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A B S T R A C T

Objectives: We evaluated the feasibility of optimising coronary perfusion pressure (CPP) during cardiopulmonary
resuscitation (CPR) with a closed-loop, machine-controlled CPR system (MC-CPR) that sends real-time haemo-
dynamic feedback to a set of machine learning and control algorithms which determine compression/decom-
pression characteristics over time.
Background: American Heart Association CPR guidelines (AHA-CPR) and standard mechanical devices employ a
“one-size-fits-all” approach to CPR that fails to adjust compressions over time or individualise therapy, thus
leading to deterioration of CPR effectiveness as duration exceeds 15–20 min.
Methods: CPR was administered for 30 min in a validated porcine model of cardiac arrest. Intubated anaesthetised
pigs were randomly assigned to receive MC-CPR (6), mechanical CPR conducted according to AHA-CPR (6), or
human-controlled CPR (HC-CPR) (10). MC-CPR directly controlled the CPR piston’s amplitude of compression
and decompression to maximise CPP over time. In HC-CPR a physician controlled the piston amplitudes to
maximise CPP without any algorithmic feedback, while AHA-CPR had one compression depth without adaptation.
Results: MC-CPR significantly improved CPP throughout the 30-min resuscitation period compared to both AHA-
CPR and HC-CPR. CPP and carotid blood flow (CBF) remained stable or improved with MC-CPR but deteriorated
with AHA-CPR. HC-CPR showed initial but transient improvement that dissipated over time.
Conclusion: Machine learning implemented in a closed-loop system successfully controlled CPR for 30 min in our
preclinical model. MC-CPR significantly improved CPP and CBF compared to AHA-CPR and ameliorated the
temporal haemodynamic deterioration that occurs with standard approaches.
Introduction

More than 350,000 cases of out-of-hospital cardiac arrest (OHCA)
occur in the United States every year, resulting in approximately 320,000
deaths.1,2 The majority of these patients receive cardiopulmonary resus-
citation (CPR) for more than 25–30 min.3,4 However, manual or me-
chanical CPR lasting longer than 15–20 min is profoundly ineffective, with
almost 100% mortality in patients requiring more than 35–40 min of
CPR.4–9 For patients with refractory ventricular fibrillation (VF)/ven-
tricular tachycardia (VT) OHCA, extracorporeal CPR provides stabilisation
capabilities associated with improved neurologically favourable survival.7

With prompt identification and treatment, coronary stenosis or occlusion
can be potentially reversed by advanced perfusion/reperfusion
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strategies.9–11 Despite these crucial advances, outcomes are strongly
associated with the patient’s perfusion state,7 and 55–60% of these pa-
tients still die, mostly from severe brain injury caused by the inherent
inability of standard CPR to maintain oxygen delivery to the brain over
prolonged periods of time.12–14 Our goal is to increase the rate of neuro-
logically favourable survival in patients with refractory OHCA.

Quality of CPR is a critical determinant of survival,15,16 and we recently
showed that the CPR compression characteristics associated with survival
in OHCA patients vary between individuals and vary throughout resusci-
tation.17,18 However, the current American Heart Association (AHA) rec-
ommendations for CPR use a “one-size-fits-all” approach that does not
adapt to the individual variability or time-variation of CPR and fails to
maintain viability after 30 min of resuscitation.7 To achieve our goal, we
must optimise CPR performance and “personalise”
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List of abbreviations

ACD Active Compression Decompression
AHA American Heart Association
AHA-CPR CPR executed according to AHA guidelines
ANOVA analysis of variance
AUC area under the curve
CBF carotid blood flow
CPP coronary perfusion pressure
CPR cardiopulmonary resuscitation
HC-CPR human-controlled CPR
ITD impedance threshold device
LINR linear regression
LQR linear-quadratic regulator
LUCAS Lund University Cardiac Arrest System
MC-CPR machine-controlled CPR
OHCA out-of-hospital cardiac arrest
RA right atrium
ROSC return of spontaneous circulation
VF ventricular fibrillation
VT ventricular tachycardia
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compression/decompression therapy.
Machine learning and automatic control are powerful means to

optimise and individualise medical processes. Their use has been pro-
posed in various applications, including seizure reduction,19 neuromus-
cular control,20 and glycaemic control.21 We are therefore investigating
the use of machine learning and automated control (referred to collo-
quially as “artificial intelligence”) to create an individualised CPR
method that applies dynamic strategies by changing compression char-
acteristics during CPR.

