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P-element-induced wimpy testis (Piwi)-interacting RNAs (piRNAs) are a class of germline-
enriched small non-coding RNA that associate with Piwi family proteins and mostly induce
transposon silencing and epigenetic regulation. Emerging evidence indicated the aberrant
expression of Piwil proteins and associated piRNAs in multiple types of human cancer
including breast cancer. Although the majority of piRNAs in breast cancer remains unclear
of the function mainly due to the variety of regulatory mechanisms, the potential of piRNAs
serving as biomarkers for cancer diagnosis and prognosis or therapeutic targets for
cancer treatment has been demonstrated by in vitro and in vivo studies. Herein we
summarized the research progress of oncogenic or tumor suppressing piRNAs and their
regulatory mechanisms in regulating human breast cancer, including piR-021285, piR-
823, piR-932, piR-36712, piR-016658, piR-016975 and piR-4987. The challenges and
perspectives of piRNAs in the field of human cancer were discussed.

Keywords: piRNA, tumorigenesis, breast cancer, cancer stem cell, PIWI
INTRODUCTION

P-element-induced wimpy testis (Piwi)-interacting RNAs (piRNAs) are a class of endogenous non-
coding RNA with 26-32nt in length that associate with Piwi family proteins and are specifically
expressed and enriched in mammalian germ cells (1). Although piRNA sequences were originally
discovered from the repetitive genomic elements of D. melanogaster germline in 2001 by Aravin
et al. (2), until 2006 a class of highly abundant small RNAs around 30 nt in length were identified by
Girard et al. in mammalian testes, binding to MIWI, a murine Piwi protein, and thereby was named
piRNA (3). piRNAs can be derived from transposons, mRNAs or long non-coding RNAs
(lncRNAs). Up to date, thousands of piRNA sequences have been identified in germ cells.
However, their function mostly remains unknown (4).

Literature has revealed the complexity of the biogenesis of piRNAs, in which a vast amount of
proteins are involved (2, 3, 5). There are two approaches have been well demonstrated for the
biogenesis of piRNAs including primary biogenesis from cluster transcripts and secondary
biogenesis from the ping-pong cycle (5). After transcription from genomic loci carrying
transposon fragments, the cluster transcripts are spliced into piRNA precursors (pre-piRNAs),
followed by the transit from the inner side to the outer side of the nuclear pore associated with some
ribonucleic proteins, such as Nuclear Export Factor 2 (Nxf2) and its co-factor Nuclear Transport
Factor 2-like Export Factor 1 (Nxt1) (6). Then pre-piRNAs are either processed through Zucchini
(Zuc)-dependent mechanism with Piwi protein involved, or processed through a ping-pong cycle
with Aubergine (Aub) and Argonaute3 (Ago3) involved (5). Notably, processing of pre-piRNAs
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usually takes place within a specialized subcellular perinuclear
structure, termed nuage in mammals and Yb bodies in
Drosophila, locating around the mitochondria in the cytoplasm
(6, 7). Vret, as one of the most important proteins in both Yb
bodies and nuage, has been shown to be required for generation
of Piwi-bound piRNAs and localization of Piwi proteins (8).

In germline, a few of piRNAs have been demonstrated to play
important roles in regulating germ stem cell maintenance,
spermatogenesis, meiosis, transposon silencing, genome
rearrangement, and genomic integrity by piRNA-induced
silencing complexes (1, 3). In addition, some piRNAs were
reported to regulate heterochromatin formation, DNA
methylation, and gene expression at transcriptional or post-
transcriptional levels (9, 10). In particular, those piRNAs derived
from pseudogenes or antisense transcripts usually show regulation
of the corresponding endogenous genes (4).
ABERRANT EXPRESSION OF piRNAs
AND PIWI MEMBERS IN CANCER

In addition to the enrichment of piRNAs in germ cells, emerging
evidence indicates the existence of piRNAs in the somatic stem
cells and tumor cells (11, 12). Connections between piRNA/Piwi
complex and tumorigenesis have been frequently reported (12–
14). Aberrant expression of piRNAs and Piwi proteins in cancer
cells may be an indication of the involvement of piRNAs in the
regulation of cancer development and progression.

The Ago/Piwi family is not only required for germline
development, but also plays central roles in transcriptional and
posttranscriptional gene regulation and transposon silencing
mediated by piRNAs. In D. melanogaster, the Piwi family
consists of Piwi, Aub and Ago3. In the human testis, four
homologues Hiwi, Hili, Hiwi2, and Piwil3 have been identified
as Piwi family members. Their function in germline has been
implicated, but the somatic function remains unclear.

