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Simple Summary: Many patients with chronic lymphocytic leukemia (CLL) still fail current therapies.
CD73 is a novel therapeutic target for solid tumors, but its role in CLL remains unclear. The aim of
our study was to investigate the therapeutic potential of targeting CD73 in CLL. Using genetically
engineered mice, our study reports a pro-leukemic role for CD73 in an autochthonous mouse model
of CLL. Furthermore, we observed an association between PD-L1 expression on CLL cells and
adenosine signaling according to sex. Our findings provide a rationale for targeting CD73 in CLL
in combination with anti-PD-1/PD-L1 immunotherapies and suggest that sex may contribute to
responses to adenosine-targeting agents.

Abstract: The ecto-nucleotidase CD73 is an important immune checkpoint in tumor immunity that
cooperates with CD39 to hydrolyze pro-inflammatory extracellular ATP into immunosuppressive
adenosine. While the role of CD73 in immune evasion of solid cancers is well established, its
role in leukemia remains unclear. To investigate the role of CD73 in the pathogenesis of chronic
lymphocytic leukemia (CLL), Eµ-TCL1 transgenic mice that spontaneously develop CLL were crossed
with CD73−/− mice. Disease progression in peripheral blood and spleen, and CLL markers were
evaluated by flow cytometry and survival was compared to CD73-proficient Eµ-TCL1 transgenic
mice. We observed that CD73 deficiency significantly delayed CLL progression and prolonged
survival in Eµ-TCL1 transgenic mice, and was associated with increased accumulation of IFN-γ+ T
cells and effector-memory CD8+ T cells. Neutralizing IFN-γ abrogated the survival advantage of
CD73-deficient Eµ-TCL1 mice. Intriguingly, the beneficial effects of CD73 deletion were restricted to
male mice. In females, CD73 deficiency was uniquely associated with the upregulation of CD39 in
normal lymphocytes and sustained high PD-L1 expression on CLL cells. In vitro studies revealed that
adenosine signaling via the A2a receptor enhanced PD-L1 expression on Eµ-TCL1-derived CLL cells,
and a genomic analysis of human CLL samples found that PD-L1 correlated with adenosine signaling.
Our study, thus, identified CD73 as a pro-leukemic immune checkpoint in CLL and uncovered a
previously unknown sex bias for the CD73-adenosine pathway.

Keywords: CD73; adenosine; chronic lymphocytic leukemia; PD-L1

1. Introduction

Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in the
Western world [1,2]. CLL mainly affects men and is characterized by the clonal expansion
of mature CD5-expressing B cells in blood, spleen, lymph nodes, and bone marrow. While
targeted therapies with anti-CD20 monoclonal antibodies (i.e., rituximab, obinutuzumab,
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ofatumumab, ublituximab) and ibrutinib have substantially ameliorated prognosis, CLL
remains mostly unpredictable and is largely incurable when patients become refractory to
these treatments.

CLL is associated with immune dysfunctions, which ultimately promote tumor toler-
ance and progression. Notably, anti-tumor T cells of CLL patients present an exhausted
phenotype [3,4] and targeting the PD-1/PD-L1 axis can promote anti-CLL responses in
mice [5]. Accordingly, clinical trials are testing anti-PD-1/PD-L1 immunotherapy in CLL
patients [6–8].

Adenosine is an immunosuppressive metabolite generated from extracellular ATP, no-
tably by ectonucleotidases CD39 and CD73. CD39 converts ATP into ADP and AMP, while
CD73 hydrolyzes AMP into adenosine. Adenosine mainly exerts its immunosuppressive
effect through the activation of high-affinity A2a adenosine receptors [9]. Targeting the
adenosinergic axis is currently being pursued for the treatment of solid tumors, including
in a randomized phase 3 trial for lung cancer (NCT05221840). Despite the established
immunosuppressive effects of CD73 in solid tumors, its role in leukemia remains unclear.

