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ABSTRACT

Allele-specific expression (ASE) is a fundamental
problem in studying gene regulation and diploid tran-
scriptome profiles, with two key challenges: (i) hap-
lotyping and (ii) estimation of ASE at the gene iso-
form level. Existing ASE analysis methods are lim-
ited by a dependence on haplotyping from laborious
experiments or extra genome/family trio data. In ad-
dition, there is a lack of methods for gene isoform
level ASE analysis. We developed a tool, IDP-ASE,
for full ASE analysis. By innovative integration of
Third Generation Sequencing (TGS) long reads with
Second Generation Sequencing (SGS) short reads,
the accuracy of haplotyping and ASE quantification
at the gene and gene isoform level was greatly im-
proved as demonstrated by the gold standard data
GM12878 data and semi-simulation data. In addition
to methodology development, applications of IDP-
ASE to human embryonic stem cells and breast can-
cer cells indicate that the imbalance of ASE and non-
uniformity of gene isoform ASE is widespread, in-
cluding tumorigenesis relevant genes and pluripo-
tency markers. These results show that gene isoform
expression and allele-specific expression cooperate
to provide high diversity and complexity of gene reg-
ulation and expression, highlighting the importance
of studying ASE at the gene isoform level. Our study
provides a robust bioinformatics solution to under-
stand ASE using RNA sequencing data only.

INTRODUCTION

In diploid organisms, such as human and mouse, paternal
and maternal alleles can be regulated and expressed un-
equally, which is termed allele-specific expression (ASE).

This phenomenon includes (i) random X-chromosome in-
activation (1); (ii) parent-of-origin imprinting (2,3); (iii) ran-
dom monoallelic expression of autosomal genes (4); (iv)
widespread ASE biases, in which one allele has a signifi-
cantly higher expression level than other alleles (5) and (v)
allele-specific isoform expression, in which specific isoforms
from one allele are exclusively expressed or have relatively
higher expression in comparison to other isoforms (6). Re-
cent studies have established that expression of alleles is
non-equal for many genes, and the expression bias between
alleles varies dramatically (7). These ASE effects can vary by
cell/tissue type (8), developmental stage (9) and patholog-
ical features (10). For example, the rate of ASE is remark-
ably higher in cancer cells as compared to normal tissues,
which could be caused by a change in copy number or allelic
composition (11). Since alleles from the same gene/gene iso-
form can provide heterozygous transcripts with distinct se-
quences, full analysis of ASE is necessary to achieve a thor-
ough understanding of transcriptome profiles.

The ASE problem contains two parts: haplotyping
and ASE quantification. Haplotyping refers to group-
ing heterozygous genetic variants (e.g. single nucleotide
variants/SNVs; note that below ‘SNVs’ refers to heterozy-
gous SNVs for conciseness) at multiple heterozygous sites
into two sets. Most existing methods can only identify each
SNV independently (12,13). Haplotyping is necessary to re-
construct entire alleles so that the full-length sequences of
alleles can be studied as a whole. Moreover, correct haplo-
typing is necessary for accurate quantification of ASE. ASE
quantification refers to estimating the abundance of alleles
and measuring the proportion of allele expression within a
gene. In addition to the gene level, ASE at the gene isoform
level should be also estimated.

To analyze ASE, many experimental and bioinformatics
approaches have been developed. In contrast to genome-
wide genotyping arrays based on microarray hybridiza-
tion (14,15) and large-scale synthetic padlock probes that
capture transcripts with known exonic SNVs (16,17), next

*To whom correspondence should be addressed. Tel: +1 319 335 3053; Fax: +1 319 353 6406; Email: kinfai-au@uiowa.edu

C© The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com



e32 Nucleic Acids Research, 2017, Vol. 45, No. 5 PAGE 2 OF 11

generation sequencing provides data to study genome-
wide ASE with less bias while not being limited to only
known SNVs (18). A number of bioinformatics tools based
on high-throughput Second Generation Sequencing (SGS)
data have been developed, such as AlleleSeq (19), MMSEQ
(6), asSeq (20), Allim (21), MBASED (11), Allele Work-
bench (22), QuASAR (23), ASEQ (24), EMASE (25) and
others (8,26,27). However, either available phased geno-
types (e.g. MMSEQ, asSeq and EMASE) or family trio data
(e.g. AlleleSeq and Allim) are required for haplotyping us-
ing most of these applications. While QuASAR uses solely
RNA-seq data, it can only perform ASE analysis at the sin-
gle SNV level. MBASED is the only currently available tool
for ASE analysis at the gene level using only RNA-seq data.
However, the false positive rate of its ‘pseudo haplotyping’
procedure is uncertain when imbalances of two alleles are
not significant or when isoforms have distinct ASE profiles
within a gene. These problems of SGS methods are mostly
caused by the short read length (100–250 bp) because multi-
ple SNVs cannot be covered by single short reads. Another
challenging but fundamental problem is the quantification
of ASE at the gene isoform level. Although MMSEQ could
perform gene isoform level ASE analysis, the dependence of
known haplotypes and known isoform library greatly limits
its utility and quantification accuracy. Overall, a bioinfor-
matics method that does not rely on known haplotypes or
known isoform library but only requires RNA-seq data is
of high demand to promote ASE research.