Martinez et al. analyzed 6,260 human piRNA transcriptomes
derived from non-malignant and tumor tissues of 11 organs, and
discovered 273 and 522 piRNAs with expression in somatic non-
malignant tissues and corresponding tumor tissues, respectively,
which were able to not only distinguish tissue-of-origin, but also
distinguish tumors from non-malignant tissues in a cancer-type
specific manner (15). A recent study identified the increased
levels of circulating miR-1307-3p, piR-019308, piR-004918 and
piR-018569 in the serum exosomes of gastric cancer patients
(16). Moreover, higher levels of piR-004918 and piR-019308
were found in the gastric cancer patients with metastasis than
non-metastatic patients, indicating that circulating piRNAs in
serum are promising non-invasive diagnostic biomarkers for
gastric cancer patients and potential markers for monitoring
metastasis (16). Wang et al. screened piRNAs in the serum from
7 patients with colorectal cancer and 7 normal controls using
small RNA sequencing, followed by QRT-PCR validation of the
differentially expressed piRNAs in a training cohort of 140
patients with colorectal cancer (17). As a result, piR-020619
and piR-020450 showed upregulation in the serum of patients.
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Meanwhile, their expression was also analyzed in 50 patients
with lung cancer, 50 with breast cancer, and 50 with gastric
cancer, but did not show change in serum of patients with lung,
breast, and gastric cancer, indicating the specificity of piR-
020619 and piR-020450 as biomarkers for early detection of
colorectal cancer (17).

piRNAs also showed regulation by transcriptional factors in
human cancer. For example, upregulation of piR-34871 and piR-
52200 and downregulation of piR-35127 and piR-46545 by the Ras
Association Domain Family Member 1C (RASSF1C) were reported
in the lung cancer cell line H1299 and lung tumor tissues (18).
Overexpression of piR-35127 and piR-46545 and knockdown of
piR-34871 and piR-52200 significantly reduced cell proliferation in
both lung cancer cell lines (A549 and H1299) and breast cancer cell
lines (Hs578T andMDA-MB-231) (18). Notably, RASSF1C, known
as an oncogene, was reported to regulate Piwil1 in lung cancer (19).
In MDA-MB-231 breast cancer cells, “cancer-testis gene” Glycerol-
3-phosphate acyltransferase-2 (GPAT2) showed regulation on the
expression of piRNAs and tRNA-derived fragments. The most
GPAT2-regulated piRNAs are single copy in the genome and
previously found to be upregulated in cancer cells (20).

Although Piwi-like (Piwil) genes including Piwil1, Piwil2,
Piwil3, and Piwil4 have been detected in various types of cancer
tumors, such as renal cell carcinoma (21) and breast cancer (22),
overexpression of Piwil1 was the most frequently reported in
cancers including lung cancer (23), gastric cancer (24), renal
cancer (25) and colorectal cancer (26), in which high levels of
Piwil1 showed significant correlation with short survival and/or
poor prognosis in the patients with cancers (23–26). Piwil2 is
highly expressed in glioma, and correlates with poor patient
prognosis. Piwil2 plays an important role in the transformation
of cervical epithelial cells to tumor-initiating cells by epigenetic
regulation (27). In human breast cancer, Piwil2 overexpression
was frequently reported to associate with piRNAs (28–30),
functioning as an oncogene. Piwil3 showed a tumor-type
dependent function as an oncogene or tumor suppressor. In
glioma tissues, Piwil3 is downregulated, and negatively
associated with pathological grade (31). In gastric cancer,
overexpression of Piwil3 promoted cell proliferation, migration,
and invasion via the JAK2/STAT3 signaling pathway (32). In
malignant melanoma, upregulation of Piwil3 was association with
cancer aggressiveness and progression (33). For Piwil4, Wang et al.
reported high expression of Piwil4 in both breast cancer tissues
andMDA-MB-231 breast cancer cell line. Knockdown of Piwil4 in
MDA-MB-231 cells dramatically suppressed the cell migration
and proliferation through regulating TGF-b and FGF signaling
pathways and MHC class II proteins (34). In hepatocellular
carcinoma, co-expression of Piwil2/Piwil4 has potential as an
indicator for tumor prognosis (35).
REGULATORY FUNCTION OF piRNAs
AND PIWI MEMBERS IN CANCER

Although the oncogenic function of Piwil1 in gastric cancer cells
was reported to be independent of its partner piRNAs (36), Piwi
July 2021 | Volume 11 | Article 695077

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Qian et al. piRNAs in Breast Cancer
proteins have showed significant synergy with related piRNAs in
regulating human cancer (28, 29). Complex formed by piRNAs
binding to Piwi proteins, such as piR-651/Piwil 1 in gastric
cancer (24), piR-54265/Piwil 2 in colorectal cancer (37), piR-932/
Piwil 2 in breast cancer (29), have been demonstrated to regulate
cell proliferation, invasion and metastasis of cancer cells.

