental setup.

GP statistics are within the limits of the theoretical maximum
model performance
The distributions of maximum R2

ext , R2
0 ext , and Q2

ext
and minimum RMSEPext theoretical values, obtained as

described in subsection Assessment of maximum model
performance in Methods, are given in Additional file 1:
Figure S2 for the three datasets. The mean value of the
distribution of maximum R2

0 ext values are equal to 0.80,
0.68 and 0.96 for the adenosine, GPCRs, and dengue
virus NS3 proteases datasets, which highlights that the
maximum correlation values that can be obtained when
modeling public data are far from the optimal maxi-
mum correlation value of one. This is not surprising
given the noise levels in public bioactivity data [22,23].
The best RMSEPext and R2

0 ext values (Table 2) obtained
with GP are respectively: 0.58 and 0.75 (adenosine recep-
tors), 0.66 and 0.72 (GPCRs), and 0.44 and 0.92 (dengue
virus NS3 proteases), which remain in the limits of these
extreme theoretical values (Additional file 1: Figure S2),
thus supporting the suitability of our modeling pipeline
to handle data uncertainty. The mean values of the the-
oretical RMSEP distribution were close to the exper-
imental uncertainty on bioactivity, for the adenosine
receptors and the dengue virus NS3 proteases datasets,
with respective mean RMSEPext values of 0.54 pKi units
and 0.27 log units (Additional file 1: Figure S2). How-
ever, the mean RMSEPext value increases up to 0.68 pKi
units for the GPCRs dataset owing to its larger size and
sparsity.

PCM outperforms QSAR on the studied datasets
A comparison between models trained on only compound
descriptors (‘Family QSAR’) [62] and PCM permits to
assess whether the use of GP improved the bioactivity
modeling, by simultaneously modeling the target and the
chemical spaces within a PCM study [6]. Indeed, radial
kerneled Family QSAR models with ligand descriptors
(Table 2) failed to model the data, being the RMSEPext and
R2

0 ext values respectively: 0.96 and 0.31 (adenosine recep-
tors), 0.97 and 0.38 (GPCRs), and 1.13 and 0.48 (dengue
virus NS3 proteases).

Strong mapping power of the normalized polynomial kernel
Radial and polynomial kernels have been traditionally
used in QSAR and PCM modeling, [16,63] but the ver-
satility of other kernels for bioactivity modeling has been
recently demonstrated [63-65]. To investigate this point in
the frame of GP models, we compared the performance of
various kernels (Bessel, Laplacian, NP, and PUK) with the
radial and polynomial kernels.

As described above, in contrast to Huang et al., [63]
we found the normalized polynomial (NP) kernel to
have enough mapping power to model the three datasets
(Table 2). Nonetheless, in the case of the dengue virus
NS3 proteases dataset, although NP kernel produces a
statistically correct modeling with RMSEPext and R2

0 ext
values of 0.48 and 0.91, it is slightly outperformed by the
Bessel kernel, which displays respective RMSEPext and
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Table 2 Internal and external validation metrics for the PCM models