Third Generation Sequencing (TGS), including Pa-
cific Biosciences (PacBio) sequencing (28,29) and Oxford
Nanopore Technologies (ONT) (30) provides much longer
reads (1–100 kb). TGS long reads have been used success-
fully to identify full-length gene isoforms and thus have the
potential to overcome the haplotyping problem and ASE
quantification at the gene isoform level (31–34). Single TGS
long reads can cover multiple or even all SNVs within a
gene, which reduces or solves the combinatorial complexity
of haplotyping SNVs. However, the high error rate of TGS
limits the accuracy of haplotyping, and the low through-
put is not suitable for quantifying ASE. Hybrid sequencing
(‘Hybrid-Seq’), which integrates TGS and SGS data, can
address the limitations associated with SGS-only and TGS-
only analysis and can improve the overall performance and
resolution of the output data. In particular, a series of bioin-
formatics tools for Hybrid-Seq transcriptome data, includ-
ing LSC, IDP and IDP-fusion, have been demonstrated to
elucidate transcriptomes at the gene isoform level with high
precision and sensitivity (31,34–36).

Here, we present a new method (termed IDP-ASE, http:
//www.healthcare.uiowa.edu/labs/au/IDP-ASE/) for haplo-
typing and quantification of ASE at both the gene and gene
isoform levels requiring only RNA sequencing data. First,
IDP-ASE integrates TGS and SGS data with a Bayesian
model to determine haplotypes and quantify ASE at the
gene level. After utilizing our previously published tool
IDP to identify the expressed isoforms, we applied a Pois-
son model to estimate the abundance of allele-specific iso-
forms and further calculate ASE at the gene isoform level.
The proof-of-concept application to the gold-standard data
GM12878 demonstrates the superior accuracy of haplo-
typing by IDP-ASE with Hybrid-Seq data. In addition,

we examined the haplotyping performance with respect
to sequencing coverage, which established that TGS long
reads are informative for haplotyping. We also evaluated
the quantification performance at the gene and gene iso-
form levels by semi-simulation data. Applying IDP-ASE to
human breast cancer cells (MCF-7 cell line) and human em-
bryonic stem cells (hESCs, H1 cell line), we not only iden-
tified extensive ASE events, including a few tumorigenesis-
relevant genes and pluripotency markers, but we also dis-
covered distinct ASE imbalances among isoforms within
single genes.

MATERIALS AND METHODS

Data sources

Hybrid-Seq data from H1 cell line has been previously pub-
lished (31,34) and is available in the Gene Expression Om-
nibus (GEO) (accession no. GSE51861). SGS data from
MCF-7 cell line has been previously published (37) and is
available in GEO database (accession no. GSE49831). TGS
data from MCF-7 cell line has been previously published
(34) and is available on the National Center of Biotechnol-
ogy Information (NCBI) SRA (accession no. SRP055913).
Hybrid-Seq data from GM12878 has been previously pub-
lished (33) and is available in the NCBI SRA (accession no.
SRP036136).

Statistical method for haplotyping and quantification of ASE
at the gene level

Many bioinformatics methods (e.g. SAMtools and GATK
(12,13)) based on SGS short reads provide high-accuracy
SNV calling because the error rate of SGS data is very low.
Therefore, we can assume that the SNVs are known (e.g. de-
termined using SGS data). Our model is constructed only
for SNVs which are nucleotide substitutions. We further as-
sume that each variant site is biallelic and only heterozy-
gous variants will be considered, as homozygous variants
are uninformative about haplotyping (38). Suppose there
are m$heterozygous variant sites in the gene of interest. For
the jth site, let w0 j and w1 j denote the two possible alle-
les, with w2 j and w3 j arbitrarily assigned the remaining two
nucleotides. Let H = (h, h̄) be the unordered pair of hap-
lotypes, where h, a binary string of length m, corresponds
to the phase of one of the strands, i.e. h j = 0$ if the vari-
ant at site j is equal to w0 j and 1 if it is equal to w1 j . Since
the variants are heterozygous and biallelic, the phase of the
other strand, h̄, is the bitwise complement of h.