In previous studies, we showed that machine learning algorithms can
predict coronary perfusion pressure (CPP) with as little as 1 mmHg of
error.22 Now we transition to a closed-loop system. We investigated two
methods of closed-loop CPR: (1) machine-controlled CPR (MC-CPR), the
first known closed-loop system of CPR operated by machine learning
prediction and control algorithms built into computer software; and (2)
human-controlled CPR (HC-CPR), which was operated only by the brain
of a physician tasked with monitoring invasive pressures during CPR and
titrating CPR compression/decompression in an effort to optimise
perfusion, but without any distinctive rules.

In this study, we used our previously established porcine model of
cardiac arrest to compare these twomethods to a static CPR device which
executed AHA guidelines precisely (AHA-CPR). The primary measures of
CPR efficacy in this study were carotid blood flow (CBF) and coronary
perfusion pressure (CPP). We hypothesised that applying static AHA
guidelines during prolonged CPR would be suboptimal compared to
closed-loop control, whether controlled by the brain of a human operator
or by a machine applying machine learning and control algorithms. We
further hypothesised that the MC-CPR groupmay outperform the human-
controlled HC-CPR group as CPR duration approaches 30 min.

Methods

Preparatory phase

This study was approved by the University of Minnesota Institutional
Animal Care and Use Committee. A total of 24 naïve farm-raised female
pigs (54 � 5 kg) were prepared under anaesthesia. Data recording and
animal handling procedures have been previously described.13,23,24 The
pigs were anaesthetised with intramuscular ketamine and xylazine (5 ml
of 100 mg/ml dose and 1-3 mg/kg, respectively) followed by isoflurane
at a dose of 1-1.4%. Animals were ventilated with a tidal volume of 8
2

ml/kg using room air volume control ventilation (Narkomed, Draeger
Medical, Telford, Pennsylvania). Arterial blood gas levels were obtained
at baseline and every 5 min until 30 min of CPR. Animal temperature was
measured with an oesophageal temperature probe, and normothermia
(37 � 0.5 C) was maintained. Vascular access was obtained percutane-
ously in the femoral artery and in the right external jugular vein. The
internal carotid artery was accessed by cut-down, and an ultrasonic flow
probe (Transonic, Ithaca, New York) was adhered to the artery. Carotid
blood flow (CBF) was recorded at baseline and every 5 min until 30 min
of CPR. Central aortic blood pressure and right atrial (RA) pressure were
measured with Millar catheters (Millar Instruments, Houston, Texas)
placed in the descending thoracic aorta and right external jugular sheath,
respectively. Measurements from these Millar catheters were used for
calculation of CPP as the difference between diastolic blood pressure and
RA pressure in spontaneous circulation, and the difference between
decompression phase aortic pressure and RA pressure during CPR. Hae-
modynamic pressures were continuously recorded in LabVIEW (Lab-
VIEW 2015, National Instruments, Austin, Texas).

Before the beginning of the study, 24 animal identification numbers
were put into a list that subsequently randomised them to the 3 arms
(HC-CPR, AHA-CPR, and MC-CPR) in a 2:1:1 allocation. The veterinary
technicians and the researchers that were responsible for animal prepa-
ration were blinded to the study arm. An intention to treat strategy was
strictly followed during analysis and no crossovers were allowed after
randomisation. Two of the 12 animals in the HC-CPR group died during
the preparatory phase from profound vasoplegia. Thus, a total of 22
animals received CPR. A higher number of animals was given to HC-CPR
due to the a priori anticipation of higher standard deviation in the
behaviour of a human operator.

VF induction and CPR

Following surgical preparation, isoflurane administration ceased for
3 min. At the end of 3 min, VF was electrically induced using a pacing
wire. Once VF was initiated, ventilation stopped, and no treatment was
provided for 3 min to mimic the earliest time of first responder arrival
and initiation of CPR. Then, all animals received CPR with a mechanical
CPR device and an impedance threshold device (ITD) as follows:

� AHA-CPR: A mechanical CPR device (Lund University Cardiac Arrest
System [LUCAS]) was used to administer CPR with precise and ac-
curate adherence to AHA-CPR depths (set at 5.3 cm of compression
and 0 cm decompression at 100 compressions/min).13,25,26