Adenosine Receptors Dataset

R2
int RMSEPint R2

0 ext RMSEPext

GP Bessel 0.64 0.70 0.70 0.63

GP Laplacian 0.67 0.68 0.67 0.66

GP Norm. Polynomial (NP) 0.69 0.65 0.75 0.58

GP Polynomial 0.70 0.64 0.70 0.63

GP PUK 0.57 0.79 0.56 0.77

GP Radial 0.65 0.69 0.65 0.68

PLS 0.29 0.97 0.30 1.00

SVM Norm. Polynomial (NP) 0.70 0.64 0.73 0.60

SVM Polynomial 0.71 0.63 0.71 0.62

SVM Radial 0.68 0.65 0.70 0.64

Family QSAR 0.31 0.70 0.31 0.96

Aminergic GPCRs Dataset

R2
int RMSEPint R2

0 ext RMSEPext

GP Bessel 0.56 0.83 0.56 0.80

GP Laplacian 0.62 0.78 0.63 0.75

GP Norm. Polynomial (NP) 0.69 0.68 0.72 0.66

GP Polynomial 0.68 0.71 0.70 0.68

GP PUK 0.46 0.93 0.46 0.90

GP Radial 0.69 0.69 0.71 0.66

PLS 0.69 0.69 0.27 1.05

SVM Norm. Polynomial (NP) 0.69 0.68 0.72 0.66

SVM Polynomial 0.69 0.69 0.71 0.66

SVM Radial 0.69 0.69 0.72 0.66

Family QSAR 0.38 0.98 0.38 0.97

Dengue virus NS3 proteases Dataset

R2
int RMSEPint R2

0 ext RMSEPext

GP Bessel 0.91 0.43 0.92 0.44

GP Laplacian 0.88 0.54 0.91 0.50

GP Linear 0.91 0.45 0.91 0.48

GP Norm. Polynomial (NP) 0.88 0.50 0.91 0.48

GP Polynomial 0.91 0.42 0.92 0.44

GP PUK 0.77 1.10 0.81 1.13

GP Radial 0.91 0.45 0.91 0.45

PLS 0.90 0.45 0.91 0.49

SVM Norm. Polynomial (NP) 0.86 0.54 0.91 0.46

SVM Polynomial 0.89 0.46 0.90 0.51

SVM Radial 0.90 0.48 0.90 0.48

Family QSAR 0.29 1.19 0.48 1.13

For the three datasets, the best models are obtained with GP, being the lowest RMSEPext and highest R2
0 ext values: (i) adenosine receptors: 0.58 and 0.75 with NP

kernel, (ii) GPCRs: 0.66 and 0.72 with NP kernel, and (iii) Dengue virus NS3 proteases 0.44 and 0.92 with Bessel kernel. Overall, GP models for the three datasets agree
with the validation criteria.
Abbreviations: RMSEP root mean square error in prediction, Ext. external, Norm Normalized.
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R2
0 ext values of 0.44 and 0.92 (Table 2). The PUK kernel

[65] exhibited strong mapping power in previous stud-
ies of HIV-1 proteases and histone deacetylases (HDAC)
inhibitors, [63,64] but in the present study we could not
obtain satisfactory models for none of the three datasets.
The Laplacian and Bessel kernels allow a proper mapping
of the three datasets with R2

0 ext values within the range
0.60–0.90 (see Table 2 for further details).

For the adenosine receptors dataset, different statistics
values are observed between the internal and external val-
idation, as the RMSEPext values are larger for the radial
kernel (0.68) than for the polynomial and Bessel kernels
(0.63 in both cases). Nonetheless, a different picture is
observed for RMSEPint, as the values for the radial, poly-
nomial and Bessel kernels are 0.69, 0.64 and 0.70 pKi units.
Although RMSEPext and RMSEPint values are similar, the
small increase of RMSEPext with the Bessel kernel might
suggest a slight degree of overfitting [66].

GP and SVM perform on par
The performance of the GP and SVM models was
compared for each dataset using the radial, the poly-
nomial, and the NP kernels, as the first two are the
most widespread kernels within the modeling community
[15,16,63]. Using different seed values, we trained ten dif-
ferent models for each modeling technique and dataset,
resulting in a total of 60 models (Figure 1). To be able to
statistically test the difference between the models results,
distributions of the RMSEPext and R2

0 ext were gener-
ated for each kernel/dataset combination. Both RMSEPext
and R2

0 ext statistics were normally distributed in all cases
(Shapiro-Wilk normality test, α 0.05), and a two-tailed
t-test of independent samples (α 0.05) was applied to com-
pare the behavior of SVM and GP. As it can be seen in

Figure 1 and from the result of the t-test, both SVM and
GP perform on par in the three case studies for radial
and NP kernels. Similar results (data not shown) were
obtained for the polynomial kernel.

To probe the linearity of the datasets, we trained lin-
ear PLS models. For two datasets, PLS appears unable
to infer the complex (non-linear) relationships within the
data, leading to RMSEPext and R2

0 ext of 1.00 and 0.30 for
the adenosine receptors, and 1.05 and 0.27 for the GPCRs
datasets, respectively (Table 2). At contrary, the dengue
NS3 proteases dataset presents a clearly linear relation-
ship, with RMSEPext and R2

0 ext values of the PLS model of
0.49 and 0.91. However, on the same dataset, the model
obtained with a linear kerneled GP model slightly outper-
formed PLS, with respective RMSEPext and R2

0 ext values
of 0.48 and 0.91.