At the jth site, reads are assigned 0 if they match w0 j , 1
if they match w1 j , 2 if they match w2 j , and 3 if they match
w3 j . Let Si represents the i th such read where Si is a se-
quence over the set {0, 1, 2, 3 −}, and “−” corresponds to
the variant site not covered by the read. Assume n reads are
uniquely mapped to the gene of interest. Then let S be a
n × m matrix whose i th row corresponds to Si . Let X, the
read matrix, denote how the S matrix aligns with the hap-
lotype (Figure 1).

http://www.healthcare.uiowa.edu/labs/au/IDP-ASE/
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Figure 1. Model for haplotyping and ASE quantification. This illustration exhibits a gene with four SNVs, two isoforms, and allele specific expression
(indicated by blue and wheat color). The reference and alternative SNV calls are given by w0 = C, C, G, A and w1 = T, G, T, C. The non-overlapping
exon segments are given by r1 − r4. In the gene-level model, long- and short-read alignment information, along with SNV positions, are converted into
the read matrix X which is used by the Bayesian model for haplotyping and ASE quantification. For the isoform level model a Poisson model is used to
obtain the MLE of the isoform-level allele specific abundance, τ . On the right is the matrix {αskh} where each row corresponds to a region, each column
corresponds to an isoform, and the two colors correspond to a different haplotype. The number of short reads, ys , within a region are displayed to the left
of {αskh}. For example, the region {r4} corresponds to reads that only mapped to segment r4 and not any other region or SNV (there are nine such reads,
highlighted in pink) while region {r2, r3, w01, w12} corresponds to reads that mapped to both region r2 and r3, and covered the first SNV with a sequenced
nucleotide of w01 = C and the second SNV with a sequenced nucleotide of w12 = G. (There is 1 such short read, highlighted in brown.)

χi j=

⎧⎪⎨
⎪⎩

0 i f si j = h j

1 i f si j = h̄ j
2 i f si j = 2
3 i f si j = 3

Each xi j has a categorical distribution with parameter
pi j (Q) = (pi j0, pi j1, pi j2, pi j3) where p is a probability vec-
tor and Q is a user input, or data derived error model. The
model is general and accepts reads and the corresponding
error models from different sources/platforms (e.g. differ-
ent types of SGS and TGS), such as Illumina short reads,
PacBio subreads and PacBio CCS reads. Below a concrete
example of an error model is presented.

Denote ρ ∈ [0, 1] as the gene level relative ASE. Given the
read data and the error, the goal of IDP-ASE is to obtain
the most likely pair of haplotypes and the corresponding ρ:

(
Ĥ, ρ̂

) = argmax
H, ρ

f (H, ρ|X,Q)

Since ρ is continuous and unknown, it will not be possi-
ble to enumerate all possibilities. Instead, samples from the
joint distribution of H and ρ will be drawn. By Bayes’ rule
we have

f (H, ρ|X,Q) α f (X|Q, H, ρ) π (ρ, H) (1)

A flat prior for the joint distribution of H and ρ yields

= f (X|Q, H, ρ) (2)

Suppose the reads are conditionally independent given
the haplotype H and error model Q

=
∏n

i=1
f (Xi |Q, H, ρ) (3)

To account for allele-specific expression, each read Xi is
modelled as a mixture distribution with mixture weights ρ
and 1 − ρ corresponding to the originating strand of the
transcript to which the read mapped

=
n∏

i=1

[
ρ f (Xi |Q, h) + (1 − ρ) f

(
Xi |Q, h̄

)]
(4)

Recall that the xi j have a categorical distribution. Assum-
ing variant calls in a read are independent of each other con-
ditional on the haplotype and error model, and that variants
not covered by a read contribute nothing to likelihood

f (Xi |Q, h) =
∏

j :si j �=“−”

p
1{ si j =h j }
0 j p

1{ si j = 1−h j }
1 j p

1{ si j = 2}
2 j p

1{ si j = 3}
3 j (5)

Here, in the proof-of-concept application below, the er-
ror model can be derived from quality scores reported in
FASTQ file. Sequence quality scores ei j are integer values
related to the error probabilities as qi j = 10−ei j /10. Then
pi j (Q) can simply be defined to be

p0 j = 1 − 10−ei j /10, p1 j = ( 1
3

)
10−ei j /10,

p2 j = ( 1
3

)
10−ei j /10, p3 j = ( 1

3

)
10−ei j /10
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Where the probability the sequenced nucleotide is correct
is given by 1 − 10−ei j /10 and the probability it is wrong is
split evenly between the other three possible nucleotides.

Slice sampling (39) will be used to sample ρ. A
Metropolis–Hastings type of sampler is used to sample the
haplotype (40). The MCMC (Markov chain Monte Carlo)
sampler is initially run for 1500 iterations, with 1000 it-
erations used as burn-in. The convergence is determined
by performing the Gelman–Rubin diagnostic (see Support-
ing Information). Once the MCMC samples have been ob-
tained, the maximum-a-posteriori (MAP) estimate, ρ̂ and
ĥ, for ρ and h are calculated.