Overexpression of piR-651 was reported in gastric cancer
compared to normal control tissues. Gastric cancer cells were
arrested at G2/M phase after knockdown of piR-651 (12).
Upregulation of piR-823 and its oncogenic function were reported
in both esophageal cancer and breast cancer (38, 39). In the luminal
subtype of breast cancer cells, overexpression of piR-823 increased
the expression of DNAmethyltransferase DNMT1, DNMT3A, and
DNMT3B, promoted DNA methylation of gene adenomatous
polyposis coli (APC), thereby activating Wnt signaling and
inducing cancer cell stemness (38). In esophageal squamous cell
carcinoma, piR-823 showed significantly upregulation in tumor
tissues, compared with matched normal control. The level of piR-
823 was significantly associated with lymph node metastasis. In
addition, a positive correlation between piR-823 and DNMT3B
expression was observed in esophageal cancer (39). However, a
recent publication showed tumor repression function of piR-823 in
gastric cancer (40), indicating the complexity of the piRNA
functions in a cancer type-dependent manner.

In addition to the epigenetic regulation of piRNAs in control
of cancer development and progression (15, 22, 38), piRNAs
involve in cancer regulation by altering the expression of cancer-
related genes in a mechanism similar to microRNA (miRNA).
For example, in lung cancer cells piR-55490 was demonstrated to
bind with 3′UTR of mTOR mRNA and induce its degradation
(41). Like the “seed sequence” of miRNAs, the 5’ end of piR-
55490 can be complementary to the 3’UTR of mTOR mRNA. In
addition, piR-55490 was found to be silenced in lung carcinoma
specimens and cell lines, compared with normal controls.
Moreover, the expression level of piR-55490 showed a
negatively correlation with patients’ survival. Restoration of
piR-55490 suppressed cell proliferation in lung cancer by
suppressing Akt/mTOR pathway (41).

Overall, evidence demonstrating the potential clinical
significance of piRNA and Piwi proteins as diagnostic tools,
therapeutic targets, and/or prognosis biomarkers in cancer is
increasing. The relevant progress in cancer has been recently
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reviewed (42, 43). Herein, we highlighted the research progress
and clinical potential of piRNAs in human breast cancer.
piRNAs IN BREAST CANCER

Breast cancer is the most common cancer and the leading cause of
cancer-related death in women all over the world. Abnormal
expression of some piRNAs has been reported in breast cancer
cells and tissues, showing relevance to the tumor development and
progression (Table 1). Those aberrantly expressed piRNAs in
breast cancer including piR-4987, piR-021285, piR-823, piR-932,
piR-36712, piR-016658 and piR-016975 may held potential to be
developed as biomarkers and/or therapeutic targets in breast
cancer. Our recent study also identified 415 piRNA sequences
from the medium of luminal subtype of human breast cancer cell
MCF-7, in which 27 piRNAs showed deregulation by pro-
oncogene cyclin D1 (28). Huang et al. reported 4 piRNAs
including piR-4987, piR-20365, piR-20485 and piR-20582 with
upregulation in tumor tissues compared with matched non-tumor
tissues in 50 patients with breast cancer (14). Moreover,
upregulation of piR-4987 showed association with lymph node
positivity (14). Hashim et al. identified over 100 piRNAs in breast
cancer cell lines and tumor biopsies by a small RNA-Seq analysis
(48). A mRNA targets analysis using piRNome tool further
revealed 10 piRNAs with a specific expression pattern in breast
tumors targeting key cancer cell pathways (48), in which
DQ596670, DQ598183, DQ597341, DQ598252, and DQ596311
were downregulated, while DQ598677, DQ597960, and
DQ570994 were upregulated in tumor tissues of breast cancer.
Park et al. and Lee et al. applied molecular beacons (a synthetic
structured DNA oligonucleotide probe) to detect piR-36026 and/
or piR-36743 in a single breast cancer cell, showing their different
expression in a cancer cell subtype-dependent manner (49, 50).
Kärkkäinen et al. performed small RNA sequencing analysis in
227 fresh-frozen breast tissue samples (51). Three small RNAs
annotated as piRNA database entries (DQ596932, DQ570994, and
DQ571955) were detected in the tumor samples, all showing
upregulation in grade III tumors. Furthermore, patients with
estrogen receptor positive and DQ571955 high had shorter
relapse-free survival, suggesting DQ571955 as a potential marker
for predicting radiotherapy response in estrogen receptor positive
TABLE 1 | Deregulated piRNAs in human breast cancer.