� HC-CPR: In this group, a human operator was able to view the CPP
waveform in real-time and was tasked to maximise CPP by using a
custom active compression-decompression CPR piston. This was a
specially designed piston that enabled real-time adjustment of
compression and decompression amplitude.13,25–27 A maximum of 6
cm for compression amplitude and 7.0 cm for decompression ampli-
tude was allowed. Compressions were supplied at 100 beats per minute
with a 50% compression-decompression duty cycle. The operator of the
piston in this groupwas a physician whowas instructed to optimise and
improve CPP during CPR via the direct control of compression and
decompression amplitudes. The physician operator followed their
medical and physiologic intuition, and had continuous access to view
the CPP on a screen in order to modify their choices in whatever way
they saw appropriate. The physician was told that they were part of an
experiment to compare human-controlled CPR against AHA guidelines
in order to provide positive reinforcement. They were unaware that
they would be compared to MC-CPR and were blinded to AHA-CPR
results. Using this group, we were able to compare the performance
of a human physician’s brain against the performance of MC-CPR’s
machine learning and control algorithms.

� MC-CPR: the same custom CPR piston used for HC-CPR was applied
in the MC-CPR group, except the amplitudes of compression and
decompression were instead controlled by the outputs of machine
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learning and control algorithms running within Matlab software
(Mathworks, Natick, Massachusetts) and communicating to the pis-
ton. The algorithms are briefly described in the next section, andmore
detail may be found in the Mathematical Supplement.

All animals received 30 min of CPR by one of the methods above.
Ventilations were delivered at 10 respirations/min and 8 ml/kg of tidal
volume. Epinephrine was delivered per standard protocol with 0.014
mg/kg per 5-min intravenous dose starting at minute 10 of CPR. Animals
were defibrillated up to three times at the end of CPR. If defibrillations
were unsuccessful, the animal was declared dead. In case of return of
spontaneous circulation (ROSC), animals were monitored for up to 30
min and then euthanised.
Closed-loop method of machine-controlled CPR

An overview of the flow of information in MC-CPR is displayed in
Fig. 1. Live CPP data as well as the amplitudes of compression and
decompression were continuously streamed to the computer which
housed all algorithms. Continuous waveforms were converted into single
measurements of mean CPP, compression amplitude, and decompression
amplitude such that data was calculated on a cycle-by-cycle basis.

In general, closed-loop MC-CPR consisted of an algorithm for pre-
diction of CPP and an algorithm for control of the piston. Together, these
computer algorithms were used to calculate the optimal amplitudes of
CPR to send to the piston for execution. Of note, the algorithms did
require some information from a user at the computer; they required the
user to specify what mean CPP was the desired “target” for CPR and to set
Fig. 1. Flow of Information During Closed-loop Control
Waveforms of the piston’s distance from the chest and the CPP output from the an
gorithms. The predictive algorithm (LINR) was used within the framework of the con
stepwise manner as depicted. The user of the CPU sets the target CPP for an instan
increases the target itself. If the controller was overshooting, or if external forces were
to minimise inappropriate reactions from the controller. CPP, coronary perfusion pr
linear-quadratic regulator; LINR, linear regression; Q, quadratic characteristics of th
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the intensity of the controller in reaching that target (Q), as well as how
quickly the controller could react to changes in CPP (R). Since it has been
reported in literature that a CPP>15 mmHg is required to achieve ROSC
in the setting of cardiac arrest,28 the lower limit “target” for MC-CPR was
a CPP of at least 15 mm Hg. To be confidently beyond this threshold, we
aimed for a target of 20–25 mmHg. Once this target was achieved,
excessive resuscitation efforts were moderated by the algorithms of
MC-CPR. A detailed description of the algorithms of MC-CPR is also
included (Mathematical Supplement).
Data analysis

CPR haemodynamics, distance waveforms, and force waveforms
measured from the head of the custom piston were recorded by LabVIEW
and analysed with Matlab. CBF was quantified by taking a 10-second
average of the ultrasonic flow waveform every 5 min, including negative
values of flow. CPP was quantified as an average over the decompression
phase of CPR only. The thoracic compliance of each animal during CPR
was calculated from the force and distance waveforms, as described in
the Mathematical Supplement.