In human CLL, CD73 expression has been associated with increased expression of biomark-
ers associated with poor prognosis, such as CD38, ZAP-70, and beta-2-microglobulin [10,11].
Human CLL cells also express higher levels of the A2a adenosine receptor than normal
B cells, and exogenous adenosine has been shown to protect CLL cells from spontaneous or
drug-induced apoptosis [12]. By favoring type 2 macrophage polarization and Tregs accu-
mulation, adenosine may also support the lymphoid niches where CLL cells proliferate [12].
Interestingly, in an adoptively transferred CLL mouse model, A2a blockade was shown to
rescue CD8 T cell functions and to prevent Treg expansion [13]. Nevertheless, the specific
role of CD73 in the pathogenesis of CLL is unclear. In this study, we investigated the impact
of CD73 in the development of CLL in Eµ-TCL1 transgenic mice, a well-validated mouse
model of human CLL [14].

2. Materials and Methods
2.1. Animal Experimentation

Eµ-TCL1 transgenic mice (Eµ-TCL1tg/wt on the C57Bl/6 background), which ex-
press the TCL1 oncogene under the IGVH promoter, driving clonal expansion of CD5int

B cells [14], were kindly provided by Dr. Carlo Croce (Ohio State University, Columbus,
OH, USA) and crossed with CD73−/− C57Bl/6 mice, originally obtained from Dr. Linda
Thompson (OMRF, Oklahoma City, OK, USA). Genotyping was performed on ear biopsies
harvested upon weaning. Primers are listed in Supplemental Table S1. Birth rate, birth
weight, and gender distribution for Eµ-TCL1tg/wt CD73−/− breeding were not different
than those of Eµ-TCL1tg/wt mice. For certain experiments, littermates that were revealed
to not have integrated the TCL1 transgene upon genotyping were used as non-leukemic,
healthy (hWT and hCD73−/−) controls. Disease progression was monitored by analysis of
peripheral blood composition by FACS and sick mice were sacrificed prior to the apparition
of a moribund state. For some experiments, 4- and 8-month-old mice were sacrificed for
spleen single-cell analysis. For interferon gamma (IFN-γ) neutralization in vivo, 2-month-
old mice were treated intraperitoneally with 200 µg of the anti-IFN-γ monoclonal antibody
(clone H22; BioXCell) twice a week for 10 weeks. Animal experimentations were performed
in accordance with guidelines from the Canadian Council on Animal Care (CCAC) and
were approved by an Institutional Animal Care and Use Committee.

2.2. Reagents and Cell Culture

The following reagents were used for the study: 5′-N-ethylcarboxamidoadenosine
(NECA; Tocris, Bristol, UK, #1691), SCH 58261 (Tocris, #2270), CGS 21680 hydrochloride
(Tocris, #1063), recombinant mouse IL-10 protein (R&D systems, #417-ML), and mouse
IFN-gamma recombinant protein (Thermofisher, Waltham, MA, USA, #BMS326). CLL cells
were isolated from the spleens of deceased Eµ-TCL1tg/wt mice by generating single-cell
suspensions. CLL purity was verified by FACS. For in vitro experiments, CLL cells were
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exposed to either CGS 21680 (1 µM) or NECA (1 µM) with or without SCH 58261 (1 µM)
for 48 h at 37 ◦C in RPMI containing 10% FBS, 100 U/mL penicillin, and 0.1 mg/mL
streptomycin, in the presence or absence of recombinant mouse IL-10 protein (100 ng/mL)
or recombinant mouse IFN-gamma (10 ng/mL). After 48 h of incubation, PD-L1 expression
levels upon treatments were analyzed by FACS (Section 2.4).

2.3. Genomic and Transcriptomic Analyses

For analysis of CD73 and CD39 expression in young and healthy C57Bl/6 mice,
raw-count RNA sequencing gene expression data of bulk CD19+ thymic B cells (GEO:
GSE107110) [15], purified CD4+ naive T cells (CD3+CD4+CD25-CD62L+CD44−), and
effector memory (CD3+CD4+CD25-CD62L-CD44+) T cells (GEO: GSE184496) [16] were
retrieved from the Gene Expression Omnibus (GEO) portal. Gene expression was computed
using the log2-transformed TPM (transcripts per million) method. Differential expression
of Nt5e and Entpd1 expression in young vs. old mice were investigated using the DESeq2
R package [17].