In the aforementioned model, SGS short reads and TGS
long reads are used in the same way. The utility of the long
reads is their ability to cover multiple SNVs. In the likeli-
hood for each read (each row of the read matrix in Figure
1), only the loci that are covered by a read can contribute
to the likelihood. Thus, long reads can contribute more in-
formation to the likelihood than short reads. As the MCMC
explores the same space of ρ and H, it will tend to favor hap-
lotypes which correspond with the long reads. Another no-
table point for the usage of long reads is that raw sequencing
long reads should be used instead of corrected long reads.
This is important because any correction for raw long reads
will eliminate the SNV information embedded in long reads.

Statistical model for quantifying ASE at gene isoform level

Although ASE at the gene level can be estimated as above,
these data represent a pooled mixture of gene isoforms that
can have heterogeneous ASE. Estimating ASE for each gene
isoform within a gene is necessary to truly quantify the final
transcriptional products. Given the relatively low through-
put and sequencing bias of TGS data, only SGS short reads
are used in the statistical model below to estimate ASE at
the gene isoform level.

Consider a gene with K isoforms. Without loss of gener-
ality, we assume each isoform contains a SNV. For the kth
isoform, let θk be the abundance in the observed sample.
θk can further be decomposed into θ

(0)
k and θ

(1)
k , which are

the allele-specific abundance of isoform k corresponding to
haplotype h and h̄ respectively. To obtain estimates of θ

(0)
k

and θ
(1)
k , we proceed with a two-stage procedure. In Stage 1,

we identify the set of expressed isoforms from the Hybrid-
Seq data by our previously published tool, IDP (Isoform
Detection and Prediction) (31). Although a reference anno-
tation library can be used instead, a sample-specific anno-
tation library can provide more accurate abundance estima-
tion of isoform (Additional file 1: Supporting information).
Next, Stage 2 of IDP-ASE uses ρ̂ and ĥ obtained above and
extends Jiang and Wong’s Poisson model of short read cov-
erage to estimate θ

(0)
k and θ

(1)
k by Maximum Likelihood Es-

timation (MLE) (41).
For the gene of interest, define the exon regions of the

gene as the non-overlapping set of exons that comprise the
isoforms of the gene. Let S be the number of exon regions
and junction regions spanning multiple exons. Further-
more, each region can be distinguished by the SNVs that it
contains and whether these SNVs are consistent with hap-
lotype h or h̄. So, there can be a total of 2S exon/junction

regions. Define effective length as the number of positions
from which a read could map to the region. Let ls denote the
effective length of the sth region (Figure 1). Any junction re-
gion with non-positive effective length is not considered to
be part of the model.

Let M be the total number of short read sequences that
map to the gene of interest. Each read will fall into either
an exon region or a junction region. This model assumes
short read sequencing is a simple random process, in which
every read is sampled independently and uniformly from ev-
ery possible position in the sample. Denote the number of
short reads that fall into the sth region as Ys and assume Ys
follows a Poisson distribution. Then

Ys ∼ Poisson

⎛
⎝ λs =

K∑
k=1

∑
h∈{0,1}

Mlsαskhθ
(h)
k

⎞
⎠

where h ∈ {0, 1} corresponds to the haplotype, αskh is 1 if
region s is contained in isoform k (with haplotype h) and 0
otherwise, and θ

(h)
k is the abundance of the kth isoform under

haplotype h.
When distributing reads into regions, we calculate

f (Xi |Q, h) and f (Xi |Q, h̄) if the i th read covers a SNV.
Then this read is assigned to haplotype h with probability

ρ̂ f (Xi |Q, h)

ρ̂ f (Xi |Q, h) + (1 − ρ̂) f
(
Xi |Q, h̄

)

As the concavity of the Poisson likelihood was shown
by Jiang and Wong, IDP-ASE uses the Newton–Raphson
algorithm to obtain the MLE for θ

(h)
k . Let θ̂

(0)
k and

θ̂
(1)
k correspond to the estimates, respectively. The isoform

specific relative ASE, τ̂k is then calculated as

τ̂k = θ̂
(0)
k

θ̂
(0)
k + θ̂

(1)
k

RESULTS

Haplotyping performance

To evaluate the haplotyping performance, IDP-ASE was
applied to the gold standard GM12878 (33), the haplo-
types of which have been well determined by 1000 Genome
Project and Illumina Platinum Genomes Project (42). The
Hybrid-Seq transcriptome data of GM12878 includes 715
902 PacBio long reads (median length is 1081 bp and
up to 6217 bp) and 106 675 299 paired-end Illumina
short reads (101 bp). Based on short reads, 19,907 het-
erozygous exonic SNVs from 5841 genes were called by
GATK, 82.40% (16,383) of which were consistent with gold
standard in 1000 Genome Project or Illumina Platinum
Genomes Project (Additional file 1: Supplementary Figure
S1). Among 5841 genes, we found that 58.60% of genes had
multiple SNVs requiring phasing, and a significant propor-
tion (15.56%, 909) of genes contain five or more SNVs, in
which haplotyping is very difficult (Figure 2A).