Statistical analyses were performed using Stata (StataCorp, College
Drive, Texas) software. The temporal evolution of CPP and CBF during
CPR was quantified by a linear fit of their minute-by-minute values. To
assess the effect of the treatment arm on the measured haemodynamic
and metabolic variables, we performed a two-way Analysis of Variance
(ANOVA) with minute of CPR and study arm as entered parameters.
Lastly, the area under the curve (AUC), a parameter highly correlated
with ROSC,28 was calculated for CPP in each animal. Linear fit and AUC
imal were discretised to a cycle-by-cycle basis before being provided to the al-
trol algorithm (LQR), but they can be conceptualised as passing information in a
t of time and gradually increases Q until the controller reaches the target, then
being applied to the animal, such as IV injections, R would be increased in order
essure; CPR, cardiopulmonary resuscitation; CPU, central processing unit; LQR,
e controller; R, regulator characteristics of the controller.



P.S. Sebastian et al. Resuscitation Plus 3 (2020) 100021
comparison between MC-CPR and the other groups were performed with
two-way ANOVA.

Results

No differences between groups were observed in the baseline hae-
modynamic measurements.

Compression characteristics

Fig. 2 summarises the amplitudes of compression and decompression
among groups. Compression amplitude was 53 mm for AHA-CPR, 47 � 8
mm for MC-CPR, and 43 � 5 mm for HC-CPR. Decompression amplitude
was 51 � 8 mm for MC-CPR, 42 � 5 mm for HC-CPR, and 0 mm AHA-
CPR. HC-CPR and MC-CPR led to active decompression and shallower
compression amplitudes compared with AHA-CPR. MC-CPR depths var-
ied more throughout time compared to the other methods.

Haemodynamic pressures and ROSC rates

Table 1 shows the baseline and mean values of all haemodynamics
calculated for each 5-min interval over the 30-min CPR period. Diastolic
and systolic blood pressures were significant between groups (p < 0.05).
CPP over the 30min of CPRwas also significantly different between groups
(p < 0.001), and the disparity between MC-CPR and the other two groups
increased as time approached 30 min (Fig. 3). After the initial drop from
baseline, CPP consistently increased for MC-CPR and decreased for AHA-
CPR, whereas for HC-CPR the CPP increased during the first 15 min and
then decreased. Fig. 3 shows the minute-by-minute values of CPP, with
temporal evolution quantified by a linear fit. Animals treatedwithMC-CPR
had a positive slope (þ0.36 � 0.17 mmHg/min) while declining slopes
were observed in those treated with AHA-CPR (–0.26 � 0.15 mmHg/min)
and HC-CPR (–0.01 � 0.05 mmHg/min) (p ¼ 0.004).

The areas under the CPP curve (AUC) were calculated for every ani-
mal. The mean AUC of HC-CPR (520� 27 mmHg*sec) and MC-CPR (570
� 68 mmHg*sec) were significantly greater than that of AHA-CPR (332
� 72 mmHg*sec) (p ¼ 0.011), indicating that AHA-CPR led to less
Fig. 2. Amplitudes of Compression and Decompression
Values are means with standard deviations represented by shading. MC-CPR showed t
Heart Association recommendations; HC-CPR, human-controlled CPR; MC-CPR, ma

4

cardiac perfusion. This agreed with the rates of ROSC observed after
defibrillation: 50% for HC-CPR, 50% forMC-CPR, and only 17% for AHA-
CPR.

Carotid blood flow

The trends in CPP over the course of CPR paralleled trends in cerebral
blood flow (measured as CBF), as displayed in Fig. 4 and Table 1. The
minute-by-minute CBF was significantly different between groups (p ¼
0.035). AHA-CPR had the highest CBF at initiation of CPR (59% of
baseline flow at minute 0, Fig. 4), correlating with a higher initial
compression depth based on protocol. However, the AHA-CPR group
showed a steep drop in CBF over the first 15 min, whereas levels
increased or were maintained for HC-CPR and MC-CPR. The rate of
change in CBF quantified by linear fit showed a negative slope of –1.5 �
0.3%/min for AHA-CPR, a negative slope of –0.2 � 0.2%/min for HC-
CPR, and a nearly flat slope of 0.0 � 0.2%/min for MC-CPR. Both the
MC-CPR and HC-CPR slopes were significantly more positive than the
slope of AHA-CPR (p ¼ 0.002). Together with the CPP findings, these
data suggest that MC-CPR can maintain vital organ perfusion and
ameliorate haemodynamic deterioration for 30 min of CPR.