Noise influence on GP depends on the kernel
RMSEPext and R2

0 ext were calculated for adenosine recep-
tors, GPCRs, and dengue virus NS3 proteases for different
levels of noise σ 2

d added to the diagonal of the covari-
ance matrix CX (Equation 2). The results obtained for
radial kernels (Figure 2, upper plots) appear more sensi-
tive to the noise than the ones obtained for NP kernels
(Figure 2, bottom plots), for which the variations of the
RMSEPext and R2

0 ext sets are lower than 0.10 pKi or log
units. This trend is more obvious for the dengue virus NS3
proteases dataset, probably originating from the small size
of this dataset. The polynomial kernel (data not shown)
displays robustness similar to those of NP kernel. These
analyses suggest that NP or polynomial kernels would
constitute a reasonable choice when modeling noisy data.
To summarize, GP models perform on par with SVM and
outperform Family QSAR and PLS on the three datasets.
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Figure 1 Comparison between the performance of GP and SVM with either the radial or the normalized polynomial (NP) kernel. Ten
models were calculated for each dataset and for each combination of modeling technique and kernel, thus resulting in a total of 60 models. The
performance of GP and SVM was assessed by kernel for the three datasets. Given that the distributions of RMSEPext and R2

0 ext values were normally
distributed, a two-tailed t-test of independent samples was applied to statistically evaluate their differences. These analyses let us conclude that
SVM and GP perform on par for the modeling of the three datasets considered in this study.
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Figure 2 Noise influence in model performance. RMSEPext (red) and R2
0 ext (black) values obtained when increasing the noise level (noise

variance added to the diagonal of the covariance matrix) were calculated for: adenosine receptors (left figure), GPCRs (medium figure) and dengue
virus NS3 proteases (right figure). Upper plots correspond to GP models calculated with the radial kernel while the bottom plots refer to GP models
with the normalized polynomial (NP) kernel. In all cases, the radial kernel appears more sensitive to noise, while the NP kernel performs equally well
when noise is added to the data. These data suggest that the NP kernel is more appropriate for the modeling of noisy PCM datasets.

The NP kernel leads to the best GP models being also
the most tolerant kernel to noisy bioactivities. GP models
trained on the dengue virus NS3 proteases systematically
display better metrics than the other datasets, likely due
to the high matrix completeness (88.84%) of this dataset
(Table 1).

Predicted confidence intervals follow the cumulative
density function of the Gaussian distribution
GP predictions mostly follow the cumulative Gaussian
distribution
To analyze the reliability of the error bars obtained with
GP with the tested kernels, different intervals of confi-
dence (IC) for each predicted bioactivity value on the
external set were defined, namely: 68%, 80%, 95%, and
99%. Subsequently, the percentage of compound-target
combinations for which the experimental bioactivity value
lied within the bounds of each interval was calculated. Fol-
lowing the cumulative density function of the Gaussian
distribution (cumulative Gaussian distribution), [33] the
percentage of satisfactory cases should be proportional to
the interval size.

To test this hypothesis, the percentages of predicted
bioactivities for which the experimental values were
within the confidence intervals were compared to the
size of these intervals (Figure 3). As the small size of the
dengue virus NS3 proteases did not allow a good sam-
pling of the Gaussian distribution, this dataset was not
included in the comparison. This analysis was thus per-
formed for the adenosine receptors and GPRCs datasets
with the Bessel, Laplacian, NP, PUK, and radial kernels.
It is noteworthy that the predicted variance obtained
with the polynomial kernel is much larger than the range

of bioactivity values, thus making impossible to evalu-
ate their concordance with the cumulative distribution.
However, the NP kernel allows to obtain values within
the interval {0, 1} for the predicted variance thanks to its
normalized formulation.