Two metrics were designed to measure the haplotyping
accuracy: (i) Correct Haplotype Phasing Rate (CHPR):
proportion of the whole haplotypes correctly determined
and (ii) Correct SNV Phasing Rate (CSPR): proportion
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Figure 2. Performance of haplotyping by GM12878 data. (A) Gene distri-
bution with different number of heterozygous exonic SNVs in exon regions,
including known genes annotated by RefSeq and novel genes predicted by
IDP. (B) Average CHPR and (C) CSPR of genes grouped by numbers of
SNVs in a gene. Gray solid line represents randomly phasing process. Red
and blue colors indicate Hybrid-Seq data and SGS-only data, respectively.
Solid and dashed lines indicate IDP-ASE and MBASED, respectively.

of SNVs correctly phased within a gene. IDP-ASE with
Hybrid-Seq data obtained very high CHPR and CSPR with
an average of 62.96% and 88.37%, respectively, for multi-
SNV genes. We found that 49.06% of genes with five or more
SNVs could be phased perfectly, while the successful rate
by random haplotyping was 6.25% or lower (Figure 2B). In
addition, 85.78% of SNVs in the genes with five or more
SNVs could be properly phased, which means only about
one SNV on average was incorrectly phased when a gene
was not perfectly phased (Figure 2C).

Overall, IDP-ASE with Hybrid-Seq data provided the
best haplotyping results. Both CHPR and CSPR dropped
dramatically to a similar level as random haplotyping
when only SGS data was used in IDP-ASE. These data
established the useful haplotyping information provided
by TGS long reads but not SGS short reads. In con-
trast, for MBASED, there was a negligible difference be-
tween Hybrid-Seq and SGS-only data. The similarity of
MBASED with Hybrid-Seq input and IDP-ASE with SGS-
only input also established that MBASED did not make
use of the valuable information of the TGS long reads.
Therefore, IDP-ASE provides an appropriate data analysis
method required to fully utilize long reads in haplotyping.

The influences of sequencing coverage on haplotyping

To elucidate the influence of TGS long reads on haplotyp-
ing, we examined the changes of CHPR and CSPR with re-
spect to the adjusted long read coverage (see definition in

Figure 3. Influence of sequencing coverage on haplotyping. (A–D) Aver-
age CHPR and CSPR versus the log of adjusted long reads coverage (A
and B) and the log of adjusted short reads coverage (C and D). Genes are
grouped by the 10 percentiles of the log adjusted coverage and a smooth
loess curve is fit to the data. Red and blue colors indicate Hybrid-Seq data
and SGS-only data, respectively. Solid and dashed lines indicate IDP-ASE
and MBASED, respectively.

Supporting Information). Briefly, adjusted long read cover-
age represents the depth of long reads (i.e. the number of
long read mapped to the gene) as well as the length (i.e. the
maximum number of SNVs covered by single long reads).
The depth measures the data size and the length is a met-
ric of how well long reads can link multiple SNVs. When
the log of adjusted long read coverage was 0, IDP-ASE per-
formed similarly with MBASED with CHPR around 0.4
and CSPR around 0.8. As the log of adjusted long read cov-
erage increased, CHPR and CSPR of IDP-ASE output im-
proved linearly and approached 0.8 and 0.95, respectively
(Figures 3A and 4B). However, neither CHPR nor CSPR
improved with MBASED because this tool was not devel-
oped to use the SNV linkage information from long reads
but only utilizes the marginal allele counts of the read ma-
trix (11). Therefore, an increase in sequencing depth with
longer read length can improve haplotyping, which the sta-
tistical approach of IDP-ASE can take advantage.

When investigating the influences of adjusted short read
coverage on haplotyping, we found adjusted short read cov-
erage can also improve CHPR and CSPR of IDP-ASE with
Hybrid-Seq input data (Figure 3C and D). However, using
SGS-only data, minimal improvement was obtained for ei-
ther tool as adjusted short read coverage increase. There-
fore, the improvement in haplotyping with an increase in
adjusted short read coverage likely results from the increase
of long read depth, considering that depths of long reads
and short reads are correlated via gene abundance (Addi-
tional file 1: Supplementary Figure S2).
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Figure 4. Performance of ASE quantification at gene level by simulation
data. (A) It shows the performance of ρ estimation in simulation data, mea-
sured by Euclidean distance of the true value to the estimated value in genes
with same number of SNVs. (B) and (C) show the density distribution of
ρ estimates in semi-simulation data by IDP-ASE (B) and MBASED (C).
The dotted line indicates the simulation density. Red, blue and green colors
indicate Hybrid-Seq data, SGS-only data and TGS-only data, respectively.
Solid and dashed lines indicate IDP-ASE and MBASED, respectively.