For adenosine signaling analysis in human CLL patients, processed gene expression
profile (RNA sequencing) and mutation information data (whole-exome sequencing) from a
cohort of 156 CLL patients [18,19] were retrieved from the cBioPortal data repository [18,19].
The processed gene expression profile of this cohort was composed of log2-transformed
TPM (transcripts per million) data. For further information on data processing, please refer
to the original publication from Landau and colleagues [18,19].

2.4. Flow Cytometry

Single-cell suspensions were incubated with fluorescence-conjugated antibodies for
30 min at 4 ◦C and then acquired with a BD LSRFortessa flow cytometer. For cytokine
release assay, splenocytes from 8-month-old Eµ-TCL1 WT and CD73−/− mice were cul-
tured with brefeldin A (5 µg/mL; Sigma, St. Louis, MO, USA) alone (unstim) or with PMA
(25 ng/mL; Sigma) and ionomycin (1 µg/mL; Sigma) in RPMI (10% FBS, 1% pen/strep,
50 µM 2-mercaptoethanol). After 6 h, media was washed, cells were stained for extracel-
lular markers (CD3, CD4, CD8), fixed, and permeabilized (eBioscience, #00-5523-00), and
stained intracellularly. Antibodies used are listed in Supplemental Table S2.

2.5. Statistical Analysis

Mann–Whitney and ANOVA tests were performed when comparing 2 and 3 groups,
respectively. Šidák corrections were applied to multiple comparisons. Correlations and
survival analyses were performed by Pearson and log-rank tests, respectively. All statistical
analyses were performed using GraphPad Prism software (version 9.0.2).

3. Results
3.1. CD73 and CD39 Are Upregulated on Non-Leukemic Lymphocytes upon CLL Progression

We firstly analyzed CD73 and CD39 protein expression on circulating leukemic cells
(CD5int B220int), normal B cells (nB cells: CD5neg B220hi), and T cells (CD5hi B220neg) from
Eµ-TCL1tg/wt mice (Figure S1A–D). Both CD73 and CD39 were found to be significantly
upregulated on leukemic CLL cells compared to nB (Figure 1A) in the early stage of the
disease (i.e., 6-month-old mice). The expression levels of CD73 and CD39 were further
increased upon disease progression on nB cells and T cells (Figure 1B,C), while leukemic
CLL cells maintained high levels of both ectonucletotidases (Figure 1D). Similar expression
levels were observed in the spleens (Figure S1E–H). By contrast, lymphocytes from aged,
healthy control mice did not upregulate CD73 and CD39 to the same extent as CLL-bearing
mice (Figure S1I–K).
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Figure 1. CD73 and CD39 expression is upregulated on non-leukemic lymphocytes upon disease
progression. Peripheral blood (PB) cells of male (M) and female (F) Eµ-TCL1tg/wt mice were analyzed
at 6 months old (Mo) (early stage; n = 25 F and n = 11 M) and 12 months old (Mo) (advanced
stage; n = 11 F and n = 6 M). CD73 (left) and CD39 (right) expression levels are shown by mean
fluorescence intensity (MFI). (A) CD73 and CD39 expression is compared between 6-month-old PB
leukemic cells (CLL; CD5int B220int) and normal B cells (nB; CD5neg B220hi) from Eµ-TCL1tg/wt

and hWT mice (n = 5 M and 5 F). (B–D) CD73 and CD39 expression is compared between 6- and
12-month-old (B) normal B cells (nB), (C) pan-T cells (T; CD5hi B220neg) and (D) leukemic cells (CLL)
of Eµ-TCL1tg/wt mice. Means +/− SEM are shown (* p < 0.05; *** p < 0.001 by 2-way ANOVA).
MO, months; PB, peripheral blood; n.s., non-significant; nB, normal B cells; MFI, mean fluorescence
intensity; hWT, healthy WT.