The experimental values for the radial kernel match the
theoretically expected behavior, represented on Figure 3
by bullet points connected by a blue line, and calculated in
the context of a Gaussian cumulative function. The match
between experiment and theory holds for the PUK and
NP kernels for both datasets. The difference between the
cumulative Gaussian distribution and the different inter-
vals of confidence calculated for the Adenosine receptors
dataset is around 10% for the other kernels (Figure 3, left
plot). By contrast the Bessel and Laplacian kernels do not
provide informative intervals of confidence for the GPCRs
dataset (Figure 3, right plot).

GP determine the applicability domain of the model
The variance predicted with GP models, σ 2

y� , quantifies
how much information the model can infer from the
data (Eq. 5). Therefore, we hypothesized that: the dis-
tribution of the differences between the predicted and
the observed bioactivity values, are more dispersed for
compound-target pairs distant from the training set (high
values of σ 2

y� ). To verify this hypothesis, we binned the
external set into four groups depending on the value
of the predicted variance: {0.25, 0.5, 0.75, 1}. The differ-
ences between true and predicted bioactivities were com-
pared (Figure 4) to the bioactivity errors predicted in
the GP model. This analysis was done on the adenosine
receptors and GPCR datasets for the predicted variances
obtained with the NP and the radial kernels. As the
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Figure 3 Analysis of the confidence intervals predicted on (left) the adenosine receptors and (right) aminergic GPCRs external sets. The
percentages of annotated values lying within the intervals of confidence of 68%, 80%, 95% and 99% (ordinate axis) are depicted versus the size of
the intervals. The blue line defines the theoretical proportionality between the size of confidence intervals and the number of points within the
intervals, in the frame of the Gaussian cumulative function. The radial, PUK, and normalized polynomial (NP) kernels are in close conformity with the
cumulative Gaussian distribution in both datasets, while the Laplacian and Bessel exhibit a diverse behavior depending on the dataset. Therefore,
GP provide prediction errors in agreement with the Cumulative Gaussian distribution which can be reliably used to define intervals of confidence
for the predictions.

dispersion of the distribution of the differences increases
with the errors predicted by GP, irrespective of the ker-
nel or dataset considered, this error can be thus con-
sidered as a reliable estimate of the applicability domain
(AD).

Interestingly, while the average differences between pre-
dicted and observed bioactivities are close to zero for the
subsets of GP errors of 0.25, 0.5 and 0.75, this average
value is biased towards few tenths of a pKi unit (Figure 4)
for the subset displaying the largest GP error. This obser-
vation indicates that errors on bioactivities are underesti-
mated by the GP model for compound-target pairs distant
from the training set. GP models with the NP and radial
kernels provide prediction errors in agreement with the
cumulative Gaussian distribution, which is the maximum
theoretical precision attainable. Furthermore, the applica-
bility domain of GP models can be determined from the
errors predicted by GP.

Analysis of GP performance per target
To further understand the predictive capability of GP
models on each analyzed target, we trained ten GP mod-
els with the NP kernel. Different seed values were used for
the generation of the training and the external sets. Once
the GP predictions have been obtained, we divided the
external set into subsets grouped by target, and calculated
average R2

0 ext and RMSEPext values on these subsets. This
analysis per target was conducted only on the datasets of
adenosine receptors and GPCRs, because of their large
sizes and numbers of involved targets.

Adenosine receptors
The highest mean RMSEPext value is between 0.70 and
0.75 pKi units, and the lowest mean R2

0 ext value is 0.62
(Figure 5). In this dataset, the performance is not directly
related to the number of compounds annotated per tar-
get. Indeed, the best result is obtained on the rat A2b
receptor (AA2BR RAT, 803 compounds) whereas one of
the worst results is displayed by the human A1 receptor
(AA1R HUMAN, 1635 compounds).

On the other hand, the results cannot be related to the
chemical diversity of the compounds, analyzed with pair-
wise Tanimoto similarity (Additional file 1: Figure S3).
Indeed, the two targets displaying the largest variabil-
ity in the range of 0.50–0.75 Tanimoto similarity are rat
A3 (AA3R RAT) and human A2b (AA2BR HUMAN),
for which quite different performances are observed
(RMSEPext in the 0.70–0.75 range and in the 0.59–0.61
range respectively: Figure 5). Similarly, human A1 (AA1R
HUMAN) and A2a (AA2AR HUMAN) receptors, display
the smallest variability for compounds, and show quite
different levels of performance (R2

0 ext in the 0.56–0.60
range and in the 0.70–0.74 range respectively).