Since differences in gene abundance result in differences
in sequencing coverage, haplotyping by transcriptome se-
quencing data can cause a large variability in accuracy.
Based on the gold standard GM12878 as training data,
IDP-ASE can predict CHPR and CSPR using the adjusted
long reads coverage, which will be very informative for es-
timating the haplotyping accuracy of a gene of interest and
to select the candidate genes for follow-up research (Ad-
ditional file 1: Supporting information and Supplementary
Figure S3).

Quantification of ASE at the gene level

To evaluate the estimate of ASE at the gene level, we gen-
erated a semi-simulation data based on GM12878 data as
described before (see Supporting Information) (11). We re-
tained information about total sequencing coverage of each
heterozygous SNV detected and discarded the observed ref-
erence and alternative allele counts. Next, ASE patterns
were artificially generated at different genes at various al-
lele preferences and expression levels. The simulated data set
has realistic distributions of both the number of heterozy-
gous SNVs per gene and the read coverage per SNV.

The estimated errors of both IDP-ASE and MBASED
were largest when only TGS long reads were input (Fig-
ure 4A), likely due to the relatively low-throughput and
sequencing bias of TGS. In contrast, both tools provided
smaller errors from SGS-only data, which was more suitable
for quantitative analysis. Though the high throughput and

Figure 5. Performance of estimations of FPKM and τ in simulation data.
(A) True FPKM is plotted against estimated FPKM. (B) The gene density
distribution of the difference between true FPKM and estimated FPKM.
The horizontal axis represents the difference between true FPKM and es-
timated FPKM, and the vertical axis represents gene density. (C) True τ is
plotted against estimated τ̂ . (D) The gene density distribution of the dif-
ference between true τ to estimated τ̂ . The horizontal axis represents the
difference between true τ and estimated τ̂ , and the vertical axis represents
gene density.

less sequencing bias of SGS data is useful for ASE quantifi-
cation, proper haplotyping is key for deconvolution of SGS
coverage of alleles. As a result, IDP-ASE with Hybrid-Seq
data provided the best estimates of ASE at the gene level.
Moreover, IDP-ASE outperformed MBASED in analysis
of all data (Figure 4A).

The distribution of the ASE estimate using IDP-ASE
corresponds closely to the density of the simulated values,
which were truncated Gaussian (truncated from 0 to 1 and
centered at 0.5) (Figure 4B). In contrast, MBASED missed
a significant proportion of ASE at the 0.5 vicinity (Figure
4B and C). This suggests a better ASE estimation perfor-
mance by IDP-ASE around 0.5, where the ASE bias is so
small that MBASED failed to estimate.

Quantification of ASE at the gene isoform level

We tested the quantification performance of ASE at the
gene isoform level using semi-simulation data that retained
the realistic sequencing coverage distribution of GM12878
but simulated allele-specific isoform abundance by Gamma
distribution (see Supporting Information). The estimate of
allele-specific isoform abundance highly correlated with the
true values (R2 = 85.94) (Figure 5A). Moreover, the esti-
mates of allele isoform abundance was unbiased since the
difference between the true value and the estimate was cen-
tered at 0 with a standard deviation of 0.37 (Figure 5B). In
addition, the estimate of isoform level ASE τ̂ was also un-
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biased (Figure 5D). Therefore, IDP-ASE can estimate ASE
at the gene isoform level with high accuracy.

It is important to quantify isoform level ASE with cor-
rect haplotyping and sample-specific isoform library, be-
cause of the complex cooperation of gene isoform expres-
sion and ASE. For example, in MCF-7, we discovered two
novel isoforms in gene PPP2R3C (Protein Phosphatase 2,
Regulatory Subunit B, Gamma), which also expressed an
annotated isoform NM 017917. The haplotypes TG/CA
predicted by IDP-ASE was supported by 75 PacBio long
reads (Figure 6). Due to the expression of two novel iso-
forms that did not contain SNV2, the coverage ratios at
SNV2 (G = 24/A = 17) were opposite to SNV1 (T = 42/C
= 84). Based the reads count ratio of major allele and minor
allele, the ‘pseudo phasing’ procedure used by MBASED
called an incorrect haplotype (CG/TA) and subsequently
incorrectly estimated ASE. Correct isoform identification
and haplotyping by long reads allows IDP-ASE to interpret
the sequencing coverage properly and find distinct ASE at
three isoforms of PPP2R3C (the corresponding τ̂ are 0.59,
0.23 and 0.16). In addition, it also suggests that the cover-
age ratios at single SNVs cannot represent the true ASE at
the gene or gene isoform level.