piRNA ID up/down Regulatory Function Mechanism Reference

piR-021285 up Promoting invasiveness DNA methylation (44)
piRNA-823 up Promoting cancer cell stemness DNA methylation/Wnt Signaling (38)
piRNA-932 up Promoting EMT and metastasis DNA methylation (29)
piR-016658 up Upregulated in cancer stem cells N/A (28)
piR-651 up N/A Estrogen regulation (45)
piR-4987 up Correlation with lymph node positivity N/A (14)
piR-20365, piR-20485, piR-20582 up N/A N/A (14)
piR-36712 down Suppressing EMT/Related with chemoresistance Competing endogenous RNAs (46)
piR-016975 down Downregulated in cancer stem cell N/A (28)
piR-FTH1 down Promoting chemosensitivity Targeting FTH1 mRNA (47)
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breast cancer. In addition, DQ570994 showed potential for
predicting tamoxifen and chemotherapy response (51). In triple
negative breast cancer (TNBC), neoadjuvant chemotherapy
(NACT) is increasingly applied to the therapy management due
to its positive association with response rates of patients. A recent work
reported the potential of circulating piR−36743, miR−17, −19b and
−30b as diagnostic biomarkers in the monitoring of NACT−driven
complete clinical response in TNBC (52). Koduru et al. used public
database (small RNA sequencing data) derived from 24 TNBC tumors
and 14 adjacent normal tissue samples, and identified a group of
differentially expressed miRNAs, piRNAs, lncRNAs and sn/snoRNAs.
The top five upregulated piRNAs in tumor tissues are piR-21131,
-32745, -21131, -1282, -23672, and top five downregulated piRNAs are
piR-23662, -26526, -26527, -30293 and -26528 (53).

Estrogen signaling has been well demonstrated to play
important roles in tumor development and progression of breast
cancer through interacting with two receptors ERa and ERb. ERa,
as a predominant endocrine regulatory protein in estrogen‐
induced breast cancer, interacts with non-coding RNAs
including piRNAs (54). However, the interaction between ERb
and non-coding RNAs in breast cancer remains unclear.
Alexandrova et al. performed sncRNA sequencing analysis on
ERb-expressing TNBC cell lines and 12 ERb+ and 32 ERb− TNBC
tissue samples (55). A group of ERb-regulated small ncRNAs was
identified in TNBC, including miR-181a-5p and piR-31143 with
aberrant upregulation in the ERb+ tumor samples (55)

Although hundreds of piRNAs have been identified in human
breast cancer, only a few of them including piR-021285, piR-823,
piR-932, piR-36712, piR-016658 and piR-016975 were
determined with the regulatory function and molecular
mechanisms, as described in detail below.

piR-021285 in Breast Cancer
piR-021285 is the first piRNA showing regulation of human
tumorigenesis in breast cancer via an epigenetic mechanism of
DNA methylation (44). A genome-wide methylation screening
analysis in the piR-021285 mimic-transfected MCF7 cells revealed
significant induction of DNA methylation in a number of breast
cancer-related genes including ARHGAP11A, which was
associated with increased transcription of ARHGAP11A and
enhanced invasiveness of MCF-7 cells (44). The expression and/
or function of piR-021285 in other types of cancer have yet to
be determined.

piRNA-823 in Breast Cancer
piR-823 is another piRNA having regulatory function in human
breast cancer through epigenetic mechanism. The carcinogenicity of
piR-823 in malignant breast cancer may be related with estrogen
status since external administration of estrogen increased piR–823
expression in estrogen receptor negative MDA-MB–231 cells, while
reduced the piR–823 levels in estrogen receptor positiveMCF-7 cells
(45). Further study demonstrated oncogenic function of piR-823 in
estrogen receptor positive luminal subtype of breast cancer via
regulating cancer cell stemness mediated by altered DNA
methylation and activated Wnt signaling (38).