The lack of connection between the performance and
the chemical diversity could arise from the binding site
residue selection, which might not be equally suited for all
adenosine receptors. This is supported by two other facts,
namely: (i) the differences in extracellular loop length that
are known for the adenosine receptor paralogues; and (ii)
secondly the knowledge that these loops are important for
ligand binding [67-69].
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Figure 4 GP determine models applicability domain. The differences between the true and predicted bioactivities (y axis) and the errors on
predictions estimated by the GP model (x axis) are compared for the adenosine receptor dataset with radial (A) and NP (B) kernel, and for the GPCRs
dataset with radial (C) and NP (D) kernels. The distribution of the differences between true and predicted bioactivities increases with the GP error on
the prediction. This validates that the GP error is a measurement of the Applicability Domain (AD) of the model.

GPCRs
In the GPCR dataset, the best RMSEPext (Additional file 1:
Figure S4) and R2

0 ext (Additional file 1: Figure S5) values
are obtained on target subsets with a number of anno-
tated compounds larger than 200 (in grey in Additional
file 1: Figures S4 and S5). Between the subsets, no major
differences in performance are observed for an amount
of annotated compounds between several hundreds and
over 1500. It is however noticeable that the predictive abil-
ity of the models increased as the target space included
in the training dataset broadened. Indeed, a bioactiv-
ity selection previously done including information from
26 human aminergic GPCRs (4,951 datapoints), marked
with an asterisk in Additional file 1: Table S2, did not
produce any sound statistical metrics, as R2

0 ext values
lower than 0.40 were obtained whatever the kernel or
machine learning algorithm used. But, the addition to the
first selection of the bioactivities measured on mammal
orthologues improved the prediction, although some of
the additional bioactivity sets were singletons (Additional
file 1: Table S2).

A large diversity of performance with RMSEPext values
in the range of 0.00–2.50 pKi units is observed for the
targets annotated with one compound (Additional file 1:
Figure S4). A relationship can be nevertheless established

between these performances and the number of anno-
tated compounds on orthologues proteins. For example,
the 5-HT2C mouse receptor (5HT2C MOUSE) anno-
tated with three compounds exhibits a mean RMSEPext
value between 0.00 and 0.20 pKi units (Additional file 1:
Figure S4), because 345 and 558 compounds are respec-
tively annotated on the orthologue rat and human 5-
HT2C receptors. The good performance obtained for this
mouse receptor is probably due to the similarity of the 345
and 558 compounds to the ones annotated to the 5-HT2C
mouse receptor. The importance of various targets for GP
prediction was assessed for the adenosine receptors and
GPCRs datasets. To obtain statistically validated models, a
balance has to be found between two trends: (i) the inclu-
sion of bioactivity information from orthologues improves
the predictive ability of the models for both datasets, but
(ii) an increase of the chemical diversity might hamper the
acquisition of sound models as shown for the adenosine
receptors dataset.

Model interpretation of ligand descriptors
Compounds bioactivity depends on multiple weak
contributions of chemical substructures
The influence of the substructures on compound bioac-
tivities, for both the adenosine receptors and the GPCRs,
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Figure 5 Model performance per target on the external set for the adenosine receptors dataset. The upper panel corresponds to R2
0 ext , while

the lower panel to RMSEPext. These values were averaged for ten models trained on each subset corresponding to a given target. The best modeled
target is the rat adenosine A2b receptor (AA2BR RAT), while the worst is the rat A3 receptor (AA3R RAT). In all cases, the mean RMSEPext values are
below 0.75 pKi units, indicating that GP modeling can predict compounds bioactivities on subsets corresponding to a given target.

was analyzed as described in section Interpretation of
ligand substructures. In the present study, the contri-
bution of more than 90% of substructures to the pKi
values is close to zero (black regions in Additional file 1:
Figure S6). We observed similarly (data not shown) that
chemical substructures contributing in a very variable
way to the pKi values (average contribution equal to
zero and standard deviations in the range of 0.50 - 1.00
pKi units), are present in sets of compounds displaying
large variability in experimental bioactivity on a given
target.