3.2. CD73 Deficiency Prolongs Survival of Eµ-TCL1 Male Mice in an IFN-γ-Dependent Manner

Next, we crossed Eµ-TCL1tg/wt mice with CD73−/− mice and analyzed disease pro-
gression and survival. We observed that CD73 deficiency significantly increased the
survival of male CD73−/− Eµ-TCL1 mice (log-rank p = 0.002) (Figure 2A and Table 1).
Consistent with this observation, peripheral disease burden was also significantly reduced
at 12 months (Figures 2C and S2A). Surprisingly, no survival difference was observed in fe-
male mice (log-rank p = 0.54) (Figure 2B and Table 1). CD73-deficient female Eµ-TCL1tg/wt

mice showed a similar disease burden to that of control female mice (Figures 2D and S2B).
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Figure 2. CD73 deficiency prolongs survival of Eµ-TCL1tg/wt males. Eµ-TCL1tg/wt mice were crossed
with CD73−/− mice and leukemia progression was analyzed. (A,B) Survival of Eµ-TCL1tg/wt

(n = 14 M and 25 F) and Eµ-TCL1tg/wt CD73−/− (n = 13 M and 22 F) (a) males and (B) females.
(C,D) Fold change in peripheral disease burden of Eµ-TCL1tg/wt and Eµ-TCL1tg/wt CD73−/− (C) 8-
and 12-month-old male and (D) female mice relative to 8-month-old hWT mice (hWT n = 5 M and
5 F; hCD73−/− n = 7 M and 5 F). Means +/− SEM are shown (** p < 0.01 by log-rank (A,B) or
Mann–Whitney test (C,D)). F, female; M, male; tg, transgenic; n.s., non-significant.
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Table 1. Median survival time of experimental groups of Eµ-TCL1tg/wt transgenic mice.

Experimental Group Sex n Survival (Months)
Median Range

Eµ-TCL1tg/wt F 25 12.0 8.3–15.2
M 14 12.3 8.5–15.6

Eµ-TCL1tg/wt CD73−/− F 22 12.1 8.3–16.3
M 13 14.9 11.0–16.6

Eµ-TCL1tg/wt CD73−/− + anti-IFN-γ M 10 12.4 10.5–15.6

CLL is known to alter T cell function to promote immune escape [20,21]. We, thus,
evaluated whether loss of CD73 in female Eµ-TCL1tg/wt mice was associated with a gain in
potential compensatory pathways. Firstly, we observed that CD73 deficiency in female Eµ-
TCL1tg/wt mice was associated with significant upregulation of CD39 expression in normal
lymphocytes (Figure 3). This was not observed in male mice, who did not reflect a change
in the frequency of CD4+ Foxp3+ T regulatory cells (Figure S2C), known to express CD39.
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Figure 3. CD73-deficient Eµ-TCL1tg/wt males fail to upregulate CD39 in peripheral blood. Peripheral
blood (PB) cells of male (M) and female (F) CD73−/− Eµ-TCL1tg/wt mice were analyzed at 6 (n = 22 F
and n = 13 M) and 12 (n = 12 F and n = 10 M) months old (MO). CD39 expression levels shown by
mean fluorescence intensity (MFI) on PB (A,B), normal B cells (nB; CD5neg B220hi) and (C,D) pan-T
cells (T; CD5hi B220neg). Six-month-old hCD73−/− littermates were used as control. Means +/− SEM
are shown (* p < 0.05; ** p < 0.01; *** p < 0.001 by 2-way ANOVA). FMO, fluorescence minus one;
MO, months; hCD73−/−, healthy CD73−/−; nB, normal B cells; n.s., non-significant; MFI, mean
fluorescence intensity.