Presence of pseudogenes may impact the performance of
our method. If a gene has a pseudogene pair then many of
the reads will be aligned to both regions. Since our analysis
only uses uniquely mapped reads, these multiply mapped
reads will not be considered in our analysis. This can be-
come an issue in genes with low coverage, potentially re-
sulting in an underestimate of the abundance of these genes
(Additional file 1: Supporting information and Supplemen-
tary Figure S4).

ASE analysis of human embryonic stem cells and breast can-
cer cells

To demonstrate the utility of IDP-ASE, we analyzed the
ASE events in human embryonic stem cells (H1 cell line)
and breast cancer cells (MCF-7 cell line) as both were re-
ported to have diverse transcript expression (31,34). In H1,
6508 SNVs from 3078 genes, including 1480 genes with mul-
tiple SNVs, were called from 93 880 208 101 bp Illumina
short reads. In MCF-7, 5588 SNVs from 2523 genes, in-
cluding 1270 genes with multiple SNVs, were called from
84 439 179 89 bp Illumina short reads. 2 289 890 and 6 170
149 PacBio long reads from H1 and MCF-7 were input to
IDP-ASE, respectively.

The corresponding standard deviations of the gene-level
ASE estimate ρ̂ were 0.09 and 0.14 in H1 and MCF-7,
respectively (Figure 7A and B), indicating more extensive
ASE events detected in MCF-7 than H1. A total of 2461
genes (34.36%) in MCF-7 had significant ASE (ρ̂ < 0.35 or
ρ̂ > 0.65) at the gene level as compared to only 649 genes
(8.67%) in H1.

In addition, the variance in ASE at the gene isoform
level was larger than at the gene level (Figure 7). That
is, significant ASE at the gene isoform level may be con-
cealed by the pooled gene-level ASE. 1083 gene isoforms
(15.98%) in H1 and 2,500 (39.33%) gene isoforms in MCF-
7 had significant allele-specific expression (τ̂ < 0.35 or τ̂ >
0.65). Among these genes in H1, four genes (CGGBP1,

LARS, ZNF138 and ZNF43) are associated with embryonic
stem cell identity based on a previous study (43). In addi-
tion, TDGF1 (Teratocarcinoma-Derived Growth Factor 1),
which plays an essential role in embryonic development and
tumor growth (44), also shows significant allele-specific ex-
pression at the gene isoform level but not at the gene level
(Figure 8A). Notably, in MCF-7, nine ASE genes (BARD1,
CASP8, CCND3, KRAS, MAPEK4, NF2, TET2, TP53
and ZFP36L1) are considered as driver genes in breast can-
cer (45). In particular, p53 is widely recognized as a tumor
suppressor in many tumor types, and BARD1 interacts with
N-terminal region of BRCA1 (46,47). We next categorized
and exemplified the complexity of ASE at the gene isoform
level (Figure 8).

(1) Isoforms with mutually exclusive sets of SNVs: CROT
(Carnitine O-octanoyltransferase) had two SNVs that
were exclusively expressed by isoforms NM 021151 and
NM 001243745, respectively.

(2) Isoforms that share SNVs but also have mutually exclu-
sive SNVs: two isoforms of KLC1 (Kinesin light chain 1)
shared SNV1, while SNV2 and SNV3 were exclusively ex-
pressed in NM 182923 and NM 005552, respectively.

(3) Isoforms that share all SNVs but some SNVs are expressed
exclusively with isoform-specific junctions: three isoforms
of LETMD1 (LETM1 domain containing protein 1) ex-
pressed all three SNVs, yet SNV1 located at the flanking
region of isoform-specific junctions. Although three iso-
forms contained the same SNVs, their imbalance of ASE
was distinct: NM 015416 had almost equal expression of
the two alleles ( τ̂ = 0.55), while NM 045018 was biased
slightly to one allele ( τ̂ = 0.63) and NM 045020 biased
to the other ( τ̂ = 0.33).

The extensiveness and complexity of ASE events in
MCF-7 may be caused by the complicated gene regulation
and expression in tumor transcriptome as well as the ab-
normal genome composition, such as structural variance
and copy number variance. These results all indicate the im-
portance of ASE analysis, especially at gene isoform level,
which is particularly necessary for tumor transcriptome re-
search.

Computational performance

We evaluate the computational performance of IDP-ASE
based on the gold standard GM12878 dataset (33). For
the gene level analysis, the total running time using a sin-
gle process for the MCMC is 30.53 h for IDP-ASE using
Hybrid-Seq, 8.19 h using TGS-only and 54.06 h using SGS-
only data. The longer running time for SGS-only data is
likely due to the difficulty of MCMC convergence as long
reads are not available. Since each gene is independent, all
of the genes can be run in parallel so that it only takes
a few hours to run IDP-ASE. For distribution of running
times for each gene, please see supporting information (Ad-
ditional file 1: Supplementary Figure S5). MCMC output
(trace plots, density estimates, and autocorrelation) is avail-
able for a few example genes (Additional file 1: Supplemen-
tary Figure S6).