In comparison with breast cancer, several other cancer types
also showed regulation by piR-823. For example, Increased
Frontiers in Oncology | www.frontiersin.org 4
piRNA-823 expression was associated with late stages and poor
prognosis of multiple myeloma. piRNA-823 in the multiple
myeloma-derived extracellular vesicles was demonstrated to
promote tumorigenesis through re-educating endothelial cells
in the tumor microenvironment (56). In colorectal cancer,
piRNA-823 increased cell proliferation, invasion and apoptosis
resistance through inhibiting the ubiquitination of HIF-1a,
thereby upregulating the glucose consumption of cancer cells
and inhibiting intracellular reactive oxygen species (57).

piR-932 in Breast Cancer
In addition to piR-021285 and piR-823, piR-932 also showed
overexpression in human breast cancer, playing tumor-promoting
roles through epigenetic mechanism (29). In Piwil2 positive breast
cancer stem cells, piR-932 could bind with Piwil2 to suppress the
expression of Latexin by promoting methylation of the CpG island
at its promoter region. In view of the negative regulation of cancer
stem cells by Latexin (58), piR-932/Piwil2 could be the potential
targets for suppressing the progression of breast cancer. Up to
date, piR-932 has not been reported in other types of cancer.

piR-36712 in Breast Cancer
piR-36712 was reported having a lower expression level in breast
cancer tumors than that in normal tissues, functioning as a tumor
suppressor but dependent on the expression of SEPW1 and p53
(46). piRNA-36712 inhibited SEPW1 through interacting with its
pseudogene SEPW1P, which thereafter suppressed p53, leading to
the upregulation of Slug but downregulation of p21 and E-
cadherin, thus performing oncogenic function in human breast
cancer. In addition, piR-36712 showed involvement in chemo-
sensitivity of breast cancer cells in response to paclitaxel or
doxorubicin (46). There is still no literature about piR-36712
study in other cancers.

piR-016658 and piR-016975
in Breast Cancer
Our previous study found upregulation of piR-016658 and
downregulation of piR-016975 by cyclin D1 in human breast
cancer (28). Further analysis indicated the correlation of piR-
016658 and piR-016975 with breast cancer cell stemness. High
levels of piR-016658 were found in the basal-like breast cancer
cells, as well as Aldehyde dehydrogenase 1 (ALDH1) positive
breast cancer stem cells isolated from breast cancer tumors. In
contrast, lower levels of piR-016975 were determined not only in
basal-like subtype of breast cancer cells compared to luminal
subtype, but also in breast cancer stem cells compared to non-
stem breast cancer cells. In view of the germ stem cell maintaining
function of piRNAs in germline, this study demonstrated that
piRNAs are able to regulate cell stemness characteristics in human
breast cancer, thereby regulating tumor growth and progression.

piR-FTH1 in Breast Cancer
Ferritin heavy chain (FTH1), as a key regulator of iron metabolism,
was recently identified as a favorable prognostic gene for patients
with TNBC. Fth1 levels are associated with the progression of breast
cancer and chemo-sensitivity of breast cancer cells (59). Balaratnam
et al. discovered a human piRNA piR-FTH1 with sequence
July 2021 | Volume 11 | Article 695077
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complementary to Fth1 mRNA in human somatic cells. In the
tested cancer cells, piR-FTH1 and Fth1 showed inverse correlation
in expression. In addition, piR-FTH1 can downregulate the Fth1
expression at post-transcriptional level in TNBC cells via a HIWI2/
HILI mediated mechanism (47).
FUTURE PERSPECTIVE

It has been widely acknowledged that the cell of origin of cancer is
a deregulated somatic cell that loses normal regulatory mechanism
and reproduces itself without control. The primitive cancer life
cycle contains primary cancer stem cells, somatic cells and
reproductive cells (60). In view of the similarity between cancer
stem cells and germ cells of stemness properties and reproductive
ability, there are some regulatory mechanisms in common shared
by the two cell types. Although piRNAs were originally identified
as a group of germline-specific non-coding small RNAs, emerging
evidence revealed their aberrant expression in human cancers.
Functional assays indicated the regulation of cancer cell
proliferation, EMT, metastasis and cancer stem cells by piRNAs.
Overall, piRNAs may have potential to be developed as biomarkers
for cancer diagnosis and prognosis, and/or as therapeutic targets for
cancer treatment.

Although the studies of piRNAs and Piwi family members in
cancer are adding a novel page in the history of cancer research,
currently the majority of piRNAs remains unclear of their function
in regulating human cancer. There are several key challenges about
piRNAs that we are facing, and need to solve, including 1) whether
Frontiers in Oncology | www.frontiersin.org 5
biogenesis of piRNAs in cancer cells shares similar approaches
with that in germline; 2) what is the main regulatory mechanism
of piRNAs in control of cancer development and progression;
3) how to predict the target DNAs of piRNAs when epigenetically
regulating gene expression. It is hoped that with these challenges
addressed and the regulatory mechanisms revealed, along with the
application of piRNAs in suppression of tumorigenesis and cancer
progression in the animal models, piRNAs and Piwi proteins may
lead to novel therapeutic approaches in treatment of cancer,
including breast cancer.
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