Secondly, since CLL cells can express high levels of PD-L1, and PD-L1 blockade can
restore antitumor immunity in Eµ-TCL1 mice [5,21], we also compared PD-L1 expression
levels on leukemic cells in male versus female CD73-deficient Eµ-TCL1tg/wt mice. We
observed that, in contrast to male mice, which downregulated PD-L1 expression on CLL
cells (Figure 4A), CD73-deficient female mice maintained high levels of PD-L1 on CLL and
normal B cells (Figures 4A and S2D).

Our data thus suggest that, while CD73 deficiency was associated with greater antitu-
mor immune surveillance in male Eµ-TCL1tg/wt mice, female mice upregulated immuno-
suppressive CD39 and PD-L1 upon CD73 deletion. Further, in support of an important role
for CD73 in regulating anti-CLL tumor immunity, and consistent with the fact that CD8+ ef-
fector memory T cells (TEM) have been shown to restrain CLL progression [22], loss of CD73
was also associated with a significant increase in CD8+ TEM/TCM (Figures 4B and S2E,F)
and in IFN-γ production in male Eµ-TCL1tg/wt mice (Figures 4C and S2G).
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Because IFN-γ is an important component of the anti-leukemic response [23], next,
we evaluated whether IFN-γ was required for the anti-CLL activity associated with CD73
targeting. For this purpose, Eµ-TCL1tg/wt CD73−/− mice were treated with anti-IFN-
γ neutralizing mAb and disease progression was monitored over time. CD73-deficient
Eµ-TCL1tg/wt male mice, injected with a neutralizing anti-IFN-γ mAb, were no longer
protected from CLL (Figures 4D,E and S2H and Table 1). Accordingly, neutralizing IFN-γ
increased tumor burden (albeit not significantly; Figure 4D) and significantly decreased
survival of CD73-deficient Eµ-TCL1tg/wt male mice (Figure 4E).

3.3. A2a Adenosine Receptor Signaling Drives PD-L1 Expression on CLL Cells

We investigated whether adenosine signaling regulated PD-L1 expression on leukemic
cells. CLL cells were treated with NECA, a stable adenosine receptor agonist, with or
without exogenous IL-10 and IFN-γ, which have been shown to modulate PD-L1 expres-
sion on CLL [24,25]. Remarkably, treatment with NECA significantly increased PD-L1
expression on CLL cells, an effect further exacerbated when cells were co-treated with IL-10
or IFN-γ (Figure 5A,B). We hypothesized that the effect of NECA was due to the activa-
tion of A2a adenosine receptors. Accordingly, NECA-mediated upregulation of PD-L1
on CLL cells was abrogated upon addition of the selective A2a receptor antagonist SCH
58261, (Figure 5A,B). Consistent with this, treatment of CLL cells with the A2a receptor
agonist CGS 21680 significantly upregulated PD-L1 expression (Figure 5C). Taken together,
our results indicate that adenosine signaling via A2a receptors contributes to high PD-L1
expression levels on CLL.
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Figure 4. CD73−/− Eµ-TCL1tg/wt males display increased antitumor immunity and IFN-γ neutral-
ization abrogates their prolonged survival. Spleens’ compositions of 8-month-old Eµ-TCL1tg/wt and
Eµ-TCL1tg/wt CD73−/− male and female mice were analyzed by cytometry. (A) Analysis of PD-L1
expression levels (MFI) on splenic leukemic CLL (CD5int B220int) cells (M Eµ-TCL1tg/wt n = 7; M
Eµ-TCL1tg/wt CD73−/− n = 8; F Eµ-TCL1tg/wt n = 8; F Eµ-TCL1tg/wt CD73−/− n = 7). (B) Fold
change in ratios of effector memory (Em: CD44+CD62L-) to central memory (Cm: CD44+CD62L+)
CD4+ and CD8+ (gated on live CD3+) splenic T cells in Eµ-TCL1tg/wt and Eµ-TCL1tg/wt CD73−/−

(M Eµ-TCL1tg/wt n = 17; M Eµ-TCL1tg/wt CD73−/− n = 19; F Eµ-TCL1tg/wt n = 9; F Eµ-TCL1tg/wt