The running time for the isoform level MLE program is
much faster. The total running time is 0.22 h if the genes are
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Figure 6. Influence of correct haplotyping and isoform identification on ASE analysis at isoform level by one example from MCF-7 data. PPP2R3C gene
with phased TG/CA haplotype has SNV1 (T = 42/C = 84, number represents Illumina short reads, same in Figure 8) and SNV2 (G = 24/A = 17). Of two
SNVs, SNV1 is shared by three isoforms and SNV2 is used only by known isoform NM 017917 annotated by RefSeq but not two novel isoforms (Novel
isoform 1 and Novel isoform 2) identified by IDP. Three isoforms show distinct ASE patterns which would be missed by ‘pseudo phasing’ procedure of
MBASED.

Figure 7. Density distribution of genes with different ASE levels at both
gene and isoform levels. The horizontal axis represents estimated ρ̂ (gene
level) and τ̂ (isoform level). The vertical axis represents gene density. Red
color shows significant ASE genes/isoforms (ρ̂ < 0.35 or ρ̂ > 0.65 for gene
level, and τ̂ < 0.35 or τ̂ > 0.65 for isoform level). (A) and (C) show the
analysis results in MCF-7. (B) and (D) show the analysis results in H1.

run sequentially on a single processor. The median running
time for a gene is 1.59 s.

DISCUSSION

The great advantage of IDP-ASE is the ability to study
gene isoform ASE using only transcriptome data. In con-
trast, the existing tools either only study ASE at a single
SNV site or at the gene level. The existing tools also require
known haplotypes. The known haplotypes are always gen-
erated from laborious experiments or sequencing data from

extra sources, such as genome data and family trio data,
which greatly limit the capability of studying ASE. Our ap-
proach of integrating the complementary information in
TGS (i.e. long read length) and SGS (i.e. high throughput
and accuracy) by IDP-ASE can characterize ASE events
with single sequencing materials (i.e. RNA). Without re-
quiring the known haplotypes, IDP-ASE greatly extends
our capability of studying ASE. The reliable sample-specific
isoform identification by Hybrid-Seq data further allows us
to study ASE at the gene isoform level. We compared IDP-
ASE to an existing method and demonstrated superior per-
formance, in particular the use of linkage information pro-
vided by long reads. However, haplotyping accuracy may
depend on sequencing coverage and thus varies with respect
to gene abundance. Using GM12878 as training data, the
predictions of CHPR and CSPR exclusively provided by
IDP-ASE can be very helpful for biologists to select bet-
ter target candidates for follow-up characterization. More-
over, the complexity of ASE events in breast cancer cells and
hESCs revealed by IDP-ASE highlights that ASE studies
must take into consideration the gene isoform level.

Furthermore, with simple modifications, IDP-ASE can
be generalized for the other proposes: (i) various genetic
variants (short indels and structural variants) rather than
only substitution; (ii) multiploid ASE analysis and (iii) copy
number variants for genome data. Instead of sequencing
quality score, customized error pattern could be input to
better estimate the error probabilities. IDP-ASE is also
compatible with the other TGS platforms (e.g. ONT, 10X
genomics and Moleculo). In addition, the step of haplotyp-
ing can be skipped if a well-phased haplotype is available. A
caveat of IDP-ASE is the analysis of only RNA sequencing
data, which precludes identification of somatic mutations
or RNA editing sites. A paired analysis of genome/exome
sequencing data would resolve this issue.

To the best of our knowledge, IDP-ASE is the first
method to quantify genome-wide ASE at the gene isoform
level and solve haplotyping simultaneously, using only tran-
scriptome data. As new TGS platforms (e.g. PacBio Sequel
and ONT PromethION) with much lower costs have be-
come more prevalent, the corresponding applications and
publications have been increasing rapidly. Taking advantage
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Figure 8. Complexity of ASE at isoform level by four genes. (A) Two isoforms of TDGF1 in H1 can be distinguished by their unique junction reads which
cover SNV1, show opposite ASE patterns. (B) Two isoforms of CROT in MCF-7 contain one specific SNV, respectively. Two unique SNVs are used
to estimate ASE, respectively. (C) Two isoforms of KLC1 in MCF-7 share SNV1, while SNV2 and SNV3 are exclusively expressed in NM 182923 and
NM 005552, respectively. (D) Three isoforms of LETMD1 express all three SNVs, yet junction reads which cover SNV1 can be used to indicate different
ASE patterns.

of the exclusive information from TGS appropriately, IDP-
ASE provides a timely method to achieve the gene isoform
level analysis of diploid transcriptomes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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