Hence, more than 90% of the substructures from the
datasets analyzed here, display alternatively the follow-
ing properties: (i) they are not implicated in compound
bioactivity as their presence or absence does not influence
compounds bioactivity, (ii) their contribution to the pKi
values, is conditioned to the presence or absence of other
substructures [70].

The highest contributions to the pKi values, on both the
GPCRs and the adenosine receptors datasets, is close to 1
pKi units (Additional file 1: Figure S6), in the range simi-
lar to those obtained by van Westen et al. [15]. Therefore,
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even those few substructures with a large contribution,
highlighted in Additional file 1: Figure S6, do not explain
a large proportion of the bioactivity.

ARD provides a biologically meaningful interpretation of
PCM models
The substrates in the dengue virus NS3 proteases dataset
are tetra-peptides. The relative importance of the four
residues of these tetra-peptides was deconvoluted in the
frame of ARD, described in Materials and Methods, by
taking the inverse of the optimized l value of the radial ker-
nel (Figure 6). The largest inverse values are obtained for
P1’ followed by P2’, P3’ and P4’ displaying similar values.
Thus, the first amino acid (P1’) is the most relevant for the
model followed by the second one (P2’), in contrast to the
third and fourth ones (P3’ and P4’). In the study of Prusis
et al., [41] the PLS coefficients with the highest values cor-
respond to the first and second amino acids, as it is also
the case here. A further detailed comparison of the PLS
and the presented GP model is beyond the scope of this
study. However, it should be noticed that the descriptors
used in the present study and in Ref [41]. differ: 5 z-scales
in our case versus 3 z-scales, C7.4, t1-Rig, and t2-Flex [71]
in the PLS model. Although the PLS and GP models might

Figure 6 Descriptor importance for the dengue virus NS3
proteases dataset. Descriptor importance is calculated in the frame
of Bayesian Automatic Relevance Determination (ARD) as the inverse
of the value of the length scale of each descriptor. The descriptors of
the first and second residues of the tetra-peptides (positions P1’ and
P2’) are the most relevant for the model. This is in agreement with the
higher influence of these two substrate positions for the cleavage
rates of the proteases.

assign different weights to the different descriptors, they
both identify the first amino acid position as having the
largest influence on Kcat , in agreement with experimental
results [41].

GP models were interpreted on the basis of ligand
descriptors. For datasets where ligands are compound
descriptors (GPCRs and adenosine receptors datasets),
the interpretation was not conclusive. By contrast, the
interpretation of GP models according to the amino acids
of the tetra-peptide ligands in the dengue datasets gave
biologically meaningful results, in agreement with the sci-
entific literature [41]. In that way, ARD can be applied
to biologically interpret systems: e.g. identify residues
responsible for compound binding. Additionally, ARD
with the radial kernel can model non-linear relationships,
which is not possible with PLS without the introduction
of (not easily interpretable) cross-terms [6,41].

Discussion
In the present study, we have demonstrated that Gaussian
Processes (GP) allow to predict compound bioactivities
on biomolecular targets. The statistically soundness of GP
models is observed for a broad panel of kernels, among
which the NP and radial kernels display the best results.
GP and SVM display statistically similar performance for
the modeling of multispecies proteochemometric datasets
of different sizes. Moreover, Family QSAR and PCM mod-
els were trained on the same number of datapoints and
PCM produced much better results than Family QSAR,
due to the introduction of target descriptors.

GP were applied on the following datasets: two large
datasets involving GPCRs and adenosine receptors and
one small dataset (199 datapoints) comprising four
dengue NS3 proteases. The dengue dataset exhibits a high
degree of linearity, as demonstrated by the high perfor-
mance of both PLS and GP with a linear kernel on this
dataset. Unsurprisingly, a better performance of GP is
observed with different kernels for the dengue dataset
than for the two other ones, due to the high matrix
completeness in the dengue dataset and to its linearity.
The satisfactory results obtained for the dengue dataset
encourages the application of GP to model relatively
small datasets issued from a single laboratory. The use of
such in-house datasets would reduce the bias introduced
by annotation errors and by the use of non-normalized
experimental conditions.