CD73−/− n = 10). (C) Percentages of IFN-γ+ CD4 and CD8 T cells from 8-month-old Eµ-TCL1tg/wt

and Eµ-TCL1tg/wt CD73−/− splenocytes stimulated in vitro with PMA/ionomycin for 6h (M Eµ-
TCL1tg/wt n = 5; M Eµ-TCL1tg/wt CD73−/− n = 5; F Eµ-TCL1tg/wt n = 6; F Eµ-TCL1tg/wt CD73−/−

n = 6). (D) Fold change in peripheral disease burden relative to untreated Eµ-TCL1tg/wt mice and
(E) survival of Eµ-TCL1tg/wt CD73−/− males treated with anti-interferon gamma (αIFNγ; n = 10)
compared to historical untreated (unt.) Eµ-TCL1tg/wt (n = 14) and Eµ-TCL1tg/wt CD73−/− (n = 13)
controls. Means +/− SEM are shown (* p < 0.05; ** p < 0.01 by Mann–Whitney test (A–C), 1-way
ANOVA (D) and log-rank (E)). FMO, fluorescence minus one; F, female; M, male; Em, effector
memory; Cm, central memory; unt., untreated; n.s., non-significant.
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3.4. Adenosine Signaling Is Associated with Increased PD-L1 Expression

We finally evaluated whether the expression levels of A2a adenosine receptors were
associated with high-risk IGHV-unmutated or TP53-mutated CLL. For this, we analyzed
156 human CLL samples with available gene expression profile and mutation information
data [18,19]. In support of our mouse data, higher A2a (ADORA2A) gene expression
was significantly associated with IGHV-unmutated and TP53-mutated CLL (Figure 6A,B).
Moreover, ADORA2A gene expression levels positively correlated with increased PD-L1
(CD274) gene expression (Figure 6C). Two previously reported adenosine-associated gene
expression signatures [26,27] were also positively correlated with PD-L1 levels in CLL cells
(Figure 6D,E). Our results thus suggest an important role for the CD73-adenosine-A2a axis
in promoting immune escape of CLL.
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Figure 5. A2a adenosine receptor signaling potentiates PD-L1 expression on Eµ-TCL1-derived CLL
cells. CD73-deficient Eµ-TCL1-derived CLL cells were cultured in vitro for 48 h and PD-L1 expression
was analyzed by FACS. (A,B) MFI and fold change in PD-L1 expression of CD73-deficient Eµ-TCL1
(male)-derived CLL cells upon exposition to NECA (1µM; n = 3) +/− SCH58261 (1µM; n = 2) in
presence or not of (A) mouse recombinant IL-10 (100 ng/mL) or (B) mouse recombinant IFN-γ
(10 ng/mL). (C) MFI and fold change in PD-L1 expression of CLL cells derived from 3 Eµ-TCL1tg/wt

CD73−/− male mice exposed to CGS 21680 (1 µM; n = 2). Means +/− SEM are shown (* p < 0.05;
** p < 0.01; *** p < 0.001 by 1-way ANOVA).
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Figure 6. ADORA2A gene expression is associated with PD-L1 levels and increased risk stratification.
Gene expression profile and mutation information data from 156 CLL patients, publicly available
through the cBio Cancer Genomics Portal, were used to compared mRNA levels (RNA-seq TPM)
of A2a (ADORA2A) between high- and low-risk patients. (A) A2a gene expression levels in IGHV-
mutated (low risk; n = 92) and -unmutated (high risk; n = 59) patients. (B) A2a gene expression levels
in TP53-mutated (high risk; n = 16) and -unmutated (low risk; n = 140) patients. (C) Correlation
between A2a and PD-L1 gene expression. (D,E) Correlations between PD-L1 mRNA and adenosine
gene signatures published by (D) Sidders et al. [26] (ADO-signature 1) and (E) Fong et al. [27] (ADO-
signature 2). Means +/− SEM are shown (** p < 0.01; by Mann–Whitney test (A,B) and Pearson
correlation (C–E)). TPM, transcript per million.
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4. Discussion