Arterial blood gases

As shown in Table 1, values for arterial partial pressure of CO2
initially decreased or remained relatively stable throughout CPR in the
MC-CPR and HC-CPR groups but varied widely in the AHA-CPR group.
Partial pressure of oxygen was variable in all groups. Oxygen saturation
of arterial blood was lower for AHA-CPR than for MC-CPR and HC-CPR,
especially during the last 5 min of CPR. The arterial partial pressure of
CO2, the arterial pressure of O2, and the arterial oxygen saturation were
significantly different between groups (p < 0.05 for all).

Chest wall compliance

Force during CPR could not be calculated for AHA-CPR because the
LUCAS is a proprietary device without accessible sensors. Thus, force and
he greatest variation in compression and decompression depths. AHA, American
chine-controlled CPR.



Table 1
Assessments and results over 30 min of CPR.

Signal Minutes of CPR ANOVAa

Group Baseline 0-5 5-10 10-15 15-20 20-25 25-30 p-value

CPP, mmHg
AHA-CPR 60 � 7 15 � 2 14 � 2 12 � 3 9 � 3 9 � 3 8 � 3 <0.001
HC-CPR 68 � 5 14 � 1 19 � 1 21 � 1 19 � 1 17 � 1 15 � 1
MC-CPR 55 � 7 13 � 1 18 � 1 20 � 3 21 � 3 22 � 3 22 � 3

CBF, % of baseline
AHA-CPR 100 44 � 4 33 � 4 24 � 6 18 � 6 15 � 6 11 � 5 0.035
HC-CPR 100 26 � 3 27 � 2 22 � 3 21 � 3 18 � 3 16 � 3
MC-CPR 100 23 � 2 23 � 2 22 � 2 19 � 3 22 � 4 24 � 3

Systolic aortic BP (compression), mmHg
AHA-CPR 107 � 7 79 � 5 70 � 5 70 � 8 62 � 11 56 � 12 53 � 13 0.0066
HC-CPR 113 � 6 62 � 3 70 � 4 73 � 5 70 � 5 66 � 5 62 � 5
MC-CPR 102 � 7 56 � 6 59 � 2 60 � 5 60 � 6 65 � 7 67 � 8

Diastolic aortic BP (decompression), mmHg
AHA-CPR 70 � 6 28 � 4 26 � 4 24 � 5 19 � 6 18 � 6 17 � 6 <0.001
HC-CPR 78 � 5 28 � 1 33 � 1 37 � 2 34 � 2 31 � 2 27 � 2
MC-CPR 65 � 6 26 � 2 30 � 1 33 � 4 34 � 5 36 � 5 37 � 5

Systolic RA (compression), mmHg
AHA-CPR 5 � 1 152 � 25 152 � 25 150 � 32 130 � 30 110 � 22 104 � 21 <0.001
HC-CPR 4 � 1 79 � 6 85 � 6 86 � 5 85 � 6 91 � 9 107 � 23
MC-CPR 4 � 1 73 � 8 75 � 6 85 � 11 74 � 7 81 � 7 81 � 8

Diastolic RA (decompression), mmHg
AHA-CPR 10 � 1 13 � 2 12 � 2 12 � 2 10 � 3 9 � 3 9 � 3 <0.001
HC-CPR 10 � 1 14 � 1 14 � 1 16 � 1 15 � 1 14 � 1 12 � 1
MC-CPR 10 � 1 13 � 2 12 � 1 13 � 2 13 � 2 14 � 2 15 � 2

pCO2, mmHg
AHA-CPR 38 � 1 40 � 6 37 � 8 40 � 10 49 � 17 34 � 2 87 � 1 0.002
HC-CPR 42 � 1 37 � 2 33 � 2 34 � 4 28 � 3 35 � 3 45 � 10
MC-CPR 39 � 2 35 � 4 29 � 2 27 � 2 28 � 3 27 � 2 28 � 3

pO2, mmHg
AHA-CPR 126 � 9 86 � 4 87 � 15 84 � 16 59 � 15 70 � 4 42 � 10 0.031
HC-CPR 107 � 4 86 � 8 94 � 7 82 � 9 84 � 8 71 � 8 75 � 8
MC-CPR 110 � 6 79 � 8 102 � 4 89 � 5 117 � 40 85 � 16 85 � 2