The inclusion of chemical and target information from
several organisms (orthologues) increases model per-
formance and the applicability of models to predict
bioactivity for new compound target-combinations. These
observations are in favor for the routine inclusion of mul-
tispecies bioactivity information in PCM settings. These
results disagree with Gao et al. [72], who stated that
the addition of orthologues to human aminergic GPCRs
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would reduce the AD. Our understanding of the results
obtained here is that the incorporation of bioactivity data
from a wide range of species led to a significant increase
of models performance given that binding patterns tend
to be conserved among orthologues [73]. We have seen
on the GPCR dataset, that the inclusion of singletons
compounds bioactivities on human orthologues helps to
increase models performance. This may be of tremen-
dous relevance in the often encountered cases where lim-
ited bioactivity information is known on a given human
target, but a much larger number of bioactivities have
been measured on orthologues of this target [16,73,74].
Our results suggest that the chemical diversity consid-
ered and the number of datapoints have to be balanced
to obtain sound models while exhibiting proper predictive
abilities.

An additional outcome of GP with respect to SVM is
the estimation of the uncertainty of predictions. Indeed,
the Bayesian formulation of GP permits to obtain inter-
vals of confidence for individual predictions defined from
the GP predicted variance. These intervals were shown
to be in agreement with the cumulative Gaussian distri-
bution when using the radial and NP kernels, but not
always for the Bessel or Laplacian kernels, highlighting
that the kernel choice has to be made in the light of
both models performance and reliability of the predicted
variances. We have also shown here that GP using as
covariance function the polynomial or the NP kernel can
handle noisy datasets, as the GP performance is only
slightly affected when noise is introduced in the data.
Nonetheless, each kernel should be chosen in the light
of underlying structure of the dataset, as the kernel con-
trols the prior distribution over functions, and thus the
models generalization properties [48,75]. It is noteworthy
to mention that we have implemented a broad, though
not exhaustive, panel of kernels, which is susceptible to
be further completed with other base kernels or kernel
combinations (composite kernels) [48,75,76].

GP can consider individual experimental errors as input
for the probabilistic model which may constitute a preem-
inent advantage when gathering information from diverse
sources, each of which including distinct levels of experi-
mental uncertainty [33]. In the present study, an approxi-
mation of the experimental uncertainty of heterogeneous
pKi values, recently reported by Kramer et al. [22] to
exhibit a standard deviation of 0.54 pKi units, has been
introduced in the model. Nonetheless, GP allow the inclu-
sion of the uncertainty of each individual datapoint into
the model, which might lead to a more accurate model-
ing pipeline in cases where the experimental uncertainty
of each datapoint is available.

Traditionally, the application of GP to model large
datasets has been limited since the inversion of the covari-
ance matrix scales with the cube of its dimension, i.e. GP

is an algorithm of complexity O(N3) [31,48]. In the present
study, we have not reported training times since mod-
els have been trained with GP implementations coded
in different programming languages (subsection Machine
learning analyses and implementation). In the experience
of the authors, the application of ARD is limited by the size
of the datasets, being not applicable in practice to datasets
with more than several thousands of datapoints, or with
more than several hundreds of descriptors. Neverthe-
less, new GP implementations have proved to seemingly
decrease calculation times, [77-79] which might increase
the applicability of GP to large PCM datasets in the future.

Overall, we have shown here that GP simultaneously
provides bioactivity predictions and assessment of their
reliability. The application of GP to PCM datasets, gives
the insight that GP could also be very useful in the
drug discovery for personalized medicine, when the target
space includes several mutants of a given target [15,80].
In the same way, GP could even be used in the context of
decision making in clinics [81].

Conclusion
Gaussian Processes (GP) have been proposed and tested
for the prediction of bioactivity measurements, and found
to perform at the same level of statistical significance as
Support Vector Machines (SVM). In addition, GP is the
only method, up to now, to give predictions as probability
distributions, thus permitting the estimation of errors on
the bioactivity predictions as well as an estimation of the
applicability domain. Moreover, GP are tolerant to noisy
bioactivities. GP models trained on PCM datasets can also
be used to analyze the effect of ligand features (compound
substructures or peptide residues).
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