CLL is characterized by a dysfunctional anti-tumor immune response [3,5,21]. Pre-
clinical studies suggest that immunotherapy with an immune checkpoint blockade can
promote anti-CLL immunity [5,13]. Using the Eµ-TCL1 transgenic mouse model, we have
demonstrated an important role for the CD73-adenosine axis in CLL. Our findings are
in agreement with a previous study on A2a-mediated immune dysfunction in CLL [13],
and further support that targeting the CD73-adenosine immune checkpoint may be a
therapeutic avenue in CLL.

An important finding of our study is that male Eµ-TCL1tg/wt CD73−/− mice exhibited
enhanced immune surveillance against CLL, which was associated with reduced PD-L1
expression on CLL cells. Mechanistically, this was associated with increased generation of
effector memory CD8+ T cells and increased IFN-γ production. Adenosine produced by
the CD73-activated A2a adenosine receptor on CLL cells enhanced PD-L1 expression. The
A2a adenosine receptor is highly expressed on CLL cells [10]. Notably, cAMP signaling
has been shown to enhance PD-L1 expression on diffuse large B cells’ leukemia (DLBCL)
cells [24]. Our data thus suggest that A2a receptor-mediated cAMP accumulation also
promotes PD-L1 expression on CLL cells. In support of this, we observed a strong positive
correlation between PD-L1 expression and A2a receptors or adenosine-regulated genes in
human CLL [26,27].

The underlying mechanisms explaining the observed sex bias remain unclear. Intrigu-
ingly, a recent study reported female-specific upregulation of CD39 in hepatocytes upon
CD73 gene deletion [28]. Upregulation of CD39 may favor alternative adenosine-generating
pathways. It remains unclear whether adenosine signaling is regulated by sex-specific
hormones. Further studies should dissect the impact of gonadectomy on the expression of
adenosine signaling regulatory proteins (e.g., CD39, CD73, and A2a receptors).

Our observation of female-specific increases in CD39 expression on B cells may reflect
a sex-specific accumulation of IL-10-secreting Bregs, as was documented in humans [29].
While the impact of adenosine signaling on IL-10 production during CLL remains unknown,
cAMP accumulation was recently described to favor IL-10 production in DLBCL [24]. IL-10
notably plays a critical role in CLL pathogenesis [30,31] and in the regulation of PD-L1
expression [24,25]. Sex-mediated differences in IL-10 production, as described in solid
tumors [32], may thus contribute to the sex bias of CD73-deficient Eµ-TCL1tg/wt mice.

It should be emphasized that the observed increase in median survival of CD73-
deficient versus CD73-proficient Eµ-TCL1tg/wt male mice (i.e., nearly 3 months) is in
the same range as what has been reported for ibrutinib treatment in this model [33].
CD73 deficiency did not simply exacerbate a preexisting survival sex bias in the Eµ-TCL
transgenic mouse model, as reported by Koch et al. [34]. We did not observe such bias in
our studies.

Finally, our study comprises important limitations, notably regarding the translation of
results obtained from mouse studies to human patients with CLL. CD73 biology may differ
between mice and humans as CD73−/− mice do not fully recapitulate CD73 deficiency
in humans [35,36]. In addition, since disease severity is greater in men with CLL [2], but
slightly milder in male Eµ-TCL1 transgenic mice [34], aspects of CLL pathogenesis may
not be fully recapitulated by the mouse model used in this report.

5. Conclusions

Overall, our study identifies an important role for the CD73-adenosine axis in promot-
ing CLL progression and immune escape, notably by increasing PD-L1 expression on CLL
cells. While the use of the Eµ-TCL1 transgenic mouse model to study the role of CD73 in
CLL pathogenesis may not fully recapitulate human disease, our findings prompt further
investigation of the therapeutic potential of targeting CD73 in CLL, especially in men.
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antibodies used for FACS analyses.
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