SaO2, %
AHA-CPR 99 � 1 96 � 2 85 � 12 82 � 13 73 � 18 90 � 2 2 � 1 0.044
HC-CPR 98 � 1 94 � 2 96 � 1 92 � 2 93 � 2 84 � 5 85 � 9
MC-CPR 99 � 1 95 � 1 97 � 1 96 � 2 95 � 3 93 � 4 86 � 3

Force, lb
HC-CPR – 25 � 1 21 � 1 19 � 2 18 � 2 18 � 2 17 � 1 0.264
MC-CPR – 22 � 3 22 � 1 20 � 1 19 � 1 20 � 1 19 � 2

Compliance, (m^-1)
HC-CPR – 39 � 1 42 � 1 42 � 1 41 � 1 40 � 1 40 � 1 <0.001
MC-CPR – 40 � 3 46 � 4 46 � 4 46 � 4 46 � 6 47 � 6

Values are means � standard error calculated for 5-min intervals over the 30-min CPR period.
AHA, American Heart Association recommendations; ANOVA, analysis of variance; BP, blood pressure; CBF, carotid blood flow; CPP, coronary perfusion pressure; CPR,
cardiopulmonary resuscitation; HC-CPR, human-controlled CPR; MC-CPR, machine-controlled CPR; pCO2, partial pressure of carbon dioxide; pO2, partial pressure of
oxygen; RA, right atrium; SaO2, oxygen saturation of arterial blood.

a Two-way ANOVA with Study Arm and minute of CPR inserted as model parameters.
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thoracic compliance were only calculated for HC-CPR and MC-CPR.
Compliance values were higher for MC-CPR than for HC-CPR (p <

0.001) as displayed in Table 1.
Respiratory control variation

The arterial blood gas results and perfusion results were compli-
mented by an observation that the MC-CPR group had CPR amplitudes,
and consequently forces, which varied with the respiratory cycle. As
illustrated in Fig. 5, MC-CPR algorithms were able to anticipate when
breaths were occurring based on changes in the CPP driven by RA
pressure.

Discussion

This study shows that machine learning algorithms can be deployed
successfully to predict CPR performance and control compression/
decompression parameters, improving haemodynamic and perfusion
measurements over 30 min of CPR. We found that MC-CPR ameliorated,
if not eliminated, the natural decline in both coronary and cerebral
5

perfusion (measured using the surrogates CPP and CBF) which were
observed in the AHA-CPR group in the present study and have been
historically appreciated in prolonged CPR following AHA guide-
lines.4,6,28 Thus, contrary to current established belief, it is possible to
maintain CPR quality for extended periods of resuscitation. The
improvement of vital organ perfusion by MC-CPR was further corrobo-
rated by an improved ROSC rate; however, the study was not powered for
survival.

In comparing HC-CPR to MC-CPR, it is important to acknowledge that
machine learning can lead to interventions which cannot be rationalised
by current scientific knowledge. MC-CPR was the only group which
changed depth and force of compression with the respiratory cycle
(Fig. 5). Oscillating force and amplitude with the respiratory cycle may
have contributed to the discrepancy between MC-CPR and HC-CPR, but
we can only speculate on the physiologic mechanism. The oscillation was
not due to a hard-coded input to the control algorithms of MC-CPR but
was instead an observed result of MC-CPR’s capacity to predict and
anticipate changes in CPP influenced by RA pressure. It is possible that
this oscillation led to less pulmonary trauma and avoided pulmonary
vasoconstriction by allowing better alveolar gas distribution. Since



Fig. 3. Mean Coronary Perfusion Pressure for animals receiving CPR based on AHA Recommendations vs Human-Controlled CPR vs Machine-Controlled
CPR
CPP for each minute of CPR is plotted along with the linear curves used to quantify the rate of change of CPP per minute. AHA, American Heart Association; CPP,
coronary perfusion pressure; CPR, cardiopulmonary resuscitation; HC-CPR, human-controlled CPR; MC-CPR, machine–controlled CPR.

Fig. 4. Mean Carotid Blood Flow of AHA vs Human-Controlled vs Machine-Controlled CPR
CBF was measured every 5 min of CPR and expressed as a percentage of baseline. CBF was further analysed by linearly fitting the data. CBF, carotid blood flow; CPR,
cardiopulmonary resuscitation.
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thoracic compliance was also greater in MC-CPR than in HC-CPR, it is
also possible that MC-CPR’s oscillation was able to mechanically condi-
tion the thorax, harnessing the thoracic pump which has been theorised
to be a source of blood flow in CPR.29,30

Animals in both the HC-CPR and MC-CPR groups received consider-
ably lower compression depth than the AHA-recommended CPR. In
addition, the immediate feedback of CPP in both HC-CPR and MC-CPR
6

led to the independent selection— by human operator or algorithm
control, respectively— of active decompression for the optimisation of
CPR. It was unsurprising that both the human operator and the machine
algorithms chose active decompression when immediate CPP feedback
was available, since active compression-decompression (ACD)þ ITD CPR
has been shown to be superior to standard CPR or ACD alone.31 However,
it was surprising that MC-CPR performed better than HC-CPR. MC-CPR



Fig. 5. Closed-loop Feedback of Coronary Perfusion Pressure to the Prediction and Control Algorithms of Machine-Controlled CPR
Closed-loop feedback resulted in forces and amplitudes of CPR which automatically oscillated with respirations. CO2, carbon dioxide CPP, coronary perfusion
pressure; RAP, right atrial pressure.
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chose a lower compression depth compared to AHA-CPR and chose a
higher decompression depth than HC-CPR on average. While both active
decompression groups (MC-CPR and HC-CPR) had significantly elevated
diastolic RA pressures, likely representing greater active filling, it re-
mains the most remarkable that— even when compared to immediate
CPP assessment and response by a physician operator with access to
active decompression in the HC-CPR group— MC-CPR still performed
better in maximising CPP.

In addition, our results show that MC-CPR has the potential to ac-
count for inter- and intra-patient variability. Inter-patient variability was
indicated in Fig. 2, as the automated algorithms were able to vary CPR
depths in an effort to find the optimal depths in the long term. Intra-
patient variability was exhibited in the time-variance of perfusion dur-
ing prolonged CPR, displayed in Figs. 3 and 4.

Refractory OHCA patients undergo mechanical CPR for 45–60 min or
more,7 and their dismal prognosis will continue if new ways to optimise
prolonged CPR are not implemented. While HC-CPR was better than
AHA-CPR as a method of titrating CPR amplitude to maximise CPP
initially, HC-CPR is entirely dependent on the mind of the operator and
has low reproducibility. Thus, HC-CPR is not generalisable, limiting its
clinical applicability. In contrast, MC-CPR not only displayed the most
promise in maintaining perfusion but is also a method that can be
implemented in an automated mechanical device in the future. We
envision MC-CPR as a future method of not only personalising
7

compression/decompression amplitude, but also compression rate,
compression-to-decompression duty cycle, and compression location on
the chest. Since the layering of more control variables will exponentially
increase the complexity of control, in the long run “personalisation” of
controls can only be feasibly achieved by a computer-controlled method
like MC-CPR.

The study has limitations. First, CPP cannot be directly measured in
the field. Methods for non-invasive surrogate measurements of perfusion
will be vital to the development of robust closed-loop CPR systems which
are clinically applicable. End tidal CO2, real-time VF ECG waveform
analysis, and thoracic compliance are promising measures (some of
which have already been correlated to ROSC outcomes32,33) that could be
researched independently or in combination as substitutes for CPP.
Second, as depicted in Fig. 1, a computer user must supervise and tune
the MC-CPR algorithm. Future research will involve eliminating this
necessity by learning the process of tuning through a higher-level algo-
rithm so that no supervisor of the computer would be necessary to ensure
safe and effective operation of MC-CPR. Third, our study was performed
in a porcine model with the use of an ITD. These animal experiments
show promise, and subsequent studies will be done to expand on these
preliminary results and refine MC-CPR for use in more scenarios, such as
without the application of an ITD, before integration into clinical prac-
tice. Finally, we evaluated only haemodynamic improvement and not
survival. We have previously shown that haemodynamic improvements
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during the course of CPR lead to better survival outcomes in the same
model and in translational clinical trials.17,25,31,34–38

Conclusion

MC-CPR improved CPP and CBF over the course of 30 min of CPR
compared to AHA guidelines CPR and HC-CPR. MC-CPR sustained high
perfusion pressures throughout 30 min of CPR and ameliorated the
haemodynamic deterioration expected to occur with standard ap-
proaches. To our knowledge, this is the first report to show that machine
learning methods can control CPR for extensive periods in a preclinical
setting. Identification of additional CPR parameters to control, as well
non-invasive or less invasive surrogates of CPP for feedback are targets of
future investigation.
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